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ABSTRACT

A simple calculation of the contribution of quadrupoles and sextupoles
to storage ring chromaticity is given. Problems arising from chromatic-
ity correction are discussed. An accurate derivation of chromaticity for-
mulae for agenera bending magnet, exact also for small machines with
small radius of curvature, is given.

1. INTRODUCTION

In the design of storage rings there are many similarities with geometrical light optics. In
analogy to chromatic aberrationsin light optics, in particle accelerators a parameter caled chro-
maticity isintroduced. Inlight opticsrays of different wavelength find a different refraction in-
dex in alens and therefore experience a different focal length. Similarly in a storage ring parti-
cles of different momentum see a different focusing strength in the quadrupoles and, as a con-
sequence, have adifferent betatron oscillation frequency.

We define the chromaticity as the variation of the betatron tune Q with the relative momen-
tum deviation 9 (6 = Ap/p):

dQ

Q=75 - (1)
Sometimes the relative chromaticity € is used:
e=3 . @

Let us point out the importance of the chromaticity in circular accelerators. The
chromaticity has a deleterious influence on the beam dynamics for two main reasons.

First, a momentum spread op is dways present in a particle beam, therefore the chro-
maticity produces a tune spread in the beam:

AQ = Q' op. €)

In large rings, with high tune values, this tune spread is so large that it is impossible to
accommodate the beam in the space between the resonance lines in the tune diagram. How dan-
gerous these resonances can be for beam stability has been described in a previous lesson [1].



Second, in the case of bunched beams the chromaticity produces a transverse instability
caled "head-tail effect” (see Ref. [2] for a detailed treatment). The wake field produced by the
leading part of abunch (the head) excites an oscillation of the trailing part (the tail) of the same
bunch. In half a synchrotron period the head and the tail of the bunch interchange their positions
and the oscillation can be anti-damped and may cause a beam loss. A complete mathematical
treatment shows that the growth rate of this instability is much faster for negative than for
positive chromaticity values and vanishes for zero chromaticity. It may be counteracted by a
transverse feedback system, but this makes machine operation much more critical. Therefore
most of the storage rings operate with zero or dightly positive chromaticity.

The "natural" chromaticity of a storage ring is that due only to the elements of the linear
lettice, i.e. quadrupoles and dipoles. As it will be shown later the "natural” chromaticity of a
strong focusing storage ring is always negative, therefore special elements have to be introduced
in the lattice to correct it.

In strong focusing lattices the main contribution to the chromaticity is due to the
quadrupoles, in particular, in large rings with very large radius the contribution of the dipoles
can be neglected; for small rings, however, the dipole contribution is important and has to be
carefully calculated.

In sections 2 and 3 it is shown how to caculate the chromaticity due to the quadrupoles
and sextupoles respectively. Then, in section 4, the effects on beam dynamics due to the
chromaticity correcting sextupoles are briefly discussed. Findly, in section 5, a detaled
derivation of the chromaticity for a general bending magnet is given, following the approach
given by M. Bassetti in Ref. [3], which is very smple and intuitive, avoiding long mathematical
derivations.

2. CHROMATICITY CALCULATION FOR A QUADRUPOLE

Let us consider the motion in a quadrupole of a particle which obeys the equation:

y' +ky=0 (y=xor2z 4)
with

kX =-k

kz = k.

Now we consider the dependence of k on momentum:

e 9Bz e 0B ko
K=pax = po(T#0) ox = (1+0) = Ko(l-d+d2-.) )
to first order in &:

The chromatic variation has always the opposite sign with respect to the focusing strength,
therefore a particle with a larger energy sees a weaker focusing strength. On the contrary, in
light optics, the variation of the refraction index with the wavelength can be ether positive or
negative and the chromatic effect can be corrected to first order combining lenses of different
material.



Keeping only the linear term in § the equation of motion in aquadrupole yields:

y" =-ky (1-0) y (7)

which is equivadent to adding to the focusing quadrupole a defocusing one with a strength -
kyo and viceversafor the defocusing quadrupole.

In athin section of aquadrupole of infinitessmal length ds the particle receives an angular

kick
dy'=y"ds=kyoyds (8
described by athin lens (defocusing for the focusing quadrupole) matrix:
1 0
9
kydds 1

To compute the effect of thiskick on the betatron tune, the one-turn matrix is obtained by
multiplying the unperturbed matrix (6 = 0) by thisthin lens.

