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ABSTRACT

Diagnosis is usually understood to be, basically, a strategy, that is decision making in the
face of uncertainties. In other words, it is all a matter of probabilities and no dynamics. This is
not completely true. The crucial assumption which determines the structure of a diagnosis bears
mostly on dynamics rather than on probabilities. The assumption is that of microscopic
reversibility. It is this assumption which gives rise to the equation of detailed balance known, in
probability theory, under the name of Bayes's theorem. Microscopic reversibility does not,
however, imply, necessarily, time reversal invariance. By their very nature cause-effect
correlations involve dynamics with a prefered direction of time. The time reversal invariant part
of this dynamics can be projected out and shown to give rise to a detailed balance equation in
two pairs of variables and thence to a generalisation of Bayes's theorem. The operator which
realises this projection is the diagnosis.

1. INTRODUCTION

To the layman a diagnosis is the determination of a disease given its symptoms.
Technically, it is neither quite so direct nor so simple. A diagnosis consists of two distinct
processes: first, the determination of the probabilities for a disease given the symptoms and,
secondly a decision or option for a particular disease given this probability distribution. Any
rulefor reaching such a decision is called a strategy. It is in this sense that diagnosis is a
strategy. It is clinical strategy.

On what basis are such rules formulated? The most obvious and common basis is that of
utility. It consists in the optimization of benefits. Already, one notes that the utility assumption




is outside of the strict confines of probability theory. In fact the probability for the particular
disease, given the symptoms, which optimises the benefits may not necessarily be the largest in
the distribution. There is a more primitive basis for decision-making. It operates most of the
time and with surprisingly good results. It is decision making based on knowledge
accummulated in the long process of learning from experience. Decision reached on this basis is
known as induction. Induction is the form of decision- making that has and will continue to
serve mankind best in his multiple activities.

The principal aim of induction is to distinguish one hypothesis (or guess) from another, in
particular a more "reasonable" hypothesis from a less "reasonable" one. The theory of
probability serves inductive decision-making by supplying a mathematically consistent
quantification of "reasonableness” or "degree of belief". From this perspective, one considers a
disease and a symptom to be special instances of the generic concepts of cause and effect,
respectively. By definition, a cause is a hypothesis, an input, a disease etc. An effect, on the
other hand, is an observation, an output, a symptom. etc. The conditional probability for an
effect, given a cause, is known as the likelihood. The conditional probability for a cause, given
an effect, is known as the posterior probability. A diagnosis is any linear relationship between
these conditional probabilities.

The oldest and most commonly used form of diagnosis is that provided by Bayes's
theorem. This theorem is usually derived from what, in probability theory, is a trivial identity.
This is the relationship between the conditional probabilities P (C | E), P (E | C) of two events C
and E and involving the absolute probabilities {L (C), p (E), of these events. This relationship is
a trivial consequence of the symmetry CN E = E NC and hence of the equality 4 (C N E) =
1 15(E NC) together with the definition of conditional probability. C N E is the intersection of
the event C with the event E. The above symmetry, however, is only a probabilistic model for a
more general symmetry property. Cause-effect correlations obviously involve much more than
only probabilities. By their very nature, these correlations must have an inherent time
asymmetric structure. Such structure is determined by dynamics. The symmetry which the
probabilistic model exemplifies is that of microscopic reversibility. This later gives rise to an
equation of detailed balance. This is precisely the kind of equation relating P (C1E) to P (E | C)
with i (C) and u (E) featuring as constants of proportionality. It is proposed in this paper to
show how this symmetry arises in general and how it may be projected out of a time asymmetric
evolution in probability space. The operator which realises this projection is, by definition, the
diagnosis. The time reversal invariant part of the evolution operator satisfies an equation of
detailed balance in two pairs of variables. These variables are the generalisations of |1 (C) and
(E) together with their transforms under the diagnosis. This equation leads to a generalisation of
Bayes's theorem and constitutes, at the same time, an important correction to Bayes's theorem.

2. - BAYESIAN DIAGNOSIS

Let D be a probability space with measure p. Let C, < D (=1, 2,...) and E,c D(=
1,2,...) be two finite or denumerable systems of subsets of D. A subset of D is also referred to
as an event, the points of D atomic events. A system of subsets, e.g. Cy (ot =1, 2, ....) is said



to consist of mutually exclusive or pair-wise disjoint events if, for any two distinct subsets Cg,
Cg (a,p =1, 2 ...) of the system, one has

C,N CB=®;OL¢B; o, B=1,2,.. (1

where @ is the null subset. Two disjoint events are said to be independent. The system is said to
be exhaustive if the union of all its subsets is the entire space D., i.e

D=V" ¢, )

a=1

A system of mutually exclusive and exhaustive events is said to be complete and to form a basis
for D. Let the system of events C (o = 1,2,...) and EJ (G = 1,2,...) be complete. Then any event
A ¢ D admits, on the basis of eq. (2), the following expansion in the C - basis

A=Ar\D=OL\=J1 (ANCy) (3.1
Similarly, we have the following expansion

A= (ANE) (3.2)
in the E — basis. In particular, putting A = Ej in eq. (3.1), one gets

Ej=,21 €N Co) (4.1)
while putting A = Cg in eq. (3.2) yields

Cy =451 (CuNE) (4.2)

Applying the measure | to €qs. (4) one gets the expansions
hE)= T 1 (ENC (5.1)
o=
k(Ca)= 3 1 (CaNEp (52)
J‘_—

Since the C — and E — bases of subsets are complete and since yL (D) = 1, we have, from eq. (2)
and its equivalent for Cy — E;.

