INFN - Laboratori Nazionali di Frascati

Servizio Documentazione

LNF-91/073 (R) 4 Novembre 1991

A PB-SCIFI E.M. CALORIMETER FOR AN EXPERIMENT ON CP VIOLATION AT DA Φ NE

A. Antonelli, S. Bertolucci, S. Bianco, C. Bloise, F. Bossi, P. Campana, R. Casaccia, M. Cordelli, M. Curatolo, B. Esposito, F.L. Fabbri, S. Miscetti, F. Murtas, G. Nicoletti, V. Patera, S. Sarwar, L. Votano, A. Zallo

INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi, 40 - I-00044 Frascati, Rome, Italy

A. De Martinis

Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy

presented by L. Votano

ABSTRACT

A proposal for a PB-SCIFI sampling calorimeter for an experiment at the Φ Factory DA Φ NE is reported. The design closely matches the experiment requirements. The results on timing and energy resolutions obtained with prototypes are presented.

1 - Calorimeter Requirements

The DA Φ NE¹ project of the INFN-Frascati National Laboratory concerns the construction of a e⁺/e⁻ storage ring running at the Φ peak (1020 MeV) with very high luminosity (L=10³² \rightarrow 10³³ cm⁻² sec⁻¹).

The near future experiments that search for direct CP violation in the K_S - K_L system should aim at the measurement of the \Re e (ϵ'/ϵ) ratio with an absolute accuracy of 10^{-4} and should keep systematic errors below $5x10^{-5}$, in order to represent a real step forward with respect to the latest experimental results and to contribute to the understanding of the phenomenon^{2, 3}.

In particular, the requirements for the calorimeter are challenging: the accuracy in reconstructing the $K^{\circ} \rightarrow \pi^{\circ} \pi^{\circ}$ neutral decay vertex has to be kept under 1 cm, even though the

energy spectrum of the photons is very soft (20 MeV-E γ -300 MeV) and events originated by K_{L} are more or less uniformly distributed over the whole detector volume.

A complete hermeticity and photon detection coverage in the full kinematic range is also required to reach a total rejection factor of 10^{-5} against K_L background decay channels. The K° neutral decay length can be reconstructed with a global fit technique⁴, using the energies of the four photon showers, a three-D measurement of their conversion points, and the energy-momentum conservation on Φ decay. Thus, the energy and space resolution requirements are very severe. However, they can be relatively loose if one can also use information from the photon arrival times, which alone provide a procedure for the measurement of the decay point of K° 's produced with very low velocity ($\beta \le .22$)⁵. A complete Montecarlo simulation has been performed⁶, proving that a calorimeter measuring the photon arrival times with excellent time resolution (300 psec at 20 MeV, scaling with $1/\sqrt{(E)}$), good energy resolution ($7\%/\sqrt{(E)}$, E in GeV) and reasonable spatial resolution ($\sigma x = \sigma y = 1 \text{cm } \sigma z = 5 \text{cm}$) is able to determine the K° vertex with a $\sigma \simeq .75 \text{ cm}$.

The simulation also considers the machine energy spread (300 keV) and Φ localization (σx =.2 cm, σy = 20 μ m, σz = 3 cm). Furthermore, if the calorimeter time resolution is assumed to be 300 psec for any photon energy, the vertex resolution is worsened by about 30%, while, for the spatial resolution, one gets only a 10% improvement, assuming 1-cm precision on the z coordinate. Finally, if the least energetic photon escapes from the calorimeter, no appreciable loss on resolution is observed.

2 - The Detector

The proposed solution is a sampling calorimeter: 1-mm scintillating fibers are embedded in grooved lead plates (. 38 mm thick, <.1 X_0 .), with a lead to fiber ratio of 35:50 (15% glue), giving a X_0 =1.6 cm and a sampling fraction of about 15% (Fig. 1a). The barrel calorimeter is 4 m long, with an internal radius of 2 m and a depth of 15 X_0 (24 cm). The fibers are read at both ends and are segmented into a first part of square (3.3 x3.3 cm²) elements and a second part (tail catcher) with coarser (5.x 5.cm²) granularity. This should give a transverse resolution of 1 cm², while the z coordinate along the beam direction is reconstructed from the differences in arrival times (Fig. 1b).

