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ABSTRACT

A previous analysis of QED radiative corrections to Bhabha scattering in the
vicinity of the Z is improved by a better analytical treatment of hard photon terms
with sizeable effects on the tail of the resonance. A quantitative discussion of two-
loop corrections and comparison with some existing Montecarlo codes show that
quite generally, the theoretical uncertainty at large angles cannot be reduced much

below 1%.



(]

Higher order corrections to Bhabha scattering have been recently investigated
[1-8] with increasing accuracy, as demanded by the precision achieved with LEP
experiments, now or order of few %,. The recent calculation [4] of two loop QED
corrections has extended previous analytical analysis [1,2] of Bhabha scattering in the
vicinity of the Z() based on o(a) results implemented by the resummation of soft and
collinear effects to all orders. The resulting formulae, valid in the limited kinematical

configuration of quasi collinear back-to-back et e events, can be used to simply

extract from the cross section measured at the peak the Z(j couplings to e e pairs -

similarly to what has been achieved for u+ WL pairs and with comparable accuracy -
and to test Monte-Carlo calculations in the kinematical domain defined above for the
estimation of the QED systematic uncertainties. Indeed various Monte-Carlo codes
have been recently proposed [5, 9-12] , mainly based on the formalism of the QED
structure functions, with systematic errors of order 1%, which must be tested against

detailed analytical results, even in a restricted kinematical region.

The aim of the present note is to improve the accuracy of the theoretical
calculation [4] in the energy region above the Z( peak with a better description of
hard photon effects. The agreement of our formulae with various Monte-Carlo
calculations in a extended energy domain is now of order 1%. Furthermore we
explicitly show that the effect of o(o?) corrections, beyond those already included in
the exponentiated terms and often not considered in Monte-Carlo codes, is not smaller
than ~1%. Therefore a better accuracy of Monte-Carlo results - as sometimes claimed

- seems to us quite unrealistic.
The starting formula is given in ref. [4] and, with the same notation, is written
+ - T - S (i) () '()
doete > e C)EEdG(l)=i§dﬁo(l){Cinf“(1+CF)+CF}, (1)

A few comments are in order.



The coefficients Ch(;r) are the usual exponentiated infrared factors and have a
A
different form for the pure QED, interference and resonant terms. The finite factors

E(;) include, up to o(o?), two groups of terms of different origin. The first one, called

C(:) in ref. [4], corresponds to form factors and bremsstrahlung contributions in the s

and t channels. The second group includes essentially the contribution of the hard
terms of the initial and final electron radiators in the formalism of structure functions.
The present analysis pfecisely improves the calculation of that class of terms. Finally
the factors C'(Fi) correspond to the various box contributions, do not contain important
logarithms and therefore are taken to order o only [1]. Strictly speaking, eq.(1) holds
only approximately at the level of the differential cross section, because of the slight
different angular dependence of the soft and hard components in the electron

radiators, as shown for example in ref. [13], in the reaction ete > u+ K. However

" the use of eq. (1), in the vicinity of the Z(j and in the kinematical domain of quasi

collinear back-to-back pairs covered by our formulae, is legitimate within our level of

accuracy.

We report now the main lines of the derivation of the hard contributions which

improve the analysis of refs. [4, 14]. For the sake of clarity we denote by B, and B¢

the appropriate initial and final states factors, putting of course B, = B¢ in the final

expression for the Bhabha radiative formulae. In the structure function approach the

Cross section is written as

€
o(s) = [dx o, (s(1-x) H, (x,8) F; | (€ =) , (1-%) 5|, 2)
0

where the initial and final radiators are given, for example, in ref. [15]. Then, fof

small fractional energy resolution € and to leading order in B, and B¢ one has
He Ff = BeAe (Af -€ ﬁf) x[}e e X)Bf - BeAf(l +3% Be) (e- X)Bf

+o(Bge.B ), 3)



where [14]
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with B = (L), L=1n ? and A, , By similarly defined. The first and the

second term in eq. (3) clearly correspond to soft and hard initial state radiation
respectively. The insertion of the first contribution in eq. (2) has been carefully

evaluated in refs [4, 14]. A better treatment of the second term, on the other hand, is

needed when considering the energy region above the Z() peak. Then by splitting the

QED _INT _RES
+0, +0,

Born cross-section Gy(s) in eq. (2) as G, where

ED 1 INT 1 RES s
oy =A<, G =BRe—7——, o, =C—53 55,
M+ iMI' (s-M) +MT

with I = I'(s) = vy s/M, the contributions of the second term in the r.h.s. of (3) to the

Cross sections are

1 B
OO =- AL, (B,€)(1+5B,) € £ B(1, 1+B;) 5)
1 B
o™=-BAB, (1+5B) € © B(L1+B;)

1 z z
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The above egs. (5-7) give a better description of hard pnhowon effects above the

resonance peak than those given in refs. [4, 14].