S H(Cy=1 (6.1)
o=1
TrE)=1 (62)

=1




The concept of conditional probabilities arises in connection with the possibility of
expressing the measure p (Co N E; i) = 1L (Ejn Cy) of the intersection of the events Cy and E;in
terms of their measures p (C) and K (E;) respectively.

Accordingly, one defines

P (gl Cy : = EENC) | (7.1)
wCq)

P (CylE): = H(CaNE;) (7.2)
H(E)

to be, respectively, the conditional probability of the event E; given Cg and the conditional
probability of the event C,, given E;. Extremely important in eqgs. (7), but so obvious that it is
usually ignored, is the symmetry

1 (Cq NE) = (B N Cyy ®

of the measure [ (Car\Ej) in the events C, and E;. Substituting from egs. (7) into (8) one gets
the following constraint equation

P (Ejl Cg) 1 (Co) =P (Co | B 1 (B ©)
for the conditional probabilities. Substituting eqs. (7) into (5) one gets the expansions
h(E)= 3P (Ej| Co) 1 (Cy) (10.1)
o=

hCo=3 P (ColE) 1 (B)) (10.2)
J=

Next, solving eq. (9) for the conditional probability P (Cq, | Ej) and making use of eq. (10.1)
for W(E;) yields the celebrated Bayes's formula

P (EjlCy) 1 (Cq)

T P (EjlCp) n(Cp)
i
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P (Co|Ep =

The usual interpretation of these equations is the following: the event Cq represents a
cause (e.g. a hypothesis), E; an effect (e.g. an experimental observation). The conditional
probability P (E; l Co) is then the so—called likelihood, that is, the probability for the occurence
of the effect E; under the assumption Cy. P (Cg |E; j)» on the other hand, is the so—called
posterior probab111ty, that is, the probability for the cause C,, to produce a given effect E;. Read
disease for the cause C, and symptom for the effect E; and there is a temptation to 1ntcrprete P



(Ca| E;) and, hence eq. (11) as a diagnosis. The temptation has, seemingly, proved too strong
to resist. Accordingly, eq. (11) constitutes the so -called Bayesian diagnosis.

3. EQUATIONS OF DETAILED BALANCE

It is useful to introduce a new set of notations which will help to understand the purely
probabilistic relations in Sect. 2 in terms of dynamics. It will allow also to generalise these
relations. First, put

Gajt = 1 (CoME;)) (12.1)

Gjo: =1 (BjN Cqp) (12.2)

so that eq. (8) becomes the symmetry of the matrix Gy, ie.

Gy = Gjy (13)
Next, set

Go: = W(Cy) | (14.1)

Gj = u(E;) (14.2)
and’

G (lay: =P (Bjl Cy) (15.1)

G (a]j): =P (CylE) (15.2)

G (ol jand G ( | &) are transition probabilities while the G, (a=1, 2,...) and G(G=12..)
are equilibrium probability distributions for the set of states Cy (a0 = 1, 2, ..) and E; (=
1,2,...) respectively. Egs. (7) now become

G(Gloy= gf (16.1)
. Gy
Glp= G4 (16.2)

J

while egs. (5) become
Gj=§ Gja:E Gaj (17.1)

Ga=X Gyj=X Gja (17.2)
) ]




On account of eqs. (16) and (17), the matrices G (j | o) and G (o | j) will be referred to as
the reduced matrices of the symmetric matrix Gy; = Gjq. Note that the reduced matrices
themselves are not symmetric unless Gy = G; for all a, j (e, j = 1, 2;...).

Their most important property is that, from eqgs. (16) and (17), they are nomalised to

unity, i.e.
Y Glj)=1 (18.1)
o
Y GGloy=1 (18.2)
]

Eqgs. (6) now read

Y Gg=1 (19.1)
o
Y Gj=1 (19.2)
J

while eqs.(9) and (10) become, respectively,

G (la) Gy - G (lj) Gj=0 (20)

Gj= % G(la) Gy (21.1)
o=1

Gg= 73 G (alj) G; (21.2)
J=1

Eq. (20) is equivalent to eq. (13). It is the so-called equation of detailed balance. The
condition of symmetry of any given matrix can always be expressed in this form making use of
eqs. (13), (16) and (17).

The reduced matrices will, in this general case, continue to satisfy eqs. (18) but Gy and G;
need not, necessarily satisfy eqs.(19). They satisfy instead, on the basis of eqgs. (17), the
condition

Y Go =3 Gj (22)
o J

Eqgs. (19) constitute additional constraints. Egs. (21) are a pair of reciprocally related
equations. Substituting one equation into the other one obtains

Gj=Fj Gy (23.1)

Gy = FO‘B GB l (23.2)



where the matrices Fj, and Fyg are defined by

Fix=% G(loyG (@l k) (24.1)
o

Fap:=3 G (@l GGlp) (24.2)
]

Fjx and Fop are normalised like G (a|j) and G G| o, ice.

T Fix=X Galk =1 (25.1)
i o .

