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ABSTRACT

We investigate a new lattice regularization of gauge theories where gauge—-invariance with
non compact gauge fields is realized by the help of auxiliary fields. For the gauge group SU(2)
there is only one auxiliary field. We construct the complete action for scaling dimension 2 of this
field. In this case the regularization ammounts to relax unitarity of the Wilson link variables, but
has the same renormalization scale parameter showing the stability of Wilson's fixed point.

1. - INTRODUCTION

Recently a noncompact formulation of gauge theories on a lattice has been proposcdl), with
a number of motivations. From the point of view of perturbative calculations one would like to be
closer to the continuum, with Faddev—Popov terms simpler than in Wilson's definition. From the
point of view of Monte Carlo calculations, on a practical ground, one would like to avoid the
numerical complications due to the use of the gauge group invariant Haar measure. On a more
fundamental ground one would like to avoid the decompactification which makes more difficult to
understand issues related to confinement. In Wilson definition in fact its mechanism is quite
simple at strong coupling where it is strictly related to the compactness of the gauge variables,



while in the scaling regime (which should approximate the continuum where the gauge fields are
noncompact) it has not yet been fully understood. The extreme possibility that at strong coupling
confinement be an artifact of compacteness has been considered also in ref. 1. In order to avoid
difficulties with decompactification, some authors2.3) have defined gauge theories on the lattice by
direct discretization of the continuum action. No confinement has been found, but this can be due
to the explicit breaking of gauge—invariance by such a procedure. In another attempt®) the gauge—
invariant variables have been used which emerge as solutions of a non renormalizable gauge
fixing. Also in this case no confinement has been found. Among the possible reasons for this
negative result there is the lack of renormalizability, which seems in fact essential to relate
confinement to monopole condensation by the abelian projection methodS). A possible
explanation3) for the absence of confinement common to all the above results is that, being close
to the continuum, all the above regularizations have a scale close to the continuum one. The
physical dimension of the lattice is in such a case so small that the quark—quark potential inside it
cannot be linear. It is obvious that to clarify this situation one must introduce non compact gauge
fields by respecting gauge—invariance and renormalizability.

A last motivation concerns the possibility that non compact regularizations might have a
different scale, providing us with a flexibility to be exploited by choosing the scale more
convenient to the problem at hand.

The new regularization, in order to enforce gauge invariance at finite lattice spacing, makes
use of auxiliary fields which decouple in the continuum limit. In the case of SU(2), to which we
restrict ourselves in the present paper, in addition to the Yang—Mills fields it contains only a
vector field. Elimination of this field by a gauge-invariant constraint leads to Wilson's
formulation®). In this paper we want to discuss the case in which the auxiliary field is retained so
that the gauge fields are non compact.

The regularization is such that it is, a priori, possible to assign different scaling dimension
to the auxiliary field. We will consider the case of scaling dimension 2. Its kinetic terms are
therefore irrelevant, and we will show that they can altogether be eliminated by a proper choice of
the coupling constants, so that its propagator be local (constant in momentum space).

In Sect. 2. we will construct all the local gauge—invariant terms which are also invariant
under the inversion of any single axis. We will then constrain the coupling constants of such
terms by requiring stability (existence of a lower bound for the Euclidean action) and Euclidean
invariance in the continuum limit. For completeness we will present the coupling to scalar fields
and we will complete the action by introducing the Feynman gauge—fixing throught the BRS
procedure.

Having so established the general form of the Lagrangian, in Sect. 3. we shall compare to
one loop the renormalization parameter Ayc of the present non compact regularization to that of
Wilson, Ay, along the line of Dashen and Gross?”).

It turns out that

In Aw g2

Anc

vanishing in the continuum limit. This shows that Wilson's theory is stable against violations of
unitarity of the link variables. '



2. = CONSTRUCTION OF THE COMPLETE ACTION

The gauge transformations of the gauge field A4, and of the auxiliary field Wy, are(”)

‘ a
Apa=Apa+ (1 -a W) A O — €5pc Aup (1 + 75 8y) O 2.1
W, =W, + % a Aya By Oy, (2.2)

where a is the lattice spacing and
A (x) = % Ex+w-fE]  ,  Hy=8y. (2.3)
We will also need the left derivative
85 £60 = + [0 -t ] (2.4)

The limit for a — O reproduces the continuum gauge transformations for 4, but it is not
defined for W, depending on a possible rescaling of this field with a. As we will see the scaling
dimension 2 allows the rescaling '