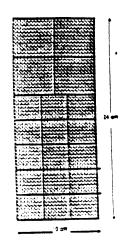
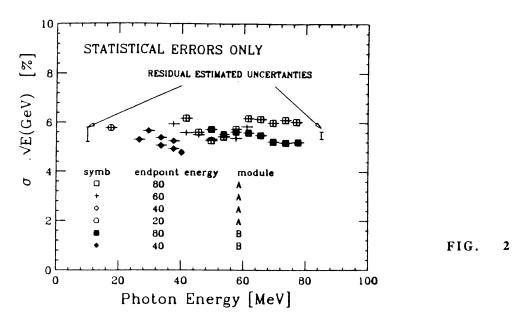



FIG. 1

Calorimetric modules employing plastic scintillating fibers and grooved lead plates in the ratio of 1:1 or more, with the fibers parallel to the impinging particles (head-on configuration) provide a well established technique for noncompensating e.m. calorimeters with very good energy resolution. They have been used in the energy range 0.1-10 GeV, where an energy resolution of $\sigma/E \simeq 6.3\%/\sqrt{E}(GeV)$ has been obtained⁷. Tests have been performed at Frascati to extend the measurement down to 20 MeV using the LADON tagged photon beam of ADONE. Figure 2 shows the energy resolution obtained⁸ with two (9.8 x 9.8 x 22) cm³ modules assembled with OPTECTRON S101-S 1mm fibers and different optical cement, with a fiber-lead-glue ratio 50:35:15. The modules are exposed to the beam in a head-on configuration. The photon energy is varied between 20 and 80 MeV, using different endpoint energies of the LADON beam tagged by a microstrip solid-state detector; the single strip energy resolution is \pm 2% at 80 MeV. An energy resolution better than $6\%/\sqrt{E}(GeV)$ down to 20 MeV has been measured.

A calibration with cosmic muons crossing transversally the module prototype has shown that the energy released on calorimeter active medium by a 20 MeV photon corresponds to the energy released by a minimum ionizing particle in 3 cm of detector (~ 20 layers of fibers).

In order to test the timing performances, dedicated tests have been performed at the Frascati Laboratory, with a set of counters formed of layers of 1 mm blue fibers and using minumum ionizing particles as the trigger⁵.

Figure 3a shows the uncorrected timing distribution obtained with a 50-cm-long counter formed of 19 layers of fibers; if the start jitter is removed a σ =250 psec is obtained. A 200-cm-long counter consisting of 9 layers of fibers yields a σ = 390 psec (Figure 3b), confirming a $1/\sqrt{(E)}$ trend.

The result is very encouraging, since it has been obtained without any optimization either on the fibers, the PM, or the electronics; however R&D studies and tests are being carried out along these directions.

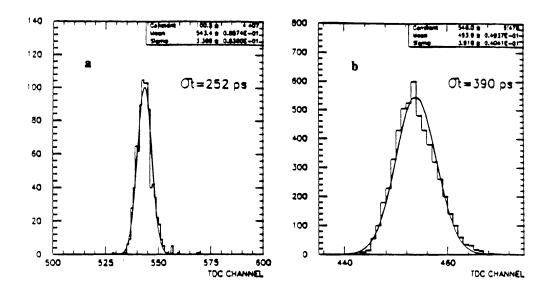


FIG. 3

3 - Conclusion

The PB-SCIFI sampling calorimeter proposed is very suitable for the experimentation at DA Φ NE. The tests performed on prototypes seem to confirm that the required energy and time resolution can be achieved. A proper engineering design that can also ensure homogeneity and hermeticity is under study.

Acknowledgements

We wish to aknowledge the Organizing Committee for a perfectly organized and very interesting workshop.

References

- 1. Proposal for a Φ Factory, LNF 90/031, (1990).
- 2. P. Franzini, Proceedings of the Workshop on Physics and Detectors for DAΦNE, Frascati, April 9-12, 1991 p. 733.
- 3. M. Piccolo, Proceedings of the Workshop on Physics and Detectors for DAΦNE, Frascati, April 9-12, 1991 p. 707.
- 4. G. Barbiellini and C. Santoni, CERN PPE 90-124 (1990).
- 5. A. Antonelli et al., Proceedings of the Workshop on Physics and Detectors for DAΦNE, Frascati, April 9-12, 1991 p. 557.
- 6. C. Bloise, Proceedings of the Workshop on Physics and Detectors for DAΦNE, Frascati, April 9-12, 1991 p. 495.
- 7. D. Hertzog et al., NIM A294, (1990).
- 8. D. Babusci et al., Proceedings of the Workshop on Physics and Detectors for DAΦNE, Frascati, April 9-12, 1991 p. 581.