2 Fp=% GGIPp=1 (25.2)
a J

If, from eqs. (23) - (25), one interpretes Fjx and F op as correlations between the states E;, Ex
and Cg, Cg, respectively, of the same species one then has, by definition,

Fi:=GGlk | o 7(26.1)

Fop:=G (aB) (26.2)
In this case, eqs. (24) become the Chapman-Kolmogorov equations

EG(jloc)G(oc|k)=.G(i|k) 27.1)

?G(alj)GGIB)=G(a|B) (27.2)
Instead of eqgs. (26), it may happen that states of the same species are not correlated, that is

Fj = 8 (28.1)

FO‘B = SQB (28.2)

In this case, eqs (24) become,
T G(la)G (alk) =8 _ (29.1)
a

T G@l)GGIB) =54 (29.2)
J



An operator satisfying eq. (29) is said to be involutory. In Statistical Mechanics, the
matrices Ggj= G (a1j) Gjand Gjo, =G (j | @) G, are proportional to the squared moduli of the
matrix elements of the Hamiltonian H, i.e.

Gaj:=|<a|H|j>|2=<oc|H|j><j|H+|oc> (30.1)
Gig:=l<jlHla>1?=<j|H a><alH*]j> (30.2)

where H* is the Hermitian adjoint of H. The symmetry of the matrix Ggjie. eq. (13), is thus
equivalent to the Hermiticity of H, i.e.

H=H* (31)

The process of reduction from the matrix Gaj to the matrix G (« | j), i.e. egs. (16),
corresponds to coarse-graining, that is, summation over groups of microscopic states to define
macroscopic states: G is microscopic while G (ot | j) is macroscopic. Unlike G, G(al]j)is
not symmetric.

The reduction procedure is usually argued to be a model of the descent from reversible to
irreversible dynamics. The model is, of course, not to be taken too seriously. It is a
mathematical mimicry of a fundamental physical phenomenon but not a theoretical description of
this phenomenon. Zermelo's paradox is no more than the observation that G (o | j) does not
have the symmetry of the matrix Gg;.

4. CAUSAL DYNAMICS IN CONFIGURATION SPACE

We introduce in this section configuration spaces of causes and effects and describe how
they are dynamically related. Unlike in Sect. 2, causes and effects are not represented as subsets
but as points in these spaces. They are, in the terminology of probability theory, atomic
events.They are the physical states. By ¢;(j =1, 2...) we shall indicate a cause or an in-state.
The set of all in-states ¢; ( = 2, 2....) will be indicated by I'. It is the configuration space. I' is
equipped with a measure W so that it is also a probability space. A state cj€ I" is then a random
variable.

Analogously, by e (& = 1, 2) we indicate an effect or an out-state. The set of these state

is denoted by E. It is the configuration space of out-states and is equipped with a measure v so
that it too is a probability space. An out-state €, € is a random variable.
The spaces G and E are dynamically related. To see this let

IFgi=e,Mcl;a=1,2,... (32)

be the subset of all causes ¢; € I' capable of producing the effect e, € E. For two distinct out -
states ey, and eg of E (e # ep), it does not follow that the corresponding subsets I'y, I'g < T" are
disjoint. The class of subsets in eq. (32) does not therefore, consist of mutually exclusive
events.

We shall assume, however, that it is exhaustive, i.e;



r= "Y1, (33.1)
a=1
| g I‘B zo,azB0,B=1,2,... (33.2)

This means that the configuration space of out-states E is an indexing set for the class of
subsets 'y I' (o0 = 1, 2..). We denote this class by

B(TIE): =4I, Ty =€y, ex€ E) (34)
In the same way, let
Ei=c¢i(E)cEj=12.... (35)

stand for the subset of all effects e, € E which may be produced by the cause ¢cj€ I'. For two
distinct in-states ¢ and ¢ in I’ (cj # C), the corresponding subsets Ej, Ey < E are not
necessarily disjoint. The subsets in (35) are therefore not mutually exclusive. We assume
however that they are exhaustive so that one has

o
E=j E; (36.1)

EinE, #2;j#kj, k=12 (36.2)

The configuration space I of in-states is thus an indexing set for the class of subsets in eq.
(35). We define this class by

B (E|T): = (j E, Ej=¢; (E), ¢je I 37)

From the construction of B (I"| E) and B (E I T), we shall say that the out-state e, € E is
dual to the event I'y € B (I' | E) and that the configuration space E itself is dual to the class
B (I' | E) of subsets of I" which it indexes.

Similarly ¢; € T"is dual to Ej € B (EIT) and the space I' is dual to the class of subsets B
(E IT) of E which it indexes. Since B (I' | E) and B (E | I') consists of exhaustive but not
mutually exclusive subsets, they are over-complete.

Expansions of arbitrary subsets of I" and E and of functions over the bases B (I' | E) and
B (EIT), similarly to eqgs. (3) and (5), become extremely cumbersome. Fortunately we are not
interested in this purely probabilistic approach. We are interested in the dynamical or causal
functions e ; = I'y: = ey (I and ¢; = E;: = ¢; (E) and the relationship between them.