W, =av,,. (2.5)

Such a rescaling is also natural from the point of view of the transformations, because if we
start with W, = 0 only fields of order a will be generated. The continuum limit of the
transformations for V, is obviously

Vo= Vit A Ay 9, (2.6)
The basic element of the regularization is the covariant derivative("
Dy=(E-W)1+ig, . A= A4,T, @.7)

T, being the generators of the group normalized according to
[ Ty, Tb] =1 T
(T To) = 3 8ap: 2.8)
Under gauge transformations
Dy (x) = g (9 Dy (x) 8" (x+ ). (2.9)

The strength and the Yang—-Mills Lagrangian are defined in analogy to the continuum



Fuy () = 1 [Dy (%) Dy (x + 1) = Dy (x) Dy (x + ] = g (0) Fyy () gF (e +v),
(2.10)

1 i 1 1
LYM=§ BT Fquw:ﬁB hX {(Au Aya— By /qua) - [ 5 Eabc fqub Ave(x + 1)
n# vV H#EV

2
+Wuﬂ1va(x+u)+Wv(x+u),‘Zlua—(u<—>v)]}

2
+%Bu§V{(AuWV—AVWu)+[ %ﬁu SR, ) =W Wy G+ - (e v}
(2.11)

In the formal continuum limit the auxiliary field W}, obviously decouples. To ensure its
decoupling also at the quantum level in ref. (1) a potential was introduced in order to give to W a
divergent mass for vanishing lattice spacing. This decoupling mechanism is likely to be necessary
because the coupling of the vector field W, is not protected by a gauge symmetry. In constructing
the potential we must require that if W, develops a nonvanishing expectation value at the
semiclassical level, this should be different from 3 since otherwise Du is no longer a (covariant)
derivative. Let us in fact notice that the nonhomogeneous gauge transformationl\s (2.1) arise from
a spontaneous breaking of\ homogeneous transformations for the fields 4, and W), =1-a W,,.
The breaking occurs if <W, > # 0, namely <W># T

The only other invariant in the present regularization is t}, defined by

DDl L=l g2, w2_2
tuI~DuDu—a21-[4 A+ W - aWu}I, (2.12)
so that the potential must be a function of it. In ref. (1) it was chosen to be

Lo=BeXth. (2.13)
n

If in the continum limit

2—
Bc ~ (a/?») s, € > 0, A a parameter with the dimension of a lenght, (2.14)

€ £
the mass of W), is of the order of A2 1 a 2. Inthe present paper we confine ourselves to the
case € = 2. In this case the mass of W, is of the order of a1 and dominates the kinetic terms in
the whole Brillouin zone, so that Wu has scaling(**) dimension 2. Let us mention for future
reference that for .= e one gets Wilson's regularization®).

Finally it is perhaps worth while noticing that the measure for W), and 4, in the path
integral is 1.



Let us now start our program by defining the operator Py, representing the inversion of the
H-—axis (X — i,X)

3 Dﬁ(iux—u), forp =v
Py DyPy= (2.15)
D\,(iu X) , forpu #v

so that
P_u1 ty (x) Py =ty (ipx — Su,\,u), for any choice of p and v.

Notice that L(YM is not parity—invariant. Both Ly, and t w however, are invariant under the
trasformations'***)

4,->-4
" " (2.16)

2
Wu—>—Wu+5

which change Dy into —Dy,.

We select the couplings which are invariant under gauge transformations and under
permutations and inversions of the lattice axes, generating the whole cristallographic group.

We also require the couplings to be minimal in the sense that every independent term be at

most quartic in Dy, and contain at least a local or a nearest-neighbour coupling. This leads to the
following terms:

LP=—%B S Tr (D (x) Dy (x + 1) D] (x +v) D} (x)) (2.17)
[IEY
Bm
Lp=-"752t
a2 | M
L=B.3 0
(¥ Cu 1

Li=P 3 1)t x+p)
u

Ly=By ¥ tu(x)tu(x+v)
TEQY

L3=B3 % 1,00 (4, (0 + 2, (1) +t, (c+ V)
PV

Li=B4 ¥ tu(x) (tv(x+p)+tv(x+p+u)+tv(x+p—v)+tv(x+p+u—v))
HU#EVFp



Ls=Ps ¥ tu(x) [tv(x)+tv(x+ u—v)+tv(x—u+v) +tv(x+2u—2v)—
HAV

2(tv(x+ 2U-V)+t, (x+ pHV)Ft, (X + V)t (x+20) —
t, (x+ W) —t, (x+ 20— w)]. (2.18)

If W), has dimension 2, £y and L, are equivalent to L¢ and L4 and Lg to L3 up to
irrelevant terms. We will retain all these terms, however, in order to be able to get for Wu a
propagator strictly local, i.e. proportional to a Kronecker-9 of the lattice site.

