




INFN – Laboratori Nazionali di Frascati
Servizio Documentazione

LNF–91/031(R)
7  Giugno  1991

CHROMATICITY

S. Guiducci
Frascati National Laboratories - INFN, Frascati, Italy

ABSTRACT
A simple calculation of the contribution of quadrupoles and sextupoles
to storage ring chromaticity is given. Problems arising from chromatic-
ity correction are discussed. An accurate derivation of chromaticity for-
mulae for a general bending magnet, exact also for small machines with
small radius of curvature, is given.

1. INTRODUCTION

In the design of storage rings there are many similarities with geometrical light optics. In
analogy to chromatic aberrations in light optics, in particle accelerators a parameter called chro-
maticity is introduced. In light optics rays of different wavelength find a different refraction in-
dex in a lens and therefore experience a different focal length. Similarly in a storage ring parti-
cles of different momentum see a different focusing strength in the quadrupoles and, as a con-
sequence, have a different betatron oscillation frequency.

We define the chromaticity as the variation of the betatron tune Q with the relative momen-
tum deviation  δ (δ = ∆p/p):

Q'= 
dQ
dδ  . (1) 

Sometimes the relative chromaticity ξ is used:

ξ = 
Q'
Q  . (2)

Let us point out the importance of the chromaticity in circular accelerators. The
chromaticity has a deleterious influence on the beam dynamics for two main reasons.

First, a momentum spread σp is always present in a particle beam, therefore the chro-
maticity produces a tune spread in the beam:

∆Q = Q' σp. (3)

In large rings, with high tune values, this tune spread is so large that it is impossible to
accommodate the beam in the space between the resonance lines in the tune diagram. How dan-
gerous these resonances can be for beam stability has been described in a previous lesson [1].
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Second, in the case of bunched beams the chromaticity produces a transverse instability
called "head-tail effect" (see Ref. [2] for a detailed treatment). The wake field produced by the
leading part of a bunch (the head) excites an oscillation of the trailing part (the tail) of the same
bunch. In half a synchrotron period the head and the tail of the bunch interchange their positions
and the oscillation can be anti-damped and may cause a beam loss. A complete mathematical
treatment shows that the growth rate of this instability is much faster for negative than for
positive chromaticity values and vanishes for zero chromaticity. It may be counteracted by a
transverse feedback system, but this makes machine operation much more critical. Therefore
most of the storage rings operate with zero or slightly positive chromaticity.

The "natural" chromaticity of a storage ring is that due only to the elements of the linear
lattice, i.e. quadrupoles and dipoles. As it will be shown later the "natural"  chromaticity of a
strong focusing storage ring is always negative, therefore special elements have to be introduced
in the lattice to correct it.

In strong focusing lattices the main contribution to the chromaticity is due to the
quadrupoles, in particular, in large rings with very large radius the contribution of the dipoles
can be neglected; for small rings, however, the dipole contribution is important and has to be
carefully calculated.

In sections 2 and 3 it is shown how to calculate the chromaticity due to the quadrupoles
and sextupoles respectively. Then, in section 4, the effects on beam dynamics due to the
chromaticity correcting sextupoles are briefly discussed. Finally, in section 5, a detailed
derivation of the chromaticity  for a general bending magnet is given, following the approach
given by M. Bassetti in Ref. [3], which is very simple and intuitive, avoiding long mathematical
derivations.

2. CHROMATICITY CALCULATION FOR A QUADRUPOLE

Let us consider the motion in a quadrupole of a particle which obeys the equation:

y" + kyy = 0 (y = x or z) (4)

with
kx = -k
kz =  k .

Now we consider the dependence of k on momentum:

k = 
e
p 
∂Bz
∂x    =  

e
p0(1+δ) 

∂Bz
∂x    =  

k0
(1+δ)  ~

_  k0 (1- δ + δ2 -...) (5)

to first order in δ:

k ~_  k0 (1-δ) = k0 - k0δ . (6)

The chromatic variation has always the opposite sign with respect to the focusing strength,
therefore a particle with a larger energy sees a weaker focusing strength. On the contrary, in
light optics, the variation of the refraction index with the wavelength can be either positive or
negative and the chromatic effect can be corrected to first order combining lenses of different
material.
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Keeping only the linear term in δ the equation of motion in a quadrupole yields:

y" = -ky (1-δ) y (7)

which is equivalent to adding to the focusing quadrupole a defocusing one with a strength  -
kyδ and viceversa for the defocusing quadrupole.