( COSLly Bysinuy) ( 1 O) ( cosuy+Pysinuykydds  Bysinuy

= . 1
-Sinuy/By  cosuy kyods 1 -Sinuy/By+cosuykydds  cosuy (10)

Then we compute the trace of M to get the new value of py (uy=2tQy):

1 _ 1.

5 Tr M = cos(uy+duy) =cosuy + 5 BySinuy kyd ds (11)
since: _

d(cosuy) = cos (uy+duy) - cosuy = -Sinuy duy (12)
we get:

1
or
1

Integrating over al the ring circumference L, the formulae for the two planes, horizontal
and vertical, are:

dQx 1L

a% = - 757 J Bx(9) kx(9) ds (15)
0

0Q; 1L

55 = 7 J B9 ka(9) ds. (16)

0



From these formulae we can see why in a strong focusing lattice the chromaticity is a-
ways negetive. In each plane a focusing quadrupole has a postive strength (ky >0), and
therefore anegative chromaticity, while a defocusing quadrupole has negative strength (ky ; <
0) and positive chromaticity. In a strong focusing lattice the By z-functions have the maximum
values at the focusing quadrupoles, therefore the total chromaticity of a ring is dominated by the
negative contribution of the focusing quadrupoles.

3. CHROMATICITY CALCULATION FOR A SEXTUPOLE

For off-momentum particles the closed orbit is displaced with respect to that of the refer-
ence particle by aquantity D9, where D isthe dispersion function. Thisfact allowsto correct the
chromaticity through the insertion of special magnets, called sextupoles.

Thefield of asextupoleisgiven by :

Bx = g'xz
(17)

1
Bz=7 ¢ (x2-29)
with
B2

— 9x2
and the equations of motion become:

1 e
X'+ 5 r(x2-29)=0 wherer = - ¢ (18)

Z'-rxz=0.

InFig. 1 an example of the pole shape of a sextupole magnet is given.

Z
by |

Fig. 1 - Schematic representation of a sextupole magnet cross section.



The sextupolekick is:

1
dx'=-35 r(x%z2) ds

(19)
dzZ' =rxzds.
Substituting the total coordinatesfor the off-momentum particle
Xt = D& + x (20)
=17
it becomes:
1 1
dx'=-[D6x+§(D6)2+§(x2-22) rds
(21)

dz' = [D62+xz] rds.

The first term of Egs. (21) is equivaent to the kick of a quadrupole with gradient -rDd
and, analogoudly to Eq. (14), gives atune shift

AQ:41—,c B 1D 5 ds (22)

and a contribution to the chromaticity:

0 1L
_aQéé= 7= I Bx(9) r(9)D() ds
’ (23)
007 1 L
7%—= - 7= JB2(9) 1(9D(9) ds.
0

4. CHROMATICITY CORRECTION

The most efficient way to correct chromaticity is to perform alocalized correction, i.e. to
insert sextupoles just close to each quadrupole, where the chromatic effect is produced. For each
quadrupoleisinserted a sextupole with a strength:

kI
rlg=- > (24)

wherels and | are the lengths of the quadrupole and sextupole respectively.



Unfortunately, in most cases localized correction is not possible. For example collider
storage rings have low-f insertions with very strong quadrupoles and zero dispersion function.
Similarly, storage rings for synchrotron light production have many zero dispersion straight
sections for insertion devices, like wigglers and undulators, and strong focusing quadrupoles to
get low emittances. In these cases a strong chromaticity produced in the insertions has to be
corrected in the arcs. If the arcs are built up by regular cells, two sextupoles are inserted in each
cell, onein ahigh By place, to correct horizontal chromaticity, and the other in a high 7 position
to correct the vertical one. The sextupole intensities are obtained by solving the following linear
system of eguations, where ry and ry are respectively the strengths of the horizontal and vertica
chromaticity correcting sextupolesand N is the number of periodic cells:

rH|S[)’:| DH + rvls ﬂ;’ DV = %
(25)

-rH|S[J’;| DH - rv|5/3;/ DV = %
It hasto be that

rH<0 and ry >0

since Qx and Q; are usualy, both negative. Therefore, in order to reduce the sextupole
strengths, it isimportant to place them where the dispersion is high and the § functions are well
separated. Infact, if By >> B, a the horizontal sextupole and viceversa at the vertical sextupole
location, each sextupole corrects the chromaticity in one plane, without affecting it in the other
plane. Often the vertical sextupole has a strength higher than the horizontal one because the
dispersion function follows the behaviour of the horizontal p-function and therefore D is high &
the horizontal sextupole and low at the verticd one. This is specially true for collider storage
rings, where, due to the low vaue of B, a the interaction region, the verticad chromaticity is
generaly higher than the horizontal one.