Summing all the above terms we have the gauge Lagrangian

Lo= Lp+ L+ Lo+ Ly + Ly + La+ Ly + Ls+ 68, (2.19)
a

where the last term has been determined in such a way that for 4,=W;=0, L5=0.
In order to discuss stability and Euclidean invariance we need the classical potential

1
VegeB = [ A- (A - A ]+, 3t
UV TEQY
2 . 1
+onY t-BL,+3B8)= Tt., (2.20)
211 1 2 0M

where

0€1=4(l33+2[34)—%l3

(2.21)
oy =Py + 3B+ B
Stability requires V to be bounded from below, which yields
3 o+ Uy > 0, Bm arbitrary
(2.22)
3o+ op=0, Bn+3B<0.
The minimum of V is obtained for:
1 Bp+ 3B |12
W (x)=—{1—0‘ (x)|:1+-————m———-——] , c,xX)=%x1, 2.23
" a " 20301 + 0ty) b &) (229



so that it is degenerate at each site. Such a degeneracy is a consequence of the symmetry (2.16),
which is not broken at the quantum level, due to the absence (or irrelevance) of the kinetic terms
for Wu and, as we will see, has to be accounted for also in perturbation theory.

We fix B, by the normalization condition

W)= 0 for o, x)=1, (2.24)
which yields
Bm= —3B. (2.25)

Let us now come to the constraint of Euclidean invariance in the continuum limit. This
constraint in principle concerns the functional generator defined by the Feynman functional
integral. It does not apply to the Lagrangian since the lattice regularization is not Euclidean
invariant. However, if our theory is asymptotically free, as it is expected to be, its short distance
behaviour agrees with perturbation theory. This implies Euclidean invariance for the action in the
formal continuum limit. As already noted in this limit the relevant field is \s Y W. The
potential is in fact Euclidean invariant with respect to the field V, shifted according to

1z 1 242 _ 1
Vimg A5tV = -5ty (2.26)
for
o =0. (2.27)
It is easy to check that the kinetic terms of W,, disappear by taking
Br =Bs=Bs=0
1
Ba=7 B,
1
Bs=g B
B, arbitrary. (2.28)
Indeed after the above substitutions
1 2 2 1
Lo=Lyy— gBa” T Byuty— Ayt + -z—yzzti (2.29)
U#v H
where

TR a0



The stability condition (2.22) tells now that YZ > 0.

The above shows that L differs from a combination of Ly, and L only by irrelevant
terms.

Noticing that Ly, given by eq. (2.11) can be written in terms of Lp as

1
LYM=LP+ 6[.))‘1—4 +Lm+ 5 B 2 tu(X) tV (X+p,), (231)
a UV

we see that quadratic terms in t, which are not strictly local cancel out in Lg.
Let us finally come to the coupling with scalars. It is simple to see that the only terms

invariant under the symmetry (2.16), gauge—and parity—invariant, hermitean and of degree not
greater than 4 are

Lg=] Dyo | 2y m2(p+(p + A ((pJ"(p)2 (2.32)
where

1
Dy o= E[Du(x)q)(ﬂu)—Dfl (x — 1) @ (x—u):I. (2.33)

To complete the Lagrangian we adopt to the lattice Feynman gauge-fixing. We define lattice
BRS transformations

sDy (x)=i[ ¢(x) Dy ()~ Dy ) ¢ (x + )] (2.34)
sc)=ic*(x)

s ¢ (x)=1b(x)

sbx)=0, (2.35)
where
c=c, T,
(2.36)
T=T,T,

are the Faddeev-Popov gosts and
b=b, T, (2.37)

is the Lagrange multiplier.
The gauge—fixing term can now be written

Ly=isT; [E(zAf;) D,-b)] . (2.38)



The Lagrangian we have found is in a form not suitable for perturbative calculations. The
difficulty stems from the degeneracy of the classical potential at each site. The field W), due to its
scaling dimension, i.e. to the irrelevance (or total absence) of its kinetic terms, will perform large
fluctuations between the 2 minima. We can define a field

1
W =Wy-g[1-0] o =t1, (2.39)

which has small fluctuations, but this will introduce in the action the spin-field oy,. Before being
able to perform a loop—expansion we must then sum over o, (x) explicitely, and this will
introduce non polynomial interactions. At this price we can circumvent the difficulty by
introducing as independent variables the Wilson link variables and t w in terms of which, as
shown below, the degeneracy disappears.

