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ABSTRACT

Motivatéd by the possibility that the violent fluctuations of quantum gravity
at the Planck scale might endow space-time with a lattice structure with lattice
constant a, ~ 107**cm (the Planck lattice), we have reformulated the Standard
Model (SM) on such lattice by adding Nambu-Jona Lasinio terms, quadrilinear in
the Fermi fields, necessary to avoid the “no-go” theorem of Nielsen and Ninomiya.
We find that for certain values of the new Fermi-couplings a spontaneous violation
of the SM chiral symmetry emerges which (i) avoids the “no-go”theorem, (ii)
produces a kind of {t condensate model,(iii) does not exhibit the low-energy scalar

particle, that in the continuum #¢-condensate surrogates the Higgs boson.

¢) E-mail address:Xue@milano.infn.it



The problem of how mass gets generated in the Standard Model (SM) of fun-
damental interactions, SU.(3) ® SUL(2) ® Uy (1), is perhaps the most important
that is now facing both theoretical and experimental high-energy physics. As well
known, the mechanism of mass generation now generally considered, based on
- the Anderson-Higgs-Kibble mechanism associated to a fundamental local scalar
isodoublet Yukawa-coupled to the basic Fermi-fields (quarks and leptons), is also
generally believed to be “too ugly” to be really fundamental, leading to the con-
viction that it must be but the simple surrogate of a deeper, yet to be found and
understood, layer of particle interactions. ‘Of particular interest in this direction
is the recently proposed {t-condensate model (developed by Nambu [1] and other
research groups [2]) that, reviving the Nambu-Jona Lasin‘io (NJL) proposal [3] of a
four-fermion chiral interaction, appears to point towards a powerful link between
the W* and Z° masses and those of the yet to be discovered top-quark and Higgs
meson, the latter being essentially a tt-scalar bound state. However it cannot be
denied that the addition of a NJL-term to the usual gauge-invariant Lagrangian

density gravely lacks a compelling motivation.

In a recent paper [4], inspired by an interesting result, the “no-go” theorem
of Nielsen-Ninomiya [5], which stipulates that no simple “lattice transcription” of
the SM Lagrangian exists on any type of lattice (or, equivalently, for any type
of “regularized” theories), indicating that a consistent chiral gauge lagrangian on
a lattice must necessarily include extra interaction, quadrilinear in Fermi fields.
Thus we asked whether the physical incompleteness (lack of mass-generation) of
the SM, as formulated in continuous space-time, could not be the symptom of a
basic lattice structure of space-time: the arena of physical reality. We also recalled
that proposals exist [6], based on the violent quantum fluctuations of the metric
field at space-time distances of the order of the Planck-length a, ~ 1073%cm, that
endow space-time‘ with a “foamlike” structure of grain-size ap, thus making it

equivalent to a 4-dimensional random lattice of lattice constant a,, which we shall



call a Planck lattice. Accepting now, as our main hypothesis, that we do live on
the Planck lattice, the “no-go” theorem of Nielsen and Ninomiya tells us that if
we wish to construct a consistent SM lagrangian we must go beyond the simple
Planck lattice transcription of the continuum Lagrangian, and add to it new terms,
whose simplest structure must be quadrilinear in the fundamental fermion fields.

This we did in Ref. [4], obtaining the following expression for the Planck lattice

SM effective action
_ F | F1 F2
SpL =S¢+ Z(SD + SnaL + SNIL)s (1)
F

where S is the usual Wilson gauge-action, Sp the usual Dirac action, which will
both be analyzed in a forthcoming article[7], F=1 (F=q) denotes its lepton (quark)

sector. The new quadrilinear NJL-terms can be written as:
Sk = G1 D_{9L'(2) ¥R’ ()95’ (=) - 9L (=)} (2)

and

S = 2 Y [P IGHU ) - 45 (e + 0,95 (2GRS (=) - ¥E (e + )]