In a thin section of a quadrupole of infinitesimal length ds the particle receives an angular
kick

dy' = y" ds = ky δ y ds (8)
described by a thin lens (defocusing for the focusing quadrupole) matrix:









1 0

kyδds 1
 (9)

To compute the effect of this kick on the betatron tune, the one-turn matrix is obtained by
multiplying the unperturbed matrix (δ = 0) by this thin lens.

M = 





cosµy βysinµy

-sinµy/βy cosµy
  





1 0

kyδds 1
   =  






cosµy+βysinµykyδds βysinµy

-sinµy/βy+cosµykyδds cosµy
  (10)

Then we compute the trace of M to get the new value of µy (µy=2πQy):

1
2   Tr  M  =  cos(µy+dµy)  = cos µy  +  

1
2  βysinµy kyδ ds (11)

since:
d(cosµy) = cos (µy+dµy) - cosµy = -sinµy dµy (12)

we get:

dµy = - 
1
2  βy ky δ ds (13)

or

dQy = - 
1
4π  βy ky δ ds . (14)

Integrating over all the ring circumference L, the formulae for the two planes, horizontal
and vertical, are :

∂Qx
∂δ   = - 

1
4π ⌡⌠

0

L
βx(s) kx(s) ds (15) 

∂Qz
∂δ   = - 

1
4π ⌡⌠

0

L
βz(s) kz(s) ds . (16) 
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From these formulae we can see why in a strong focusing lattice the chromaticity  is al-
ways negative. In each plane a focusing quadrupole has a positive strength (kx,z>0), and
therefore  a negative  chromaticity, while a defocusing quadrupole has negative strength (kx,z  <
0) and positive chromaticity. In a strong focusing lattice the βx,z-functions have the maximum
values at the focusing quadrupoles, therefore the total chromaticity of a ring is dominated by the
negative contribution of the focusing quadrupoles.

3. CHROMATICITY CALCULATION FOR A SEXTUPOLE
   

For off-momentum particles the closed orbit is displaced with respect to that of the refer-
ence particle by a quantity Dδ, where D is the dispersion function. This fact allows to correct the
chromaticity through the insertion of special magnets, called sextupoles.

The field of a sextupole is given by :

Bx =  g'xz
(17)

Bz = 
1
2  g' (x2 - z2)

with

g' =  
∂B2

z

∂x2  

and the equations of motion become:

x" +  
1
2   r (x2 - z2) = 0 where r =  

e
p0

  g' (18)

z" - rxz = 0 .

In Fig. 1  an example of the pole shape of a sextupole magnet is given.

Fig. 1 - Schematic representation of a sextupole magnet cross section.
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The sextupole kick is :

dx' = - 
1
2   r (x2-z2) ds

(19)
dz' = r x z ds .

Substituting the total coordinates for  the off-momentum particle

xt = Dδ + x (20)

zt = z

it becomes:

dx' = - 



Dδ x + 

1
2 (Dδ)2 + 

1
2 ( x2 - z2 ) r ds 

(21)
dz' =  [ ]Dδ z + xz  r ds .

The first term of Eqs. (21)  is equivalent to the kick of a quadrupole with gradient -rDδ
and, analogously to Eq. (14), gives a tune shift

∆Q = 
1
4π  β rD δ ds (22)

 and a contribution to the chromaticity:

∂Qx
∂δ  =  

1
4π ⌡⌠

0

L
βx(s) r(s)D(s) ds 

(23)
∂Qz
∂δ  = - 

1
4π ⌡⌠

0

L
βz(s) r(s)D(s) ds . 