The properties of these functions emerge much more clearly in terms of their
representations as transformations between the spaces of functions (more precisely, measures)
defined on the configuration spaces I'and E. We consider this problem in the next section.
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5. CAUSAL DYNAMICS IN FUNCTION SPACE

In the last section we introduced the following structures: a configuration space
D (=T, E), an indexing set D' (= I, E) for an over-complete basis B (D | D') of subsets of
D # D' in one-to-one correspondence with the points of D',

The points in D' do not only label the over-complete system of subsets of D, they are also
dynamically related to them. This relationship is represented by a function: g€ D'— q (D) cD

(i.e. q(D) e B(DIDY).

Since we are dealing with probability spaces, this relationship may be, equivalently,
specified as an induced relationship between the spaces of real, finite, positive functions (i.e.
measures) on D and D'. This allows to avoid the inconvenience of B (D | D') being over-
complete.

To begin with, set D=I,D'=E to get B(DID')=B (I' | E). Recall that T is a
probability space with measure y1. The measure | is a point function on B (I' | E). We use it to
define a point function /L\l in its index space E by means of the equality.

B (eq) =1 (Tg) (38)

forey € EdualtoI'y € B (I'| E).
Using ﬁ (eq), define a measure U’ on E by means of the formula

WE: = Y e (39)
€€ EJ

Applying the analog of (38) to p' one defines a point function

A
fo=p : (40)
in T by means of the equality

I (=1’ () 41)
for ¢j e I dual 0 Ej € B (E I T). Appling the anolog of (39) to [1 one defines a new measure p”
onI by

W= 3 R 42)
Cje r

and a new point function ﬁ” in E (c.f. eq. (38) by

All B ”

1 (e : =1 (Ty) (43)
for ey € E dual to I'y € B (I E). This chain of ever new functions terminates if

p=p" 44
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equivalently if

=i (45)
Eq. (44) says that the prime operation

Rip-op | (46)
transforming a measure i on I" into a measure y' on E is an involution, that is,

R:u'ﬁu”=u ) (47)

In operator form, one writes this as
R?=1 (48)

which brings to mind egs. (29). A
Eq. (45) is a representation of the same operation R on the point function |; that is,
A A
R: i— (H )/'\ A (49)
‘ R:(u)'—>(u)”=p
Comparing (49) with (45), one gets
A A A

H=p"=(n) | (50)

Eq. (50) is identically satisfied if the transformation R : u — ' commutes with the
transformation

Kip—p « 1)

We describe eq. (51) by saying that the measure | on I is conditioned by the point
function u in E. K is the conditioning operator (cf. eq. 38). We express the fact that K and R
commute in formulae, as

[K,R]=0 (52)

where [K, R] is the commutator of K and R.
Making use of (52) in (40) yields the relations

)’ | (53.1)
(53.2)

Carrying out the same procedure as above for the measure v on E one finds the chain of
relations
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V(e =V (E) (54)

for ¢ € I dual to Ej e B (EID).

V' (Ty): = 2 v (cj) (55)
cely

Ve : =0 (T (56)
where

Vi=V'=(V) (57.1)

(V)=v'=v (57.2)
Finally

v'=v

(V) =0" =9 (58)

At this point there is still no relationship between the measures L on I" and v on E. We
know only that a given measure W on I is transformed by an involutory operator into a measure
L' on E and that this transformation is subject to eq. (52). Eq. (52) says that the assignment of
probabilities to atomic events according to eq. (51) is compatible with the definition of the
probabilities for these events induced by the trasformation R (cf. egs. (38),(41), (54), (56)).
Thus if one sets

u' =V (59‘ 1)
and by eq.(48)
V= (59.2)

egs. (53) and (57) yield

(60.1)
(60.2)

<l ElI
I

> <>

Applying (60.1) to ¢je I' and (60.2) to ey € E, one defines the a priori probabilities of these
states as

P =R )=V (c)=v &=y E) (61.1)

Pai =V (eg) =l () =1 (Tg) =V' (T) (61.2)
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Since the systems of subsets B (I'l E) and B (E | ') are over—complete the probability
distributions pj G =1,2,.), and py (= 1,2, ...) are not normalised to unity. We can now
specify the causal functions e, — I'y and ¢; > E;.

We first postulate that each state cje I'G=1,2,..)and ey € E (o = 1,2) is associated
with a probability measure ®; G =12, ...) and yy (o = 1,2,....), respectively, acting in its
configuration space. We know that to each measure @ on I' is associated a triplet of functions
@, 9:, ;) satisfying

Pilea) = ¢j T | 62.1)
0" EBi= 3 (e =c) (62.2)
J €q € Ek

Similarly for each y, on E is associated the triplet ( \/l\la, W, » Vo) satisfying

Va (¢) = Vo (E) 63.1)
v Ipk= X WAa(cJ')=\Tfa (ep) (63.2)
o CjeI“B

The postulate, therefore, introduces correlations between the states cjand ¢ inI" and
between e and eg in E as can be seen from eqs. (62.2) and (63.2).

