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ABSTRACT

The "no-go” theorem of Nielsen and Ninomiya, forbidding a sensible formu-
lation of the usual electroweak action on a lattice, has been revisited proceeding
from the hypothesis that space-time, as a result of the dynamics of quantum
gravity, is a four-dimensional random lattice with constant ap, the Planck length.
We find that a sensible electroweak theory at long Wa.ve-lenéths is recovered by
adding a chiral-gauge-invariant quadrilinear fermionic term. Dynamical symme-
try breaking of Nambu-Jona-Lasinio(NJL) type is shown to be crucial for making
contact with known phenomenology. The relation of this approach to similar re-

cent proposals is briefly discussed.



The very-small-scale structure of space-time, the arena of physical reality,
has recently attracted a great deal of attention. The realization of the impor-
tant role that quantum gravity plays in determining such a structure, coupled
with the grave difficulties that this theory faces in the usual, perturbatlve
formulation at distances smaller than the Planck length a, = —-; ~ 107%3%em

(m, ~ 10'°GeV is the Planck mass), is the basic motivation of a umber of
theoretical proposals to overcome such difficulties and provide a solutlon of
this fascinating problem. :

We may conceive that precisely due to the violent quantum fluctuations
that the gravitational field must exhibit at a,, space-time somehow “ends”

_ there. Either by the creation of a “foam”[l] or by some other mechanism
which we need not discuss here, one may conceive that as a result the physical
space-time gets endowed with a fundamental length, a,, and thus the basic
arena of physical reality becomes a (random) lattice with lattice constant a,. -

It is this possibility that we wish to explore in this note in connection
with a fundamental problem of the standard model, the problems of fermion
and intermediate gauge boson masses. Asis well known the gauge-symmetry
principle as realized in the electroweak sector SUL(2) ® Uy(1) demands that,
at the lagrangian level, all fermion and gauge fields must be massless. In
order to avoid an obvious theoretical disaster and to save the gauge-principle
the Higgs model[2] had to be grafted upon the beautiful gauge lagrangian in
a completely “ad hoc” manner in order to secure a spontaneous symmetry
breaking mechanism for the generation of fermion as well as the gauge boson
masses.

Suppose now that, followmg the considerations reported in the introduc-
tory paragraphs, we wish write the standard model lagrangian (without Higgs
fields) on a lattice, a profound result obtained more than ten years ago[3], in
the form of a no-go theorem, tells us that there is no consistent way to trans-
pose straightforwardly on a lattice the lagrangian of the continuum theory.
While this is not the place for the detailed discussion of this important result,
we recall that Wilson[4] has shown how can one modify the lagrangian by
adding a simple bilinear term so as to remove the unwanted “replicas” from
the long wave-length regime. However, this can only be done by sacrificing
chiral invariance; and the no-go theorem shows that no bilinear modifica-
tion can be made to obey the chiral gauge-principle. Thus if we are to go
ahead in our’program of putting the standard model on a lattice without
sacrificing the chiral gauge-principle, the no-go theorem tells us that simple
transposition of the continuum lagrangian must be supplemented by extra-
terms that are at least quadrilinear in the fermion fields. Familiarity with
the original Nambu-Jona-Lasinio model{5] imnmediately reminds us that such
quadrilinear terms can be made to obey the chiral gauge-principle. Thus an
SU(3). ® SUL(2) ® Uy(1) chiral-gauge invariant lagrangian which evades in
principle the no-go theorem can be written as (F denotes the generic fermion
sectors, F=0 for leptons and F=c for quarks)

SL =S¢ + Z(SD + SkhL + SKiL), (1)

where Sg is the usual Wilson gauge action and S§ the Dirac action where the

expression for gauge link fields will be given elsewhere. The NJL action Sy i



are introduced as (i,j=1,2,3 for fermion families, k,1=1,2 for weak isospin and
a=ap)

Sy = Glz{'l’ {(=)VRi(z)PRa(z)PEi (=)}
SN = Z{'/’ ("-'+%)UF(3)‘/’ i(z)
tu,=
(@) UL (z) 95z + a,)}, (2)

where U;(Z) € SU¢(3) and Yrr = Prry. .

In order for the action (1) to avoid in practice the no-go theorem it is
necessary that the quadrilinear terms that we introduced develop a dynamical
chiral symmetry breaking through the following non-zero vacuum expectation
values (we omit notation of summation over color indices)

mi = :912«& (2)eEi(=));
A = Z{(«L @)U W= +a)) + hed, 3)
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Indeed, if this happens, the following effective lattice action of Wilson type
is obtained:

S = Sc+3 (Sp+ 2 {$F(z)MypF(z)
F z
5P @FUL @)z + a,) + hc}), (5)

where M = m + 4F. It is clear that through dynamical symmetry breaking
the obligatory Wilson term (r = a,7) has been produced together with a mass
term (m) which must necessarily come with it, if we start from the quadri-
linear NJL term introduced in eq.(1). Thus the no-go theorem is evaded and
as a necessary consequence a fermion mass term is generated.

As is well known, given the quadrilinear terms (2), a non-trivial dynamical
symmetry breaking (3) and (4) may emerge only if the matrices m, 7, mg and
5 obey a coupled set of “gap equations”, which has the following approximate
matrix-form -

Lo

ma + 2r sin3 5

ma + 4r = 2N¥ g
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where we ha.ve neglected the gauge degrees of freedom, g 20, = G132, 75 =
avs, f; = (2”),, (cos) =3, cosl, and

l
Den(l) = sin?l, + (am + 2rsin® —"—)2
l o
—(amg + 27'5 sin’ ; 2, (M

We shall not carry out any detailed analysis of the gap equations and phase
diagram in terms of the four fermion couplings g; and g;. We only notice
some important points in the physical region where ma, < 1 and in the
approximation that off-diagonal elements of m,r, ms and rg are vanishing:

(1) The trivial solution (m = mg = r = r5 = 0) can not be realized since
it does not correspond to the lowest energy state. No consistent solution of
the gap equations exists with » = 0;m # 0 or 7 = 0;m = 0. Thus whether
or not dynamical symmetry breaking is realized, we are guaranteed that the
long wave-length doubling of fermion species does not occur.

(i1) There are two types of physically sensible solutions of the gap-equations.
In order to see this, we apply the condition ma, < 1 to the gap-equations
and reduce them to

m = 0
L= 2Nt 2/ Den(l)’ ®)

(similar equations hold for ms and rs), if R? = r? — r is equal to a critical
value 0 < R. < 0.4, which depends on the ratio . The first type of solu-
tion, where a fermion mass is generated, is represented by the second line of
equation (8), in this case we get a massless Goldstone boson accompanied
with mgs = 0. In order for ma, < 1 we need to fine-tune g{(R.). The normal
gap-equation is reproduced from (7) by restricting ourself to the “continuum
region” where integration variables are confined to la, < 1. The second type
of solution is represented by the first line of eq.(8) with r 3 0;m = 0.

(iii) Since the fermion spectrum implies that the symmetry of fermion
families is broken, we assume that the physical vacuum is realized in such a
way that the first solution holds for the top quark due to its particularly heavy
mass and the other fermions are associated to the second type of solution
(m = 0;7 # 0) and remain massless at this step. Thus all elements of the
mass matrix are zero except for the top quark and the Wilson parameter
matrix is a non-zero diagonal matrix.

In a future paper we will show how- it is possible that the other fermions
acquire their masses without extra Goldstone bosons through a massive solu-
tion to the Dyson equations with an mhomogeneous term, which stems from
the explicit breaking term r # 0.
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