2 tu,z
(3)

where the indices 1,7 denote fermion families; the Dirac indices are denoted by
scalar product “.”. The gauge link UZ(z) connects left-and right-handed quark
fields in neighbouring points so as to have the SU.(3) gauge symmetry. The chiral
gauge links GZ(z) (Gf(z)) connect left-handed (right-handed) fermion fields to
enforce SUL(2) ® Uy (1) chiral gauge symmetry. G, are two, yet unspecified,
Fermi-type O(af,) coupling constants which are assumed universal for both the
lepton and quark sectors. Thus action (1) is invariant under chiral gauge symme-
tries SU(3)® SUL(2)® Uy (1) and a global Ur(3)® Ur(3) in generation space. In
addition it evades, at least in principle, the “no-go theorem”. The question now
is: does it yield a long wave-length spectrum in agreement with observation (free

from the unwanted doublers)?



In order to get a positive answer to this crucial question it is necessary that the
quadrilinear terms S§%; and S&?; develop a dynamical chiral symmetry breaking

through the following non-zero vacuum expectation values (Vj is the 4-dimensional

volume)
P
mi = = oy 20 @9 (=)

z

G2 s~ (4)
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Notice that the analogous expectation values of the psendoscalar (-ys) operators
can be made to vanish in an appropriate gauge. Indeed, should this happen, one

would obtain the following effective lattice action of the Wilson type [8]:

1

sl =S+ Sp
+3 {V(z)MFW(w) - % > (@ (2)GL(x)rr GRUL ()T (2 + au) + h-c-)} ,
zF

n

(5)
where Mp = mp + 4Fp. Thus through dynamical symmetry breaking the obliga-
tory (in order to get rid of the doublers) Wilson term (rr = a,7F) gets produced
together with a mass term (mp) which, according to our action, must neces-
sarily come with it. In this way the evasion of the “no-go theorem” entails an
extra bonus: the generation of a fermion mass term. The SUL(2) ® Uy(1) and
Ur(3) ® Ur(3) symmetries are clearly broken and the only surriving gauge sym-
metries SU(3) and U,.»(1)[7]. Given the quadrilinear NJL-terms (2) and (3), we
construct an effective potential in terms of mp, ¢ [7]. A non-trivial dynamical
symmetry breaking may emerge only if the matrices mp, ¥ obey a set of coupled,
self-consistent equations obtained from variation of the effective potential. We call

these equations “gap equations”, that turn out to have the following approximate

matrix-form in the weak-1sospin space

L2y,
+ 2rpsin? £

L, (6)
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where g;, 2a = N.G1,2; TF = apTF; fl f_7r (h)*, (cos) = Z“ cosl, and

!
Den® (1) =sin?1, + (mrap, + 2rF sin’ —2'1)2 (8)

We shall now analyse the solutions of these equations. By an appropriate global
transformation belonging to the symmetry group of lagrangian (1) we can diago-
nalize the mp and rp. In addition we can separate egs.(6) into two “homogeneous”

gap equations. Thus we write:

mpga
mgra, = 2 P 9
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n?le
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If we look for “physical” solutions, for which the eigenvalues of the mass matrix
are such that mpa, < 1,m%a, < 1 and the doublers are removed by rg # 0,

then eq. (11') approximately decouples and becomes

a2l

2sin” £

1=—g, /(cos) 2 . (12)
! sin® I, + 4r2(sin® %)2

Notice that, assuming a universal coupling constant G, in (1), the Wilson param-
eters for quarks and leptons are different because of the color number N.. The
solution r = rp(g,) is reported in Fig. 1. We see that for any g, # 0, one getsr > 0,
which removes the doublers through a Wilson-type mechanism. By using now the
gap equation (10) for mpa, # 0 and the chain approximation, for the Goldstone