The sextupol es necessary to correct the chromaticity introduce unwanted effects due to the
other two termsin Egs. (21):

- the chromatic aberration term (Dd)2
- the geometric aberration term ( x¢- z2), xz.

The geometric aberration term introduces higher order terms in the equations of motion.
In fact each sextupole inserted into the linear lattice, also in thin lens approximation, doubles the
order of the polynomia which links the initid and final coordinates for one turn in the ring.
With N sextupolesin the ring the final coordinates depend on the 2N-th power of theinitial one.

X(L) = a11 x(0) + a2 X'(0)+ a13 8+...a; x(0)2\V .

The worst consequence of this is that in the case of nonlinear motion the stability of the
trgjectoriesis not given anymore from the knowledge of the one-turn matrix (Jtr M|=|2cosu|<2),
but depends on the amplitude of the betatron and synchrotron oscillations.

In some very simplified cases an analytical calculation of the stability region is possible,
for example in the unidimensional case (x,x' or z,Z phase plane) in the vicinity of a single res-
onance. In this case a closed curve, caled separatrix, can be found which divides the phase
plane in two regions, a stable one inside the separatrix and an unstable region outside.

In more general cases tracking is used, i.e. a computer code which, given the initid co-
ordinates for a particle in phase space, follows the evolution of atrgectory with the mathematical
model chosen for the ring. A trgectory is considered stable if it remains confined in a certain
phase space region for a given number of turns. Changing the initid coordinates of the particles
tracking is performed to determine the largest region of phase space which contains al stable
trgjectories. Thisregion is called dynamic aperture.



This procedure is limited by computer time and precision, in fact the range of initial co-
ordinates which can be explored in a six-dimensional phase space is very poor and the number
of turnsis aways much smaller with respect to the beam lifetime or damping time.

After the linear lattice design a dynamic aperture optimization has to be done by choosing
the distribution and the strengths of the sextupoles , the working point in the tune diagram, and
even modifying the linear |attice to reduce chromaticities and sextupol e strengths.

5. CHROMATICITY CALCULATION FOR A GENERAL BENDING MAGNET

In a bending magnet the betatron motion is given by the following equations:

y" +ky(sly=0 (y=xorz (27)
with
ke =  -k+h2
kz = k
e e 0Bz
h=- ) B2 ; k= P X -

The solution of these equations is represented, in each plane, by the two-by-two betatron
matrix A. This matrix can be written as the product of N matrices A;:

N
A= nAi('—B) (28)
i-1 \N
where Ig isthe length of the bending magnet. We choose N large so that
As= I—B—> 0.
N

Thisisequivalent to subdividing the magnet into N thin pieces of length As. To first order
in As, Aj can be written as the product of athin lensand a drift space:

Az 1 0) (1 As 29
'k, (9As 1 (o 1) 9

Now we consider the changes that occur A3 (1+x1p)
in the betatron mation (i.e. in the matrix A;) for
aparticle with arelative momentum deviation & *
oscillating around the off momentum closed x=D3

orhit.

h=1p

Fig. 2 - Orbit lengthening.



Two changes occur in the matrix Aj:
i) an orbit lengthening (seeFig.2)
AS(8) = As(1 + hD§J) (30)
i) achange in the focusing strength of the thin lens due to:
- momentum dependence of the focusing functions
- variation of the length
- ky(s,8) AS(d) = - [ ky(s) + Kk1y(s)d + ky(9)hD3] As (31)
wherekiy isthe derivative : kiy = oky/d0 .
As dready seen, achange Ak in the focusing function at the position s gives atune shift :
AQ = - (/4r) B(s) Ak (32)
and, smilarly, achange Asin the length of adrift space gives:
AQ = (V4r )y (9)As (33)
wherey (s) isthe Twiss function.

