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ABSTRACT

The cure of multibunch instabilities is of utmost importance for the next generation of
very high current storage rings. The parasitic modes of the RF cavities are chiefly responsible
of these instabilities. A perturbation method is proposed to decouple the cavity parasitic modes
from the bunch relative oscillation sidebands,without affecting the fundamental mode. Signal
level measurements on a test pill-box cavity give encouraging results.

1. - INTRODUCTION

Multibunch instabilities are among the most harmful problems in the design of high
current storage rings lately proposed [1,2] and in particular of the high luminosity flavor
factories such as DADNE [3]. Preliminary calculations, which are worked out with theoretical
models, show that the instability growth rate at the nominal current can be far above the
damping rate induced by radiation or by a powerful feedback system [3]. Therefore this
problem deserves a careful analysis of both instability sources and cures.

The parasitic Higher Order Modes (HOMs) of the RF cavity are mostly responsible of
such instabilities. In fact they induce coupling of the relative motion of N bunches through the
e.m. fields left behind in the cavity by the bunches themselves. In the frequency domain the
relative bunch motion shows a twofold comb-like line spectrum (sidebands) around the




harmonics of the revolution angular frequency wg, with stable and unstable sidebands for each
relative mode. The instability growth rate depends on the location of these sidebands with
respect to the HOM spectrum. Each HOM is described by a complex impedance Z(w) with a
resonant frequency @y, shunt impedance R and quality factor Q. The real part of the impedance
causes the instability.

For large size accelerators (1+10 km), the sidebands are spaced at 30+300 kHz, so that
many of them are coupled to the HOM real impedance. The usual method adopted to reduce the
coupling to the HOMs consists in absorbing a significative part of the energy lost by the bunch
thereby lowering the shunt impedance (and simultaneously the Q factor, the ratio R/Q being
almost constant). So far the HOM damping is obtained by coupling the cavity to loop antennas
or by using absorbing materials. More recently the use of waveguides has been proposed [4,5].
The effectiveness of such method is quite good if one can obtain a strong reduction of the Q
factor such that the condition: Q « mw/Nw, is satisfied. Otherwise one can be left with a
residual growth rate that has to be counteracted by the radiation damping and by a feedback
system. Moreover for those modes that have been only partially damped one can observe on
one side the reduction in the growth rate of the coupled instabilities, on the other side the rise of
new ones, formerly uncoupled.

A different approach to the problem may be proposed for small accelerators, starting from
the consideration that ideal infinite-Q HOMs do not couple to the sidebands unless of a precise
frequency overlapping. In fact in small ring accelerators (=100 m) the sidebands are spaced at
several of MHz and therefore they are more unlikely to couple to the HOMs. However we
know that during the accelerator operation the HOM frequencies may drift making the coupling
possible. In this case it would be certainly preferable to control the shift of the offending HOM.

In this paper we describe the preliminary theoretical and experimental results concerning
the frequency shift control of parasitic modes in a pill box cavity. The frequency shift is caused
by two perturbing metallic objects located at the cavity walls. Our aim is to find out general
features of the HOMs with regard to the frequency shift related to the position and size of the
perturbing objects. Two perturbing objects allow one to fulfill two conditions: a) to keep the
frequency of the fundamental accelerating mode unchanged, b) to shift a single HOM by a given
amount. However, in principle the method can be extended considering m perturbing objects
and control the frequency of (m-1) HOMs.

2. - PERTURBATIVE METHOD

Two small metallic objects, with volume T, and 1,, located somewhere inside a RF cavity
perturb "locally"” the e.m. fields and lead to a frequency shift of all the eigenmodes such that the
balance between the average energy stored in the electric and magnetic fields is restored. The
relative frequency shift of a cavity eigenmode, whose unperturbed frequency is o, is expressed
by Slater's perturbation theorem [5]:

oo ] (uH - eE%) dr
0 Volume

where the integral is performed on the volume of the perturbing objects and U=2Up, =2U, is
the average stored energy (twice the electric or magnetic energy). The frequency shift depends



on the balance between the electric and magnetic energy "subtracted” by the conducting objects.
Considering objects with simple shape and symmetry, one can relate the "subtracted energy" to
the local unperturbed fields. For a single spherical object of volume "t" we have:

®— W, (k,qu-kzeEz)’t _ k1Um‘k2Ue
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where Up, and Uk are the electric and magnetic energies stored in the unperturbed field inside
the volume t. The form factors k,;=1.5 and k,= 3, as computed for a sphere in the
approximation of uniform static fields [5], account for the total field distortion inside the object
and in the vicinity of its surface.