3. - THE RENORMALIZATION SCALE PARAMETER

We will follow the procedure of Dashen and Gross”) which is based on a generalization of
the background field method to the lattice. We will replace in £p (but not in the gauge fixing) the
covariant derivative Dy, by the background derivative

15u =D, U?, (3.1)
where
. 0
Uﬁ = 3% (3.2)

and we will redefine the gauge—fixing term according to
Ly=isTfe 0 LB, 00 Ut - Ut -y Bux-w]- b ol 63)
gf=18Tpic (x a[u(x) u(x) u(x 1 (X p] 3 . (3.

The BRS transformations are now

sﬁu(x)=i[c (x) ﬁu (x) — ﬁu (x) ¢ (x + u)]

(3.4)
sU° =0,

the other transformations remaining unchanged.
Willing to compare our regularization to that of Wilson, it is convenient to abandon the

original cartesian parametrization (2.7) of Du, introducing as independent variables the polar field

ty and the unitary link variable
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U, =% | (3.5)
through the equation
: 1
— 2 2 L
Du—(1+a %) U, (3.6)

Such a parametrization makes it clear how unitarity of Wilson link variables has been
relaxed and how for . = o itis recoverd, since in sucha case t | = 0.

Notice that with this choice of variables we have circumvented the difficulty related to the
vacuum degeneracy. In terms of these variables L has the form

e V1 2,1 w -
Lg=3 LD + 5 722 th* 3 Y Tuv Luv+ polynomials in ty (3.7
o] H HFEV
where
1
qx=_§Ba4T{UMm1%u+p)U;u+v)U§—1], (3.8)
w1 W
Li=5 3% Ly, (3.9)
£V
_ 2 2 2 2 12
Tuv—{[1+a tu(x)][]+a tv(x+p.)][1+a tu(x+v)][]+a t, (%) ]} —1(3 o

Lg has been thus decomposed into the Wilson Lagrangian L\: plus a free term for t " plus an
interaction term. Such a decomposition makes easy to evaluate the additional Feynman diagrams
with respect to those of Wilson which contribute to the effective action to one loop and second
order in aﬁ (see the Figure).

/"_\\
Vs \
- ! )
- AN
/ \\ \\ //
a b

FIG. 1 — Wavy lines refer to quantum gauge fields, circles to background gauge fields and
broken lines to the Wu—ﬁeld.
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For their evaluation it is sufficient to expand Tuv to second order in t

) 1 3 4
Tuvﬂa (tu+tv)+ 5 a (AutV+Avtu)+a ty ty

5

6
a a 2
+7(tuAutv+thvtu)——8—(Autv—Avtu) (3.11)

and to retain in Lm only the quadratic terms

2
Lffv ~ 1% B [G’uv (o) + E?uv (aO)} . (3.12)

Finally the part of L relevant to the present calculation is

Lo= Lo+ Ly, (3.13)
. 4
where, taking into account that f = —5
g
11o2 o, lag 2
Lo=34 LGy @)+ R (3.14)
PV H
f-tlst (8 @+3. @] (3.15)
int g2 4 [TV uv uv ) '
U#v

The propagators of ty and o, are

1
<tu(x)tv(y)>= —7—2—;{-5 )

uv oxy
£
<O, (x) o, (y)>= X Kx-y) Suv 8, - (3.16)
where
.2®
1 lﬁn' X
Kx-y)y=—72% K ¢ , L =aN (3.17)
L* 7 "
a8 2n -1
K = [E, (1-cos =5 nu)] , (3.18)
L being the lattice edge.