Integrating over al the circumference gives

Qy 1 L
WSX =7~ J{By[kiy +kyhD] +yyhD} ds. (34)

0
Thisformulais ageneralization of that for aquadrupole, infact for a quadrupole we have
h=0and kiy = dky/dd = -ky and we obtain again the formulae of Egs. (15) and (16).
In order to calculate kyy for the general bending magnet we need to know the fields seen
by an off-momentum particle . First we write the second-order magnetic field expansion in the
reference system of the design orbit for zero momentum deviation. The formulation of the field

equationsisthat given by K. Steffen [4] with the only difference that h(s) has the opposite sign
and its dependence on sisexplicitly given, i.e:

h(s) = [h + h's + % h'? + 0(3)] . (35)

Asit will beuseful in the following to distinguish the second-order terms they have been
enclosed in square brackets:

p 1 1 1
B, = E{'h - h's + kx +['§ h"s? + k'xs+ grx2+§ (h"-hk-r) 22] + 0(3)}
Bx = {kz +[Kzs+rxz)+ 0(3)} (36)

Bs= g{-h'z +[ (R + K)xz] + 03}



The previous equations are completely general, they are only based on the assumption of
afield symmetry with respect to the median plane (z = 0). Therefore, if we change the mo-
mentum of the particle, the origin and the orientation of the axis in the z = 0 plane, the magnetic
field has aways the same form, but different values of the coefficients.

Now we make a transformation to the reference system of the off-momentum particle, as
shownin Fig. 3:

p = p*/(1+3)

7= 7* (37)
X =d+ x*cosd + s*sino

S=-X*sno + s*cos

where d=Dd and 6 = D'.

v

Fig. 3 - Transformation of the reference system.

The field equations change in the following way:

Bz = Bz[;(i*) ]
By* = By[ X (X*) Jcosd - B X (X*) ]sind (38)
Bs* = By[X(X*) ] sin® + B X(X*)] cosd .

We are interested in the first-order field expansion, therefore we take only the first-order
termsin Egs. (36) and make the substitution :

B = e(ﬁrg)) [-h +kd + X*( k cost +h'sine) - S h' coso - k sine)]

By* = ﬁz[ k cosb + h' sinG] (39)

p - 1
Bs = mz[ ksind-h COSB] .
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As dready said, the various terms in the field equations have to be the same as in Egs.
(36), therefore equating the corresponding first-order terms we get the new coefficients:

h-kd
=55

kcosd + h'sind
K'="T+5 (40)

h'cost - ksino
= 1+9

h'*

Using
sind ~D' ; cosd ~1

and keeping only first-order termsin § we get:

ky* = h*2-k* =(h2-k) + 8 (-2h2-2hkD + k - h'D")
(41)
k> = k* =k + 3 (-k+hD") .
We obtain the values of kiy(s) as.
oky*
kix =35~ =k-2h2-2hkD - h'D*
(42)
okz*
kiz=—35" =-k+hD'".
Inserting these valuesinto EQ. (34) we obtain the final formulae;
0Qx 1 n
=% =7= J{B (k-2h2- 2nkD - h'D") + BhD (h2-k) + yhD}ds
0
(43)
L
0 1
%:E J4B (- k + hkD + W'D") + yhD} ds .
0

Aswe used only first order termsin this derivation the contribution of the sextupole term
BrD, calculated in section 3, does not appear in Egs. (43). In Appendix | a similar derivation
using the second order field expansion is given. The final formulae contain the same terms as
Egs. (43) plus the sextupolar terms coming from the second order terms in the field expansion
which are linear in x and, applying the trandation x = x* + D3 of Egs. (37), produce linear
terms.
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5. END-FIELD EFFECTS

From Egs.(43) it is possible to caculate the contribution of the fringing fields to the
chromaticity, once known an expression for h'(s). In Ref. [5] the same formulae are obtained
with a different derivation, moreover a detailed caculation of the fringing field effects is given.
For completeness we report here the final formula. The schematization of the end fields used
thereis shown in Fig. 4 and the parameters definition is the following:

S1 beginning of the central part
S end of the centrd part
"1" entrance of the fringing region
"2" exit of the fringing region
0 entrance or exit angle of the trgjectory
1 ,
radius of curvature of the end faces
T c0s30
1 .
h= ) curvature of the reference orbit
1 dBz(0,0,9)
k=- Bp  ox guadrupole component

1 92B4(0,0,9)

r=- sextupol e component

Bp  4x2
D, D dispersion function and its derivative
a, B,y Twiss functions.
8

!
1'_::#:9;

!
T;058;

Fig.4 - Field boundaries for a bending magnet.
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The formulae to calculate the chromaticity of a magnet in terms of the lattice functions a
the reference orbit are:

9Qx 1 P
=5 = -7= J[ (h2-k) + DB +h (2kDB + 2D'ct - Dy)]ds

1

+[~tgO(hp + 2DkB) + htg?0(BD'~2cD + hDPtgH) + ThBD |-

+[~tgo(hp + 2Dkp) - htg’(BD'~2a:D ~ hDPtgo) + ThBD ]
(44)