The same correlations exist between the events E; and Ey and between 'y and I B Using
the fact that

=] (64.1)
Vo =V (64.2)

(cf. egs. (53) and (57)), one rewrites egs. (62.2) and (63.2) as

oL B)= Y 0} € (65.1)
eq€ Ek
v ([Tp)= c.eer v () (65.2)
) ]

Eqgs. (65) are expansions of the set functions ¢! (E,) and \V;x (I‘B) restricted to the
supports of the subsets E and I’ p- We specify the correlations between the states cjcxe I’
(equivalently, between the subsets Ej, Ex € B (EIT)) and between the states e, eg € E
(equivalently, between the subsets Fa,FB e B (I' E)) by means of the conditions



14

¢ J (Ep) = @5 (c) = Sj (66.1)

' (Tp) = Vg (ep) =3 66.2

v a( [3) Vo (eﬁ) of ( )
According to egs. (66), the measures (pjf and qflxare the indicator functions of the subsets E;

and I'j, respectively.
Eqgs (66) may therefore be rewritten as

<P'j (E) =<ij E)=1 (67.1)

¢, M=y Ty =1 | (67.2)

Now the set of indicator functions of an exhaustive system of subsets is like a complete
system of projection operators. This observation motivates then the completeness assumption:
the sets of measures @; (=1, 2,....) on I" and Yo (=1, 2,....) on E are complete. This means
that any given measure f on I and u on E can be expanded in terms of the basis functions,@; (j=
1, 2,...) and y (o = 1, 2,.....), respectively, as follows

fT) =2 £j0;(T'g) (68.1)
j

U(Ej) =2 Uy Yq (EJ) (68.2)
[0

From egs. (65), the expansion coefficients fj j = 1, 2) and ug (o = 1, 2,...) are given by

=T (cp=f'(E) (69.1)
Ut =1 (eg) = w'(Ty) (69.2)

Substituting (69) in (68), one finds

(T =3f (E)ojTy (70.1)
J

w(E) =3 u' (Ty) Yo (E) (70.2)
o

Now setting f = y'and u = (pl'( in eqs. (70) and recalling eqs. (66) and the fact that \]/'{'3 = WB

and (p';( = @y, one obtains the conditions

2 0; T wp (Ep =dqp (71.1)
j
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Y Vo (E) 9o Tg) =5 (71.2)
[0
Next put f = pin eq. (70.1) and u = v in (70.2) and make use of egs. (59) to get
o) =2 v (E) ¢ Ta) (72.1)
J
VE)=3% 1T Wo (E)) (72.2)
o .

On account of egs. (66), eqs. (72.1) and (72.2) are true inverses of each other. The
measures [ on I" and v on E so related will be referred to as the background measures.
According to eqs. (61) they determine the a priori probability distributions pjG=1,2,.)and
Po (@ =1, 2,....) of the in -and out-states ¢; and e, respectively. Introducing the probabilities

defined by the matrices
Poj=¢j T'g) (73.1)
A

and making use of (61), one rewrites egs. (72) as

Po = ? P j (74.1)

A
Pj=X Pju Py (74.2)
- a

and egs. (71) as

A
% Pgoj Pig=20qp (75.1)
i
A
2 Py Pox = 8jk (75.2)
o

P and /l\Dja are the cause - effect correlation functions. They are similar to the conditional
probabilities but should not be confused with them.

Eqgs. (74) are the dynamical or causal equations of motion. The indices ¢, j, may include
time dependence. In this case, eqs. (74) are evolution equations, with P the forward time (i.e;
cause — effect) andf’ the backward time (i.e. effect — cause) evolution operators. In both
stationary and non-stationary regimes, eqs. (74) may be shown to be transformations resulting
from changes of basis from one set of states to another. They are the generalisations of egs.
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(10). Unlike the P (EJ-I Cy) and P (C, | EJ-) in eqs. (10), Paj and /l\’ja are not the reduced
matrices of a symmetric matrix. Secondly, Pg; and f‘jaare not normalised as the conditional
probabilities. '

Inegs. (70), putu=f "to get the inverse pair

fT=3 f (E)¢;Ta) (76.1)
j

£'(B) =3 f o) ValE) (76.2)
04

Recall that the functions f, f " are related by

Rfof' (77.1)
R:f' —f (717.2)
f(Cg): =<y If> (78.1)
£'(E): = <o If > (78.2)

Now write eqgs. (77) as
If'>=RIf> (79.1)

If>=RIf > (79.2)

Substituting these into eqs. (78) gives

f(Ty) =<y' | f>=<y, |RH > (80.1)
a

f'(B)=<¢ If >=<¢;|R"RIf> (80.2)
J

where R+ is the adjoint of R with respect to the scalar product in egs. (78). Substituting (80)

into (76.1), one gets the completeness relations of the | P> and | @' >
]

Y 1¢;><@jl =RR" (81.1)
J
Sleo'><e! I =1 (81.2)
: J J
J
Substituting, on the other hand, (80) into (76.2), one gets the completeness relations of the |
>y > and | \p;x >
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3 Yy ><yy!=RRY (82.1)
a
RV "1=1 .

}& Y o > < \ya (82.2)
Take the scalar product of | W('x >and |y > using eqs. (81.1) and of | Yo >, | ypg > using eq.
(81.2). Making use of eqgs. (78) and (71. 1[)3, one gets

1 l 1 — .