To determine Ty and 1, we require that eqn. (1) gives zero frequency shift for the
fundamental mode:

k1Um - sze = 0 (2)

and that the relative frequency shift of a particular cavity mode be 6:

KUm - kaUg

3
0 3 (3)

Once the amount of desired frequency shift & is chosen, by combining egs. (2) and (3)
we get T, and T,. Thus the tuning of a given mode is accomplished without affecting the
fundamental frequency.

3. - PILL BOX HOMS. THEORETICAL AND EXPERIMENTAL RESULTS

In order to understand the effectiveness of the method we have analyzed the effect of two
small metallic hemispheres on the HOMs of a pill box cavity whose fields expressions are well
known. The relevant geometry is described in Fig.1. One object, whose volume is 14, is located
on the outer cylindrical surface, while the other one, whose volume is 1, is located on one end
of the pill-box and can be radially displaced. Our aim is to calculate the volumes T, and T as
function of the radial position r, such that the frequency shift requirements are fulfilled. We
have computed the values of the inserted volumes as normalized to the cavity volume V and per
unit of relative frequency shift (t,/V)/8 and (t,/V)/8 for several TM and TE modes. The two
emispheres, being located at the pill box surface, because of the image theorem have the same
form factor as a sphere.

Mode TM ;¢ (fundamental mode)
Wherever we put the two objects, its frequency has to stay constant.This condition yields:
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Mode TM| 0o

This mode is degenerate in an ideal cavity, corresponding to two orthogonal directions of
polarization of the electric field: ¢ = n/2 and ¢ = 0. Both are shifted with our mechanism.
Condition on the HOM frequency shift for ¢ = 1t/2 yields:

1 .2 2
T, §J0{X11}J1(X01]

Vs . Xotl Xotf , X 14T
b alesifre) vt )]+Jf¢xm)[J?( "

-2Jf(x11r,:|
a

In Fig.2 we show the plots of (14/V) and (1, /V) for 6=0.001 versus the "normalized"
displacement r/a of the object T,. It is worth noting that there exists a region for r/a (between .6
and .7) where the two volumes are negative. This case, requiring the insertion of negative
volumes, has no physical relevance for our pill box cavity case. Nevertheless, in general, one
can "add" or "subtract" small volumes if the unperturbed frequencies are obtained with a partial
insertion of two objects inside the cavity and displace them forth or back to "perturb” the fields.
The mentioned region is limited by two asymptotical lines where the volume of the perturbing
objects grow dramatically. At these points the perturbing objects are ineffective. On the other
hand we notice that there exists a point at r/a=0.7 where the insertion of the only volume T,is
sufficient to fulfill both conditions on frequency shifts. At this point, in fact, the volume 1,
subtracts the same amount of electric and magnetic energy for the fundamental mode, therefore
affecting only the parasitic mode under investigation.

The point at r/a=0.5 (chosen in the region where both 1, and 7, are positive) of the above
theoretical curve has been tested experimentally. In Fig. 3 the lower curve displays the
unperturbed TM 10 resonant spectrum. Being the real cavity not perfectly cylindrical, the mode
degeneracy is removed and the spectrum exhibits two peaks at slightly different frequencies.
The upper curve represents the "shifted" spectrum of the perturbed mode. The perturbation acts
on the right peak for which we observe a shift of 87 kHz, in good agreement with the computed
value of 95 kHz. It is worth noting that there is a perturbation also on the orthogonal mode.
Smearing of resonant curves are due to bad RF contacts between perturbing objects and cavity
walls. No shift has been observed for the fundamental mode.

The same mode has been investigated considering the ¢ = 0 polarity. Condition on the
HOM frequency shift yields:
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The theoretical curves of the normalized volumes are shown in Fig.4.

Also for this mode we have tested the point r/a=0.5. The measured frequency shift is 91
kHz, to be compared with the same value of 95 kHz, as found for ¢ = 0. In this case the
excitation and probe antennas were rotated by 90°. Results are shown in Fig. 5. We notice that
also for this mode the insertion of a perturbing object T, at r/a=0.7 alone satisfies the conditions
on the frequency shifts.

A systematic analysis has been done theoretically for the first 10 modes. Here below we

show some results for those modes tested also experimentally.



Mode TMyj ;.
The condition on the frequency shift yields:
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The behaviour of the normalized volumes T, and T, per unit of frequency shift versus r/a
is shown in Figs.6 for 6=0.001.