S2
9Qz 3 4% f[ kp - rDB - h (kD + Dy)]ds

Sl

+ [tg0(hp + 2Dkp) — hig?B(BD'~2cD ~ hDBtgH) ~ BhD'~thBD ] ;-

+ [tg0(hp + 2DKp) + htg?d(BD'~ 20D + hDPBtgs) + BhD'~thBD .-
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APPENDIX 1

CHROMATICITY FOR A BENDING MAGNET TAKING INTO ACCOUNT
SECOND-ORDER TERMS

Al1.1 DERIVATION OF THE CHROMATICITY FORMULAE

The chromaticity formulae in section 5 are obtained using the first-order expansion of
the magnetic field. To obtain an expression for the chromaticity which contains also the
sextupolar terms, the same derivation is repeated here using aso the second-order terms in the
field expansion given by Egs.(36). To get the new expressions for the magnetic field we apply
the reference system transformation described in section 5 to the second-order field expansion
of Egs. (36).

Following the derivation given in section 5 and using :

sind ~D'8 ) cosd ~ 1

we get the expressions for the magnetic field in the new reference system:
Bz = grirg) [N D + ) + k(Dd+x*+5 D'd)+ K(Dd + x* +5* D'8) (-x* D'd+s¥)
+% r (DS + x* + s*D'9)2 + %(h"-hk-r) z2]
By* = grirgy ZKTK(X*D'd +°) +1 (D5 +x* + D) - [-h-h"(x*D'd + &)
+ (hh' + k') (D8 + x*+s*D'8)] D'} (45)

Bs = grisy ZIK+ K(x*D'd + %) +1 (Db +x* + $D'D)] D' - - h'(-x*D'd + )
+ (hh'+k") (D6 + x* + s*D'9)} .

Neglecting the second-order terms, except for the chromatic ones, i.e. the terms x9, z6
and 3, we obtain:

B2* = grirgy [-h+ kDb + x*(ND'd + k +1D8) + (- + KD's + kD))
* — L ImYd
By* = girsy 2k +1Dd +hD'd] (46)

Bgt = ﬁ Z[-h'+ kD'S + (hh+k)D3].
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Comparing these equations with Eqgs. (36) and equating the corresponding first-order
terms, we get the new coefficients:

__hkDd
h* =735~
k+hD's + rDd
k* = 1+ 6 (47)

h + kD'6 + (hh'+k")Dd
1+9 :

Now, following the same procedure as in section 5, we use the coefficients h* and k*
given by Egs. (47) to obtain the values of the focusing strength for the off-momentum particle:

ke* = h*2-k* =(h2-k) + 8(-2h2-2hkD +k - h'D' - rD)
(48)
k> = k* =k + 0 (-k + h'D' + rD).
Then, we get the variation of the focusing strength with momentum, Kkiy(s) :
oky*
kix =—35~ =k-2h2-2hkD - h'D'-rD
(49)

okz*
Kiz=—35" =-k+hD'+D.

The variation of the orbit length with momentum has been already taken into account in
Eq. (34), therefore inserting Egs. (49) into (34) we obtain the final formulae for the chromaticity,
which are more complete than that of Egs. (43) because they contain a so the sextupolar terms.

L
1
= =7= J{p (k-2n2- 2nkD - h'D' -rD) + BhD (h2-k) + yhD} ds
0

(50)
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A1.1.1 An observation on Eqs.(47)
Let us notice that the coefficient h* given by Egs. (47) is obtained as the coefficient of
the variable z in the equation (46) for Bs, and that it is different from the coefficient of s which

appearsin the expression for Bz. This ambiguity comes from the fact that, while for Eqgs. (36)
the relation:

95 =9z (51)
isvalid, thisisnot true for Egs. (46), for whichitis:

oBs*  9BZ*
az # aS* . (52)

Equations (46) are anyway correct, but the new variable s* has to be modified. In
cylindrica coordinates (z,x,), theradial component of the Maxwell equation iswritten:

19Bz 0By
090 -9z - (53)

When making the transformation given by Egs. (37), which is essentialy a trandation
in the radia direction, in Egs. (53) p has to be replaced by p+Dd. As a consequence, the
Maxwell equation is written:

1 9Bz 1 B 9B
p+Dd 99 = I+hDd as* =~ oz

=y
1
2|

(54)

Thisrelation isin effect verified by Egs. (46) to first order in 6.