<V Y >=008 (83.1)

B
<Y lwg>=Cqp (83.2)

where Cgp are the matrix elements

Copi=3 Rgj Rp; (84.1)
J

Raj=R}‘a:=<wa|Rlcpj>=<(ple+lq;a>. (84.2)

Similarly, take the scalar product of | ¢! > with | ¢' > using (82.1) and of | @; > with | @y >
. . J k
using (82.2). One finds again

<<P3| ¢, > =0 (85.1)

<@jl o >=Cj (85.2)
where

Cik . =X Rjp Rgq (86.1)

o

Rj(X:R;j:=<<pj|RI\pa>=<wa|R+|(pj> (86.2)
Note from egs. (73) and (78) that

Paj=(pj(I‘a)=<Wa|R+](pj>=<(pj|R|wa>=RJ-a (87.1)

Bio W (B) = < @jI R 1y > = < o | R [ 9> = Ry, (87.2)

Making use of these in eqgs. (75) one sees that egs. (75) express the condition R2 = 1.
We next split R; into its symmetric (G) and anti-symmetric (L) parts, i.e.

R =G+L (88.1)
R"=G-L (88.2)
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equivalently
G= 3(R+RY | (89.1)
L = % (R - RY) (89.2)

As discussed in Sect. 3, the symmetric part G is associated with an equation of detailed balance,

i.e.
G(jla)Ga=G(0clj)Gj (90)
where
G(x:""z G(szz Gja (91.1)
j j 4
Gj:=2 Gjazz Gocj (91.2)
o o -
Gy G
B} == - ]
Glj:= G; - G (91.3)
Giy, Gy
i PPt 0 el 0
G(]Ioc).-Ga—Ga (91.4)

From the definitions in egs. (91) we have the normalisations

YGGloy=Y Glj=1 (92)

j o

and hence from egs. (90) and (92)

Gu=3 G (1)) G (93.1)
j

Gj =X G(jla) Gy (93.2)
x

Solving eq. (90) for G (j | o) and making use of eq. (93.1) one gets, as in Sect. 3, Bayes's
formula '

G (al]))G;

GGl = %4)

> G (a | k) Gk
k €

From eqs. (92) and (93) one gets the constraint
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2 Gy=2% G 95)
o j
From eqs. (87) and (89) one finds that

Gaj =5 (Ve (B + 0} (T) (96.1)

Loj =75 (Vo (B - 9 T) 96.2)
Hence Gy is a probability only if

R =R+ ’ ©7
for then eq. (97) is equivalent to the equality

Vo (Ep = ¢j (T (98)

between probabilities. By the same token Lg;j is not a probability since Rg; cannot be totally
anti-symmetric.

Inserting (88.1) in the condition R2 = 11n eq. (48) one gets the conditions

G2+ L2 =1 (99.1)
{G,L}:=GL+LG =0 (99.2)

Furthermore, one finds from eqs. (88) that

1

[G,L] =5I[R,R"] (100)

]

where [A, B] : = AB - BA is the commutator of A and B. It follows from (99.2) and (100) that
if R is, in addition, a normal operator that is, if R and R* commute, then

GL=LG=0 (101)

Substituting (96) into (101) and making use of (71), one finds the relations

Cik:=2 ¢;(T'e) ox Te) =% o (Ep W (Ey) (102.1)
[0 o

Cap:=2% Vo (Ep wp (ED =X ¢; Tp) ¢ (Tp) (102.2)
j j

The matrices Cjk and CQB are those introduced in egs. (83) - (86), i.e.

Ck = <ojlox> (103.1)
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CaB= <\I’a|WB > (103.2)

Eq. (101) is satisfied trivially in the particular case in which R is symmetric, i.e. R = RY, for
then L = O by eq. (89.2). In this case

C=G*=1 (104)
equivalently

<@l og>=<9jl9%>=05K (105.1)

<WYol Yp>=< \y;ll \y'B > =8B (105.2)

Making use of (96) in (102) allows to express C in the case in which eq. (101) holds as
C=G2-12 (106)

Combining this with eq. (99.1) gives

G2 =%(1+C) (107.1)

L2= %(1-C) (107.2)

In the symmetric case (R=R™), write eq. (104) with the help of eqs (91) as

5G@IDGGIP GJ-:GLOLSQB | (108.1)
]
zG(j|a)G(a|k)Ga=Gij6jk (108.2)
o

One then finds, upon making use of (92) the new relations

;Gj.G(jla)=61; (109.1)
J
zGa.G(agj)=é} (109.2)
o

Egs. (109) are to be compared with egs. (93). Combining (109) and (103) yields

ZGj.[G(iloc).G((xlk)].Gk=1 (110.1)
ik

EBGa.[G(an).G(jlﬁ)].GB=1 (110.2)
a, )
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From eqs. (109) one finds, by making use of egs. (91.1) and (91.2), the equality *

2 2
G =3G (111)
-] o

J a

If the spaces spanned by I yq > (=1, 2...) and | @; > (j=1, 2,...) are not finite, then the
quadratic expressions in (110) may diverge. Eq. (110) is to be compared with eq. (95). Recall
that in the symmetric case G, and G; are probabilities (cfegs. (91.1) and (91.2)).

However they are not the a priori probabilities of causes and effects, respectively. The
latter are py, and pj defined in eqgs. (61). In the symmetric case, the relationships between
(Ga,Gj) and (py, pj) are easily found from eqgs. (91.1), (91.2) and (74). They are

2 P Go=2 Pj (112.1)
o J .
2 pjGj=X py (112.2)
j o

whence
2 Pa= 2 Pj (113.1)
o j
Y Pa Go =X pj G;j (113.2)
o j

If
Pa=AGgq (114.1)
pi= A Gj (114.2)

then eqs. (112.1) and (112.2) reduce to eqs. (95) and (110), respectively.