For a given value of 1;, (12/V) is slowly increasing until r/a = 0.6 and diverges for r/a —
0.7; for a given value of 1., on the contrary, (t4/V) is independent on r/a. For a theoretical Af
= 100 kHz, the corresponding measured value was 126 kHz (Fig. 7 ).

Mode TEp;;
The condition on the HOM frequency shift yields:
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The behaviour of the normalized volumes T, and 7, for a frequency shift §=0.001 versus
r/a is shown in Figs. 8.

Again, for a given value of T4, (To/V) is slowly increasing until r/a = 0.6 and diverges
positively for r/a — 0.7; for a given value of T, on the contrary, (t,/V) is greater than zero and
slightly decreases until at r/a = 0.6 it becomes negative and diverges rapidly for r/a — 0.7.
When (t,/V) crosses the zero-value the volume T, only is sufficient. For a theoretical Af = 125
kHz, the corresponding measured value was 145 kHz (Fig.9 ).

Mode TE}1;
The condition on the HOM frcquenéy shift yields (¢ = n/2):
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The perturbing hemispheres are located in the same place as above, thereby producing a
frequency shift of 93 kHz. The measured one is 109.5 kHz (Fig.10 ). Fig.11 shows again the
behaviour of the frequency shift as function of r/a.

For the 90° rotated mode (¢ = 0) we get:
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Plots of (71 /V) and (t,/V) are shown in Figs. 12 It is worth noting that also in this case
T4 1s zero when 7, is located at a position r/a = 0.7. The measured frequency shift in this last
case is 115 kHz (Fig.13 ) to be compared to 93 kHz.

4. - APPLICATION TO DAONE

DA®NE is envisaged to operate with 120 bunches [3].There are 120 relative coupled-
bunch modes with a relative phase shift

Ao = s (2r/120) , s=0,1,......119.
These modes have line frequencies at
(Dp,a,s = (120p + S+avS) Wo , P =0, * la t 2"

where a indicates the phase space synchrotron motion mode: a=1 dipole, a=2 quadrupole etc.
We have the synchrotron sidebands around a comb-like spectrum with wg = 20 Mrad/s spacing.
In spite of a low coupling probability, a HOM can undergo a significant frequency drift, for
example due to thermal effects, so that a sideband might be even fully coupled to a HOM giving
rise to extreme and unmanageable growth rates of instabilities. Therefore a first very important
requirement is on the thermal stabilization of the RF cavity. In order to limit the growth rates
below reasonable values that can be counteracted by a feedback system, we are investigating
two cures: Damping of HOM's, Tight control of HOM frequencies.

To illustrate the potentiality of the HOM shifting method, we report on some calculations,
that have been made by means of the computer code ZAP [7] using the HOM spectrum of a
preliminary cavity [8]. A list of 20 first longitudinal HOM's as found by the program URMEL
[9] is shown in table I. We used this spectrum as input to ZAP, with the relevant DAONE
parameters, and we evaluated the 5 coupled-bunch modes with the highest growth rates, which
are listed in Table II for a=1 (dipole modes). The coupled-bunch mode s=91 at Wp=6567
Mrad/sec is found to be the most unstable, although the shunt impedance of the correspondmg
parasitic mode J=8 source of the instability excitation, is not the highest in Table .

Indeed, if we rerun ZAP assuming a damping factor 100 for the above cavity mode, we
obtain a modest decrease of the growth rate for the relative mode s=91 (by only a factor 6),
while the nearest modes s=90 and s=92 couple to a broader resonance and become strongly
excited (Table IIT). On the contrary, assuming just a frequency shift by 1% and no damping at



all, the coupled-bunch mode s=91 disappears completely from the top list of the most
dangerous relative modes (table IV).

In conclusion the frequency shift method has the very appealing feature of decoupling an
unstable relative mode from the exciting parasitic cavity mode. However, the real feasibility of a
frequency shift system relying upon this technique has still to be investigated. Furthermore, this
technique could be used in combination with the damping technique, acting on those undamped
modes with a growth rate too high to be cured by a feedback system.

S. - CONCLUSIONS AND FUTURE DEVELOPMENTS

The perturbation technique seems effective, at least in principle, in shifting the HOM
frequencies of a RF cavity. The work presented in this paper is concerned with the HOM
shifting of a pill box cavity. It has been possible to draw useful information about the general
behaviour of the parasitic modes under the "perturbation" effect, and a first classification of
modes has been done. A similar detailed analysis on a real cavity is now in progress to assess
the full potentiality of the method. In particular is worth studying the effectiveness of the
method combined with HOM damping techniques. The use of more objects to include the
"tuning" of the fundamental mode and to control more HOMs is also in the aim of further
studies.
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TABLE I - Monopole modes as computed by URMEL.