4. CHROMATICITY CORRECTION

The most efficient way to correct chromaticity is to perform a localized correction, i.e. to
insert sextupoles just close to each quadrupole, where the chromatic effect is produced. For each
quadrupole is inserted a sextupole with a strength:

r lS = - 
k lQ
D  (24)

where lS and lQ are the lengths of the quadrupole and sextupole respectively.
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Unfortunately, in most cases localized correction is not possible. For example collider
storage rings have low-β insertions with very strong quadrupoles and zero dispersion function.
Similarly, storage rings for synchrotron light production have many zero dispersion straight
sections for insertion devices, like wigglers and undulators, and strong focusing quadrupoles to
get low emittances. In these cases a strong chromaticity produced in the insertions has to be
corrected in the arcs. If the arcs are built up by regular cells, two sextupoles are inserted in each
cell, one in a high βx place, to correct horizontal chromaticity, and the other in a high βz position
to correct the vertical one. The sextupole intensities are obtained by solving the following linear
system of equations, where rH and rV are respectively the strengths of the horizontal and vertical
chromaticity correcting sextupoles and N is the number of periodic cells:

 rH lSβx
H DH + rVlS βx

V DV = x
'Q

N
(25)

-rH lSβz
H DH - rV lSβz

V DV = z
'Q

N
.

It has to be that

 rH  < 0      and     rV  > 0

since Q 'x  and Q 'z  are, usually, both negative. Therefore, in order to reduce the sextupole
strengths, it is important to place them where the dispersion is high and the β functions are well
separated. In fact, if  βx >> βz at the horizontal sextupole and viceversa at the vertical sextupole
location, each sextupole corrects the chromaticity in one plane, without affecting it in the other
plane. Often the vertical sextupole has a strength higher than the horizontal one because the
dispersion function follows the behaviour of the horizontal β-function and therefore D is high at
the horizontal sextupole and low at the vertical one. This is specially true for collider storage
rings, where, due to the low value of βz at the interaction region, the vertical chromaticity is
generally higher than the horizontal one.

The sextupoles necessary to correct the chromaticity introduce unwanted effects due to the
other two terms in Eqs. (21):

- the chromatic aberration term (Dδ)2

- the geometric aberration  term ( x2 -  z2 ), xz .

The geometric aberration term introduces higher order terms in the equations of motion.
In fact each sextupole inserted into the linear lattice, also in thin lens approximation, doubles the
order of the polynomial which links the initial and final coordinates for one turn in the ring.
With N sextupoles in the ring the final coordinates depend on the 2N-th power of the initial one.

x(L) = a11 x(0) + a12 x'(0)+ a13 δ+...a1j x(0)2N .

The worst consequence of this is that in the case of nonlinear motion the stability of the
trajectories is not given anymore from the knowledge of the one-turn matrix (|tr M|=|2cosµ|<2),
but depends on the amplitude of the betatron and synchrotron oscillations.

In some very simplified cases an analytical calculation of the stability region is possible,
for example in the unidimensional case (x,x' or z,z' phase plane) in the vicinity of a single res-
onance. In this case a closed curve, called separatrix, can be found  which divides the phase
plane in two regions, a stable one inside the separatrix and an unstable region outside.

In more general cases tracking is used, i.e. a computer code which, given the initial co-
ordinates for a particle in phase space, follows the evolution of a trajectory with the mathematical
model chosen for the ring. A trajectory is considered stable if it remains confined in a certain
phase space region for a given number of turns. Changing the initial coordinates of the particles
tracking is performed to determine the largest region of phase space which contains all stable
trajectories. This region is called dynamic aperture.
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This procedure is limited by computer time and precision, in fact the range of initial co-
ordinates which can be explored in a six-dimensional phase space is very poor and the number
of turns is always much smaller with respect to the beam lifetime or damping time.

After the linear lattice design a dynamic aperture optimization has to be done by choosing
the distribution and the strengths of the sextupoles , the working point in the tune diagram, and
even modifying the linear lattice to reduce chromaticities and sextupole strengths.

5. CHROMATICITY CALCULATION FOR A GENERAL BENDING MAGNET

In a bending magnet the betatron motion is given by the following equations:

y" + ky(s)y = 0 (y = x or z) (27)

with
kx = -k+h2

kz = k

h = - 
e
p  Bz                  ; k = 

e
p  
∂Bz
∂x   .

The solution of these equations is represented, in each plane, by the two-by-two betatron
matrix A. This matrix can be written as the product of N matrices Ai:

A = A
l
Ni
B

i

N 







∏

=1
(28)

where lB is the length of the bending magnet. We choose N large so that

∆s = 
l
N
B __>  0 .