modes (;(z)ys¥:(z)¥:(0)7s¥:(0)) and scalar modes (¥;(z)¥i(z z)P:(0)¥:(0)), w

find the inverse propagators
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For gqua, < 1, we can calculate numerica.lly the position of the pole of the scalar
mode, which turns out to be of the order of the Planck mass instead of 4m3.
Indeed one gets
AME = 4m? + o.sr'Z—: + 0.9%, (16)
which for » = 1 pushes this pole at the Planck mass, making it thus disappear
from the observable, low energy spectrum. Analogously, we find charged Goldstone
modes appearing in the flavoured channels corresponding‘to the quantum numbers
of the W= bosons. |
In order to understand the implications of obtaining physical solutions mpa, <
1, we use the gap-equations (11) and (11') to draw the phase diagram (Fig.2),
where the phases (m < 0) are separated from the phase (m > 0) by critical lines,
on which m = 0. This phase diagram is in agreement with the continuum NJL-
model that possesses only the coupling constant ;. The requirement of obtaining
physical solutions for quarks N, = 3 with 7ga, = r; ~ O(1) and mpa, < 1 can
clearly be met by a coupling constant g2 > 1, in this case one has » — 0.385.
On the other hand the coupling g; is required to lie in the vicinity of the critical
value g2. This holds for quarks, for it is easy to see that for leptons (N. = 1)
equation (10) does not allow for massive solutions. Thus leptons at this stage
remain massless.
Promising though it may appear, our solution does not seem yet to avoid
a phenomenological disaster, for quarks get equally massive and, furthermore, 36
Goldstone modes appear. The phenomenologically appealing #t-condensate model,
on the other hand, postulates that of 6 quarks only one, the top-quark t, acquires

through the NJL-meéhanism a large mass, that is comparable with the W and



Z° masses. Is there any way, by a particular fine-tuning of G;, to see the emer-
gence of this model from our approach? We shall now show that this does indeed
happen. The gap-equation (6) is only true in the lowest approximation; if we go
further (by iteration) to calculate the effective potential (the ground state energy),
including the contributions from the Goldstone-bosons and the composite scalars
to the effective potential (Fig.3), going through the same variational procedure
that produces the “mean field” gap-equations, instead of (10) one obtains a new

gap-equation:
291 mpap
(1 + NyCo(mpap,r)) Ji Den® (1)

mpa, =

(17),

where Co(mpa,, ) is a finite positive function[7]. The crucial difference between
the new and the old gap-equation is its non-trivial dependence on the number of
quarks N, that acquire masses through the NJL-mechanism. The phase diagram
and the critical (ma, = 0) lines will now depend strongly on N;. And in view
of the discrete nature of this variable, there will be a discrete and finite number
of possible solutions, characterized by N,. The tt condensate model is thus the
solution for which Ny = 1.

In conclusion, we have shown that on the Planck lattice, whose “raison détre”
may well reside in the violent quantum fluctuations of the metric field at the Planck
scale a,, a consistent SM requires the addition of extra terms, quadrilinear in the
Dirac fields, whose coupling constants can be determined to induce the emergence
of the ft-condensate model with mya, < 1 and 0 < 7 < 1: m, gives rise to the
scale of electroweak breakdown and r # 0 endows the composite scalar and the
mirror fermions with masses at the Planck scale, making them disappear from the
low-energy spectrum.

We should also stress that, differently from the continuum t¢-condensate model,
its Planck lattice version disposes in a nice way of the scalar composite, thus
leading to the disappearance from the spectrum of a particle that would resemble

the Higgs boson. The implication of this conclusion for the present and future



phenomenology is too obvious to need further comments.

At the stage where we now leave our work, and where we have completely
neglected the interaction of the fermions with the gauge-fields, the top-quark is
the only fermion that has acquired a mass. However the emergence of non-zero
Wilson parameters r for all fermions implies a violation of chiral symmetry even
in the sector of the fermions that have remained massless. We hope to be able to

report on the consequences of this important fact soon.
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FIG. 2 - Phase diagram in terms of g;and g, 2,b(r=0—
0.385) and c,d (r = 0.385 = 1 o0).
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FIG. 3 — The contributions of Goldstone-bosons (wavy line) and
composite scalars (dashed line) to the effective potential (ground
state energy).