J wr ( MRad/s) Rs (MOhm) Q

1 4595.0 £ 0.300 63453
2 4730.0 0.150 75690
3 5562.0 0.002 72534
4 5582.0 0.325 53645
5 5702.0 0.013 70812
6 6907.0 0.032 74947
7 6453.0 0097 72810
8 6563.0 0.076 62940*
9 7579.0 0.001 65987
10 8031.0 0.197 70436
11 8673.0 0.037 65085
12 9134.0 0.005 68371
13 9392.0 0.002 62976
14 9889.0 0.053 68371
15 9924.0 0.083 103612
16 10496.0 0.030 68437
17 10653.0 0.019 77311
18 10995.0 0.032 124888
19 11051.0 0.089 69119

n
o

11462.0 0.078 66477




TABLE II - The most dangerous coupled-bunch modes as computed by ZAP.

S Freq. shift (1/s) Growth rate(1/s)
91 -1.2028E+05 3.4395E+04
45 1.3738E+05 1.3878E+04
98 2.9080E+04 1.5747E+03
112 -6.1687E+03 8.3106E+01
77 1.1399E+04 7.1021E+01

TABLE III - As in Table IT with a damping factor 100 applied on the mode J=38

S

45
91
98
90
92

Freq. shift (1/s)

1.3738E+05
5.9146E+03
2.9069E+04
7.3758E+03
4.8485E+03

Growth rate(1/s)

1.3877E+04.

5.2447E+03*
1.5820E+03
3.4555E+02
3.35471E+02

TABLE IV - As in Table II with a 1% shift applied on the mode J=8.

S

45
98
112
77

Freq. shift (1/s)

1.3738E+05
2.9090E+04

-6.1671E+03
1.1401E+04
1.8755E+03

Growth rate(1/s)

1.3878E+04
1.5747E+03
8.3105E+01
7.1022E+01
5.3145E+01
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APPENDIX I : FIELDS OF A PILL BOXCAVITY

Mode TM ;¢ (fundamental mode : f=356.3781 MHz)

The fields components are:

a

where xq is the first zero of the Bessel function Jo(x), and Z is the vacuum impedance (1207
Q).

Mode TM 10 (f=566.6412 MHz)

The field components are:

X4l

1] sin(o

E2(1,2)= Eo |

)oos(q)) H¢(r,2)‘-J—E~ Ji (Xgr)sm((?)

H, (r, Z)_]EE{X,J)J1( 7

Z,
with J1(x11)=0.
Mode TMoj; (f = 580.8963 MHz)

The fields components are:

Er(Z,f)=Eo(%) J1(x:r)sin(—g—z) E,(z,r)=E, JO(X;r cos(-gz)
L Eo xmr)
Ho@n)=+3 J( COS(d )
where A=c/f.

Mode TEp1; (f = 730.5751 MHz)

The field components are:
o JAxear| . [rz
E¢(r,z)— i Eo Jo( g ) S'”(T}

Eo [A) |, [X&r Tz E Xorf) . [m2z
H,(r,2)= 7% (E)Jo( : )cos(T) H,(r,2)= Z_Z Ja(—(—’a’l—)sm(—a—)
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Mode TE}11 (f = 534.5671 MHz)

The fields components are:

i a Xur . [wz
4o 2] 0,55 eotoran( ]

Xir

nZ

Eg(r0.9 = Eo J; (X:r) sin(0) sin(—d—)
He(r6,2) = —%(%)L (x;r) sin(¢) oos(fd—z)
Hz(r0,2) = Eo (X;'r)sin(q)) sin(Lz)
zo Z "'\ a d

Hy(r,2) = %(—%)(Xa ).J1 (x;r) cos(¢) Cos(%z-)

y
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FIG.2a

FIG.2b
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FIG. 6a
FIG. 6b

8

0.

0.6

15
0.

4

.2

0.0004
0.0003s
0.0003
0.00025
0.0002
0.00015
0.0001
0.00005
0.002
0.0015
0.001
0.0005
-0.0005
-0.001
-0.0015
-0.002

Ty
Vv
T2

;IIIJ

b — - — - .Ll.l!!flll.« —
_ T |
| - -
| 1 | | |

cm . e




FIG. 8a

FIG. 8b
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FIG.10a
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