The contribution of diagram a is
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1 1
272 (L+1)Y a* 7 % wa (0°) (3.19)
g X IEQY
where
2 2
(1 - cos = n ) (1 + cos =q )
1 N 1 N ™2
h=-"7 2
Ny 1 =
Y —cos— n,
"
2n
)
sin® <z 0,
L=—7 s N . (3.20)
Ny s cad
Y, - cos N,
n
Their numerical value is
I, + I, = 0.38323. (3.21)
The contribution of diagram b is
' ; v at -}4‘ 3 Giv (a®) . (3.22)
2g Yz X TEQY
The sum of the two contributions is
41 2 0
E Y a 3 Y Guv(a ), (3.23)
X P#V
where
E= 5 (3 +1+1). (3.24)
gy

This is an additional finite term in the background field effective action with the present
regularization. It corresponds to a correction to the Wilson renormalization scale parameter.
Following Dashen and Gross we find that this correction is
3 121t2 E

= 11
Ayc=Ay € . (3.25)

This is not our final result since the scale parameter is defined in the continuum region, so
that we must determine the behaviour of E for vanishing lattice spacing. Its dependence on g
seems to give rise to a divergence which would imply absence of scaling and therefore a
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surprising inconsistency of our regularization. This is however not the case since also the
partameter y depends on a. There is a simple argument to show that the dependence is such that E
vanishes proportionally to g2 in the extreme scaling limit. In order to evaluate radiative corrections

to the coupling g and vy in perturbation theory it is convenient to rescale t, and o, according to

i
(o
H Y K
au —g au , (3.26)
SO getting

1
Ly=7 % Giv(a°)+ %Zti
U#V H
L=t s T (lt)[ff (@)+ G (ao)}2 (3.27)
int ~ 4 v e nv nv '
UEV

Now 7y appears as an inverse coupling constant in L;,. In order to compute the radiative
corrections to this coupling constant we have to consider the possible divergences appearing in
the two-point functions of t,; and o, and of course the radiative corrections to Lin- Owing to
the fact that the field t,, has no renormalizable coupling no logarithmic divergences will appear in
its two—point function, and the only diagrams contributing to logarithmic divergent radiative
corrections to L;,, contain a single L, verfex and only oy-lines. It follows that the divergent
corrections to L, coincide will those to LU. They are fairly well known®) since they do not
depend on the regularization.

It turns out that

2 4
(Y—O] = (—gg—) up to higher orders, (3.28)
0

g, and Yo being the bare constants, since this ratio is the renormalization constant of Guv’ So we
can write to one loop order

1
V=T g (3.29)

where v, is a free parameter while v, can be determined by taking into account the higher order
terms in eq. (3.28). In conclusion

1 1
E=(—+I +I) . (3.30)
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4. — CONCLUSIONS

Let us confront our results to our motivations. From the point of view of perturbation
theory, there is no simplification with respect to Wilson regularization owing to the local
degeneracy of the vacuum at the semiclassical level.

In the framework of nonperturbative calculations the present regularization avoids the use of
the Haar measure and makes it possible to investigate confinement with non compact gauge
fields. Actually it has been shown?) by a Monte Carlo calculation that there exists a nonvanishing
string tension compatible with the scaling determined by Egs. (3.25) and (3.30).

The renormalization scale parameter turns out to be the same as Wilson's. This is easy to
understand if we remember that Wilson regularization is recovered by putting since the very
beginning f3_ = o, i.e. +* = oo for which = 0. Here 72 grows proportionally to B2 in the scaling
regime. So unitarity of the link variables, rather that being imposed ab initio, is reached gently
because of the stability of Wilson fixed point. The hope to introduce a different scale relies
therefore on a different choice of € in eq. (2.14).

In conclusion we have shown that it is possible to construct a consistent regularization with

non compact gauge fields. It is then very well possible that there exist others with different
properties.
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The following formulae are slightly different from the corresponding ones in refs. 1, 2 due
to a different normalization of the generators of SU(2).
We remind that the scaling dimension [¢] of a field ¢ whose propagator behaves as p~C for

large p in the continuum limit, is [¢] = R

(***) It is perhaps worth while noticing that this symmetry is nearly local. Both Ly, and t;

remain in fact unchanged if, for fixed ﬁ, we perform the transformation (2.16) on all the

sites in the hyperplane orthogonal to ﬁ For instance using this symmetry one can show that
<W,X)>= 1
H T a

1
<W )W, (@y) >= ?
if x and y do not belong to the same hyperplane orthogonal ﬁ This nearly local character of

the transformation, however, is broken both by gauge fixing and by interaction with matter
fields (see below)..