This is equivalent  to subdividing the magnet into N thin pieces of length ∆s. To first order
in ∆s, Ai can be written as the product of a thin lens and a drift space:

Ai = 
1 0

1−









k s sy ( )∆
 

1

0 1

∆s







 (29)

Now we consider the changes that occur
in the betatron motion (i.e. in the matrix Ai) for
a particle with a relative momentum deviation δ
oscillating around the off momentum closed
orbit.

Fig. 2 - Orbit lengthening.
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Two changes occur in the matrix Ai:

i) an orbit lengthening (see Fig.2 )
     

∆s(δ) = ∆s(1 + hDδ) (30)

ii) a change in the focusing strength of the thin lens due to:

-  momentum dependence of the focusing functions

 - variation of the length

- ky(s,δ) ∆s(δ) = - [ ky(s) +  k1y(s)δ + ky(s)hDδ] ∆s (31)

where k1y is the derivative :  k1y = ∂ky/∂δ .

As already seen, a change ∆k in the focusing function at the position s gives a tune shift :

∆Q = - (1/4π) β(s) ∆k (32)

and, similarly, a change ∆s in the length of a drift space gives:

∆Q = (1/4π ) γ (s)∆s (33)

where γ (s) is the Twiss function.

Integrating over all the circumference gives

∂Qy
∂δ   = 

1
4π   ⌡⌠

0

L
{ βy [ k1y + kyhD] + γyhD } ds . (34)

This formula is a generalization of that for a quadrupole, in fact  for a quadrupole we have
h = 0 and  k1y = dky/dδ = -ky and we obtain again the formulae of Eqs. (15) and (16).

In order to calculate k1y  for the general bending magnet we need to know the fields seen
by an off-momentum particle . First we write the second-order magnetic field expansion in the
reference system of the design orbit for zero momentum deviation. The formulation of the field
equations is that given by K. Steffen [4] with the only difference that h(s) has the opposite sign
and its dependence on s is explicitly given, i.e:

h(s) = [h + h's + 
1
2  h"s2 + 0(3)] . (35)

As it will be useful in the following to distinguish the second-order terms they have been
enclosed in square brackets:

Bz = 
p
e 








-h - h's + kx +



-

1
2 h"s2 + k'xs+ 

1
2 rx2+

1
2 (h" - hk - r) z2  + 0(3)  

Bx = 
p
e 



kz + [ ]k'zs + rxz + 0(3)  (36)

Bs = 
p
e 



-h'z + [ ](hh' + k')xz + 0(3)  .
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The previous equations are completely  general, they are only based on the assumption of
a field symmetry with respect  to the median plane (z = 0). Therefore, if we change the mo-
mentum of the particle, the origin and the orientation of the axis in the z = 0 plane, the magnetic
field has always the same form, but different values of the coefficients.

Now we make a transformation to the reference system of the off-momentum particle, as
shown in Fig. 3:

p = p*/(1+δ)
z = z* (37)
x = d + x*cosθ + s*sinθ
s = - x*sinθ + s*cosθ

where  d = Dδ and θ = D'δ.

Fig. 3 - Transformation of the reference system.

The field equations change in the following way:

Bz* = Bz[x
→

(x
→

*) ]

Bx* = Bx[x
→

(x
→

*) ]cosθ - Bs[x
→

(x
→

*) ]sinθ (38)

Bs* = Bx[x
→

(x
→

*) ] sinθ + Bs[x
→

(x
→

*) ] cosθ .

We are interested in the first-order field expansion, therefore we take only the first-order
terms in Eqs. (36) and make the substitution :

Bz* = 
p

e(1+δ) 



-h + kd + x*( )k cosθ +h'sinθ  - s*( )h' cosθ - k sinθ  

Bx* =  
p

e(1+δ) z[ ]k cosθ + h' sinθ (39) 

Bs* =  
p

e(1+δ) z[ ]k sinθ - h' cosθ  . 
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As  already  said,  the various terms in the field equations have to be the same as in Eqs.
(36), therefore equating the corresponding first-order  terms we get the new coefficients:

h* = 
h-kd
1+δ  

k* = 
kcosθ + h'sinθ

1 + δ  (40)

h'* = 
h'cosθ - ksinθ

1 + δ    .