Returning to eqs. (110.1) let, for fixed a, Gj (j=1, 2..) and G (j | &) (=1, 2..) be given data
from which to solve (110.1) for G (o | k). Similarly, let, for fixed j, G4 (o=1, 2..) and G (o 1j)
(a=1, 2...) be given, from which to solve (110.2) for G (j I B). '

Let us seek these solutions in the form

G(@lj)=% Dgg DjG (k1B) (115.1)
Bk

GGlo)y=3% DixDegG (BIK) (115.2.)
kB
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Egs. (115.1) and (115.2) are consistent if D is the inverse of D. In particular, eq. (94) is a
special case of egs. (115) for

DO‘B =1Ga 50([3 (116.1)
Djk:Gjajk (116.2)
D = G; ik : (116.3)
Dog - G da (116.4)

Eq. (110) is however, much more than eq. (94) since it incorporates the condition G2 = 1 for
Gaj=Raj- Eqgs. (115) are solutions of eq. (110) for the given data if

EGOLDOLB=GB (117.1)
o
1

Dg, =—=G 117.2
2 Ppa G = - (117.2)
¥ Gg Dgg = G (118.1)
o

- 1
EDBGGOL:G_' (118.2)
o B
¥ GjDjk =Gy (119.1)
)
S Dy g =0k (119.2)
j J

and
2 Gj Dj = Gy (120.1)
J
Yy D Gz A (120.2)
ki YT Gy .

Inserting eqs. (116) in (117) - (120) one finds that for all o and j
Go=Gj=1 ' (121)

These are consistent with the conditions
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Z Go; Gjp = Bap (122.1)
J

Y. Gjo Gox = djk (122.2)
o

and the definitions of Gy and G;in egs. (91.1) and (91.2)

An operator D, with inverse D, which transforms G (a | j) into G (j | o) according to egs.
(115) and satisfying eqs. (117) - (120) will be called a diagnosis. The transformation in egs.
(115) will, by extension, be called the diagnosis. Bayes's formula (i.e. eq. (94)) is, as we have
pointed out, a special kind of diagnosis obtained from (115) by the position in egs. (116).

Let G' stand for the operator with matrix elements G (] j) and G (j! ). Let D* and D+
be the Hermitian adjoints of D and D respectively. Egs. (115.1) and (115.2) can be combined
into the operator equation

G =D.G*.D* (123)
or equivalently
DG' = (DG")* (124)

thus, the effect of the diagnosis is to transform G' into the symmetric operator

G:=D.G' (125)

Eq. (125) is consistent with egs. (91.3) and (91.4) since G = Gj=1 for G = 1.
For the general case in which the operator R is not symmetric (i.e. Rgj # Rjg), one considers in
place of (115) the transformations

Ryj= ZkDoqs Djx Rg (126.1)
Rjo, = ¥ Djx Dop Rpk (126.2)
K
where D is the inverse of D. From the condition R*=1, one finds from eqs. (126) that D and D
satisfy the constraints

Doy Dgy= Dyy Dyg =4 (127.1)

D:

i1 Dyt = Djj Dy = 8k (127.2)

Eqgs. (127) imply that D is symmetric i.e.,

D=D" (128)
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In terms of %ja = Rgyj and Py = Ry eqs. (126) become
Pio= T Dop Dy Ppx (129.1)
kK
Pgj= % Dy Dop Pip (129.2)
kB '

Combining (126.1) and (126.2) we have the operator transformation

R=DR"'D=D(DR)" ' (130)
or equivalently

G=G" (131)
where

G:=DR =(DR)" | (132)

Again the effect of a dignosis is to transform R into the symmetric matrix G. Egs. (129) satisfy
eqs. (74) if

ij Djk:=qk (133.1)
j
2 PaDog:=qp (133.2)
o
and
2q Pu=dq | (134.1)
j
X qo Pyj = q; (134.2)
o

According to egs. (133), a diagnosis D operates a change of basis in the spaces spanned
by | ¢;> and | >, respectively, changing the pair of a priori probabilities (Pj» Po) into a new

pair (qj, qe)-
Let u be the operator which diagonalises D, i.e.

E Ujl Dlm {imk = D_] 5_]k . (1351)
I'm
3 ugyDys 1gp= Dy Sup | (135.2)

&Y
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where Dj, D, are the eigenualues of Dy and Dgp, respectively. Making use of (135) in (126)

one gets the relation

G (@1j)Dj=G (i1 o) Dy (136)
where
G (1) : = ugg Rpy Uy | (137.1)
GGla): (jxRpu'pa)’ (137.2)

Eq. (136) is equivalent to eq. (131). It is a different way of expréssing the fact that G is
symmetric. In fact from eq. (132) one finds

- < - 1 .