For the specific application to Bhabha scattering eq. (1) is modified
correspondingly as follows:

10

doete > ete)= Y do, (i) {Cirfza (1+6(;) )+ C(Hi) + C'(: } : (8)
p

where the factors (—3(;) contain now the pure soft contributions up to two loops
only and differ, therefore, from those reported in ret.|4], the terms C(H" include the

hard initial state bremsstrahlung discussed abtove and, tinally, the terms C‘(::)

correspond, as in refs [1, 4], to the various box contributions.

Then, inciuding the initial-final state interference [3;,, dependence, as in refs.
[4,16] the coefficients C, and C_! in eq. (8) take the form

— N
W_ o _Tg2 _
Cp=C) - FBe . (i=1,..,6)

o o |
C(F) - C\l) _ Bee -5 Bez (i=7,8,9) %

* Notice the difference with the analogous definitions in [14] due to the s-dependence in I".
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where Be =Be + Bine » Be = Be + 2 Bjnt » © and z are detined above and the

coefficients C(:), as well as Ci:i;)'a and C'(: in eq.(8) are defined in ref.[4] and for sake

of brevity will not be reported here again.

When the experimental observation of the final electrons includes the detection

of hard photons collinear to the final particles within a small cone of half opening

angle 3 (8 << 1) then eq. (8) is modified as follows [1, 4, 17]
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with Bs =—(Ls-1),Ls=(4/d") and the factors CY are also given in ref.[4].
% 1\ ) |

This concludes the discussion ot hard photon formulas. We would like to add a
few commermts on the phenomenological implications for LEP experiments, aiso in

connection with other treaunents based on Montecario studies.

First we compaie the new results with the previous ones of ref. [4], for two
different kinernatcal configurauons corresponding to an acoilinearity angle of the
final electrons of 5 and 1Y degrees respecuvely, with a value of o - tne half opening

angle of the collinear hard pnotons - also given by 5 and 10 degrees. This is shown in
tabie 1, where we give the integrared cross secuon for 42.3 < 0 < 137.7 , with Mz =

91.17 GeV, "= 2484 GeV and I, = 8.38 - 10°2 GeV.



6=eac \s |87.17|88.17|89.17| 90.17 | 91.17 | 92.17 | 93.17 | 94.17 | 95.17
5° new | 0.286| 0.354 | 0.492 | 0.787 | 1.045] 0.665 | 0.373 | 0.241 | 0.164
old | 0.287]0.355|0.493 | 0.789| 1.049| 0.671 | 0.378 | 0.241 | 0.158
10° | new | 0.305]0.375|0.516 | 0.820 | 1.084 | 0.696 | 0.400 | 0.272 | 0.211
old | 0.306{0.376|0.518 | 0.823 | 1.090 | 0.704 | 0.406 | 0.280 | 0.218

Table 1

As clearly seen the resuits pracucally coincide betore and on the peak, whereas

_ they differ up to a few % on the Z tail, where the new corrections tend to generally

decrease the cross section. The same behaviour is observed in Table 2, where we

compare our analytic resuits (1) with the previous ones [4] and with those from the

event generator BHAGEN [11], based on a non-perturoative formula which

reproduces the perturbarive approach in the proper limiting configurations. Here the

energy resolution € is varied for fixed o = 10-3.
g \fs 87.1 89.1 91.1 93.1 | - 95.1
BHAGEN 0.327 0.539 1.100 0.405 0.217
0.2 | BHABHA NEW 0.327 0.538 1.094 0.407 0.222
BHABHA OLD 0.327 0.537 1.097 0.418 0.237
BHAGEN 0.339 0.556 1.137 0.418 0.227
0.3 |BHABHA NEW 0.342 0.557 1.125 0.423 0.233
BHABHA OLD 0.342 0.556 1.129 0.434 0.250

Table 2




The agreement within 19% between our formulae and BHAGEN - which in um
has been shown [11] to agree within the same accuracy with the other generator
ALIBABA [5] - also gives the realistic estimate of theoretical uncertainty common to
the various approaches. Notice that both event generators mentioned above do not
consider the two-loop corrections included in our formulae. This very fact already
makes a systematic uncertainty of order 1%, as can be seen in Table 3, where we

compare, with the same notations of Table 1, the cross section (11) with the factors

C:: and C'}'{) evaluated with one or two loop accuracy. This concludes our discussion

on the theoretical systematic uncertainties.

6=8, \s 87.17 | 8917 | o117 | 9317 | 9517
5 1 loop 0.286 0.494 1.050 0.375 0.164
2 loop 0.286 0.492 1.045 0.373 0.164
10° 1 loop 0.305 0.516 1.090 0.401 0.211
2 loop 0.306 0.518 1.084 0.400 0.211

Table 3

To conclude, we have improved a previous analysis of e.m. radiative

corrections in the vicinity of the Zg, in particular for Bhabha scattering, by a better

analytical treatment of hard photon effects. The implications for LEP experiments are

of particular importance on the tail of the Zg distribution, where they generally
reduce the previous cross section by order of a few %. A quantitative discussion on
the relevance of the two-loop effects, as well as a comparison with some of the
existing generators for Bhabha events, clearly show that the theoretical uncertainties

cammot be reduced to a level significantly smaller than 1%.

We are grateful to M. Caffo for‘discussions on BHAGEN and comparison with

our results.
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