Using

sinθ ~ D'δ ; cosθ ~ 1

and keeping only first-order terms in δ we get:

kx* =  h*2 - k* = (h2 - k) +  δ (-2h2 - 2hkD + k - h'D')
(41)

kz* =  k* = k +  δ (-k + h'D') .

We obtain the values of k1y(s) as:

k1x = 
∂kx*
∂δ    = k - 2h2 - 2hkD - h'D'

(42)

k1z = 
∂kz*
∂δ    = -k + h'D' .

Inserting these values into Eq. (34) we obtain the  final formulae:

∂Qx
∂δ  = 

1
4π  ⌡⌠

0

L

{β ( k -2h2 - 2hkD  - h'D') + βhD (h2-k) + γhD}ds 

(43)

∂Qz
∂δ  = 

1
4π  ⌡⌠

0

L

{β ( - k + hkD + h'D') + γhD}ds . 

As we used only first order terms in this derivation the contribution of the sextupole term
βrD, calculated in section 3, does not appear  in Eqs. (43). In Appendix I a similar derivation
using the second order field expansion is given. The final formulae contain the same terms as
Eqs. (43) plus the sextupolar terms coming from the second order terms in the field expansion
which are linear in x and, applying the translation  x = x* + Dδ  of Eqs. (37), produce linear
terms.
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5. END-FIELD EFFECTS

From Eqs.(43) it is possible to calculate the contribution of the fringing fields to the
chromaticity, once known an expression for h'(s). In Ref. [5] the same formulae are obtained
with a different derivation, moreover a detailed calculation of the fringing field effects is given.
For completeness we report here the final formula. The schematization of the end fields used
there is shown in Fig. 4 and the parameters definition is the following:

s1 beginning of the central part

s2 end of the central part

"1" entrance of the fringing region

"2" exit of the fringing region

θ entrance or exit angle of the trajectory

1
τ cos3θ

 radius of curvature of the end faces

h = 
1
ρ  curvature of the reference orbit

k = - 
1

Bρ 
∂Bz(0,0,s)

∂x  quadrupole component

r = - 
1

Bρ 
∂2Bz(0,0,s)

∂x2  sextupole component

D, D' dispersion function and its derivative

α, β, γ Twiss functions.

Fig.4 - Field boundaries for a bending magnet.
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The formulae to calculate the chromaticity of a  magnet  in terms of the lattice functions at
the reference orbit are:

∂Qx
∂δ   = - 

1
4π  ⌡⌠

s1

s2

[ ( h2-k )β + rDβ  + h (2kDβ  + 2D'α - Dγ)]ds 

+ − + + − + +[ ]tg h Dk htg D D hD tg h Dθ β β θ β α β θ τ β( ) ( ' )2 22
"1"

+ − + − − − +[ ]tg h Dk htg D D hD tg h Dθ β β θ β α β θ τ β( ) ( ' )2 22
"2"

(44)

∂Qz
∂δ   = - 

1
4π  ⌡⌠

s1

s2

[ kβ - rDβ  - h (kDβ + Dγ)]ds 

+ tg h Dk htg D D hD tg hD h Dθ β β θ β α β θ β τ β( ) ( ' ) '+ − − − − −[ ]2 22
"1"

+ tg h Dk htg D D hD tg hD h Dθ β β θ β α β θ β τ β( ) ( ' ) '+ + − + + −[ ]2 22
"2"
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APPENDIX 1

CHROMATICITY FOR A BENDING MAGNET TAKING INTO ACCOUNT
SECOND-ORDER TERMS

A1.1 DERIVATION OF THE CHROMATICITY FORMULAE

The chromaticity formulae in section 5 are obtained using the first-order expansion of
the magnetic field. To obtain an expression for the chromaticity which contains also the
sextupolar terms, the same derivation is repeated here using also the second-order terms in the
field expansion  given by Eqs.(36). To get the new expressions for the magnetic field we apply
the reference system transformation described in section 5 to the second-order field expansion
of Eqs. (36).