Uog GBk Ug;j = Ugp DBY Ryk Uy = —]5; G(alj) (138.1)
- T

uep Gpk Ukj = Uog Ry Dyk Ugj = D, G(lo) . (138.2)

whence eq. (136). Note from eqs (132) and (133) that

2 Gjg 9o =P (139.1)
o
2 Ga;jqj = Po (139.2)

J
Applying the operator u to both sides of (139) one obtains

>G({la)q =D;p (140.1)
o j
o
2G(al) qu = Dy p& (140.2)
j
where
t' =Y Ujk tk (141.1)
Ik
t =Y UgB 1B (141.2)

J

and t = p, q. On the other hand, applying u to both sides of (133) yields
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D;p. =q (142.1)
] J

D.p =g 142.2

aPa qa ( )

Substituting from (142) into (140) one gets

>G(layq =q. (143.1)
o « ]

¥G@ljq =4 ' (143.2)
j yooe '

Similarly applying u to both sides of the equations (cf. egs. (74) and (87))

j

2 Po Rgj= P (144.2)
[0 4

yields

Y2pG(Glo= p('l (145.1)
i J

3peG(alj)= pjf (145.2)
04

We have made use in eqs. (145) of the fact that

+

w=vu=1 (146)

This follows from egs. (135) and the symmetry (i.e. D = D") of D. Making use of (142) in
(136) yields

p' G(alj)qg = p. G(Gla)q (147)
o j j o
whence
PG (Gloa)
J a
G(alj = (148)
q. p



Inserting for q' and p;x from eqs. (143) and (145) one finally gets
J

p'j G@G!loa) Q'a
G(alj) = (149)

>p' Gkla)y GGIB)q
Kk K B B

The structure of eq. (149) is similar to that of Bayes's theorem, however, applied twice: once to
q'j and then to p('x.

6. SUMMARY

Diagnosis can be described as follows: the a priori probability distributions P; G=1,2,.)
and p, (o = 1, 2,...) for effects and causes, respectively, are assumed given together with the
correlations (i.e. likelihood) Rja of the effects j =1, 2,..... given the cause o. The diagnostic
problem consists in finding the correlations RO(j (i.e. the a posterior probabilities) for the cause
o given the data on the a priori probabilities and the likelihood. The solution starts from the

positions:
,Z Pi Rjo = Pot ‘ (150.1)
g Pa Rgj = pj (150.2)
and
> RgjRjg =80 (151.1)
j
> Rjo Rak = Ojk (151.2)
B

By definition, a diagnosis is the symmetric operator D=D" which transforms Rgyjinto Rjy
according to the formulae

R(Xj = %k DaB ﬁjk RkB (152.1)
Rj(x = kZB Djk ISO(B RBk (152.2)

or equivalently

G:=DR=R* D=G" (153)

Given D, the unitary operator U (U = U™) exists which diagnolises D i.e. such that
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Y Ugy Dyg Ugp =Dg 8o (154.1)
Y,
lz Uj; Dim Upk = D 8k (154.2)
,m

where the Dy (o0 =1, 2,..) and D (j =1, 2,..) are the eigenvalues of D in the spaces of causes
and effects, respectively. D transforms the a priori probabilities py (¢ =1, 2 ..) and p; ( =
1,2...) into new ones gy (&t =1, 2,...) and qj ( =1, 2...) according to the formulae

% Djkpk = qJ (1551)
% Do Pp i = a (155.2)

The gj, qq are a priori probabilities and are trasformed into each other by the matrices Ry; and

Rjq as follows:

JZ Rgj dj= qa (156.1)

2 Rjg 4o = qj (156.2)
(¢4
The unitary operator U trasforms t = p, q into a new pair t'=p, q given by

Ugtg =3 t Uy =t
% =2t Vg Y (157.1)

% Uap t3 =>BZ tg Upo =t (157.2)

The new pair t' = p', ' are related to the eigenvalues D; Dgy of D by

qj
D;=27 158.1
=" (158.1)
D, =3& (158.2)
Pa

and are related to each other by

"' G(Gla)=p 159.
.Jij Glo P (159.1)
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2 p G(lj)=p

o o J
and

2G@la)q =q

j « ]

y

2 G@l)qg=q
o ;oo

where G (j | ) is the trasform of G in eq. (153) under U i.e.

1 . =
_D}G(lla):zUjkaﬁUBOt

Dl—aG (1) : = Ugg Gpy Uy
whence the equality

G(alj)Dj=G (jl o) Dy
or equivalently

p'aG(alj)qu= p; G(iloc)qu
upon making use of eqs. (158).
Solving (163) for G (a1 j) yields

ij(J l oc)qoc

G(alj)=

This becomes, on making use of egs. (159.1) for p('x and (160.1) for qu .

ij(Jla)qa

Glj=
Cp' Gkla)(ZGGIB)
k k B B

(159.2)

(160.1)

(160.1)

(161.1)

(161.2)

(162)

(163)

(164)

(165)
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Eq. (165) looks like Bayes's formula of second order since two pairs of a priori probabilities
(p', p')and (q', q')areinvolved. Eq. (165) is the solution of the diagnostic problem. It is
not in the canonicjzal foortm of Bayes's theorem. Bayes's theorem is, however, a special case of
this solution. To see this, rewrite eq. (153) as

(DR +R* D) (166)

B —

G=
hence for D =D = 1, eq. (166) becomes
= 5 R+RY) (167)

G is in this case the symmetric part of R. But for D =D = 1, egs. (152) say that R = R* so that
this case corresponds to Bayes's theorem.