Following the derivation given in section 5 and using :

sinθ ~ D'δ ; cosθ ~ 1

we get the expressions for the magnetic field in the new reference system:

Bz* = 
p

e(1+δ)  [-h -h'(-x*D'δ + s*) + k(Dδ+x*+s*D'δ)+ k'(Dδ + x*+s*D'δ)(-x*D'δ+s*)

                      + 
1
2  r (Dδ + x* + s*D'δ)2 + 

1
2 (h"-hk-r)  z2]

Bx* =  
p

e(1+δ)  z{k+k'(-x*D'δ + s*) + r (Dδ + x* + s*D'δ) - [-h'-h"(-x*D'δ + s*)

                       + (hh' + k') (Dδ + x*+s*D'δ)] D'δ} (45)

Bs* =  
p

e(1+δ)  z{[k + k'(-x*D'δ + s*) + r (Dδ + x* + s*D'δ)] D'δ -h' - h"(-x*D'δ + s*) 

                       + (hh'+k')(Dδ + x* + s*D'δ)} .

Neglecting the second-order terms, except for the chromatic ones, i.e. the terms xδ, zδ
and sδ, we obtain:

Bz* = 
p

e(1+δ)  [-h + kDδ + x*(h'D'δ + k + rDδ) + s*(-h' + kD'δ + k'Dδ) ]

Bx* = 
p

e(1+δ)  z[k +rDδ +h'D'δ] (46)

Bs* = 
p

e(1+δ)  z[-h'+ kD'δ  + (hh'+k')Dδ].
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Comparing these equations with Eqs. (36) and  equating the corresponding first-order
terms, we get the new coefficients:

h* = 
h-kDδ
1+δ  

k* = 
k + h'D'δ + rDδ

1 + δ  (47)

h'* = 
h' + kD'δ + (hh'+k')Dδ

1 + δ    .

Now, following the same procedure as in section 5, we use the coefficients h* and k*
given by Eqs. (47) to obtain the values of the focusing strength for the off-momentum particle:

kx* =  h*2 - k* = (h2 - k) +  δ (-2h2 - 2hkD + k - h'D' - rD)

(48)
kz* =  k* = k +  δ (-k + h'D' + rD).

Then,  we get the variation of the focusing strength with momentum,  k1y(s) :

k1x = 
∂kx*
∂δ    = k - 2h2 - 2hkD - h'D' -rD

(49)

k1z = 
∂kz*
∂δ    = -k + h'D' +rD .

The variation of the orbit length with momentum has been already taken into account in
Eq. (34), therefore inserting Eqs. (49) into (34) we obtain the final formulae for the chromaticity,
which are more complete than that of Eqs. (43) because they contain also the sextupolar terms.

∂Qx
∂δ  = 

1
4π  ⌡⌠

0

L

{β ( k -2h2 - 2hkD  - h'D' -rD) + βhD (h2-k) + γhD}ds  

(50)

∂Qz
∂δ  = 

1
4π  ⌡⌠

0

L

{β ( - k + hkD  + h'D' +rD) + γhD}ds . 
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A1.1.1 An observation on Eqs.(47)

Let us notice that the  coefficient h'* given by Eqs. (47) is obtained as the coefficient of
the variable z in the equation (46) for Bs, and that it is different from the coefficient of s which
appears in the expression for Bz. This ambiguity comes from the fact that, while for Eqs. (36)
the relation:

∂Bz
∂s   = 

∂Bs
∂z   (51) 

is valid, this is not true for Eqs. (46), for which it is:

∂Bs*
∂z   ≠ 

∂Bz*
∂s*  . (52) 

Equations (46) are anyway correct, but the new variable s* has to be modified. In
cylindrical coordinates (z,x,φ), the radial component of the Maxwell equation is written:

1
ρ 
∂Bz
∂φ   = 

∂Bφ
∂z   . (53) 

When making the transformation given by Eqs. (37), which is essentially a translation
in the radial direction, in Eqs. (53) ρ has to be replaced by  ρ+Dδ. As a consequence, the
Maxwell equation is  written:

1
ρ+Dδ  

∂Bz*
∂φ   =  

1
1+hDδ  

∂Bz*
∂s*    =  

∂Bs*
∂z              ; h = 

1
ρ  . (54) 

This relation is in effect verified by Eqs. (46) to first order in δ.


