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Abstract
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1. Introduction

The intriguing connection between the non-linear sigma model] and string theory
has been investigated extensively. In the bosonic sigma-model it is well-known that
the requirement of Weyl invariance at one loop, a necessary requirement for a con-
sistent string theory coupled to a spacetime background, leads to the equations of
motion for the spacetime background fields [1,2]. At higher loops, this requirement
leads to string corrections to the equations of motion of the spacetime background
fields, that is, corrections to the low-energy effective theory [3]. This procedure has
also been followed for the Neveu-Schwarz-Ramond (NSR) string [4]. However, it is not
known at this time how to couple fermionic backgrounds to the NSR sigma-model, so
the string corrections obtained in this way are not supersymmetric. Supersymmetric
string corrections can be obtained from superspace considerations: the Bianchi iden-
tities (i.e., closure of the supersymmetry algebra) constrain the form of the fermionic
contributions to the string corrections [5]. It is not known whether the corrections ob-
tained in this way are consistent with the propagation of the string in a background.
The Green-Schwarz (GS) formulation allows coupling to fermionic backgrounds, and
hence a possible way to resolve these questions. Some results for GS sigma-models in
bosonic backgrounds have been obtained [6]. Until recently, however, difficulties in
the covariant quantization of GS strings have hindered such investigations. The GS
string has now been quantized in “semi-covariant” [7-9] and “covariant” [10] gauges,
however the “covariant” gauges suffer from problems related to the infinite tower of
ghosts in the theory [11]. The “semi-covariant” gauge restricts the spacetime curva-
ture to be flat in the direction determined by the gauge-fixing. Here we will use the
“semi-covariant” method to investigate the Weyl anomaly of the theory to one loop.

Quantization of the GS sigma-model in the semi- light-cone gauge [7] has been
shown to lead to an effective action® which is renormalizable in the sense of Friedan
(1] when the spacetime background satisfies its equations of motion [8]. It was shown
in [8] that there exists a renormalization scheme in which the B-functions are zero.
However, from the bosonic case it is known that the vanishing of the B-functions is
not equivalent to the condition of Weyl invariance (12]. In fact, if the background
spacetime satisfies R,,, = V(mvn) for an arbitrary vector Upm, then there is a scheme in
which the 3-functions are zero, however, the Weyl anomaly is non-zero. If the vector
Um is the derivative of the dilaton, and the Fradkin-Tseytlin term (2] is included in

>We will use the term “effective action” to refer to the two-dimensional quantum one-loop effective
action. This should not be confused with the effective action for the background spacetxme fields,
which is obtained by integrating Einstein’s equations.




the action, then the sigma model is Weyl invariant at one loop provided the back-
ground spacetime satisfies Einstein’s equations. The condition of vanishing 8-functions
1s not a coordinate-invariant condition, and depends on the renormalization scheme
chosen. The Weyl anomaly, on the other hand, is a physical quantity that must be
the same in any renormalization scheme. Thus we are led to ask for the GS string
whether the Weyl anomaly vanishes. We will show that it does indeed vanish, if the
Fradkin-Tseytlin term is included in the action. The Fradkin-Tseytlin term is not
k-invariant, however. We will discuss the possibility of a xk-anomaly and ways it might

be avoided.

In section 2, quantization of the GS sigma model in the semi-light-cone gauge is
reviewed. The k-noncovariance of the normal coordinate expansion requires that one
impose the same gauge-fixing condition on the background fields as is imposed on the
quantum fields. Section 3 presents the calculation of the divergences of the effective
action, expressing them in terms of a supercoordinate transformation together with
a gauge transformation of the antisymmetric tensor. The calculation is done without
imposing conformal gauge on the world-sheet metric, keeping terms to linear order
in the two-metric perturbation. It is found that both the bosonic and the fermionic
parts of the supercoordinate transformation are required. Section 4 gives the ex-
tension to the GS case of the expression for the Weyl anomaly [13-15]. In section
5, diffeomorphisms are considered and the proof of Weyl invariance is given for the
case when there are no Yang-Mills backgrounds. Section 6 considers the coupling
to Yang-Mills backgrounds, and it is shown that the ambiguity in our regularization

procedure implies that Weyl anomaly cancellation is also possible in this case.

2. Normal coordinates and gauge fixing

We start with the action for the GS sigma-model in a spacetime background of

supergravity coupled to a tensor multiplet:
§= [ &0 [y 7V2Via + VIV Bop] + Sne (2.1)
VA =8,ZMEw* |, ZM = {X™, 6%},
7 = /ag" |
and Spe is the action for the left-moving heterotic fermions.

The heterotic fermions in (2.1) do not couple to the background superspace when
the gauge fields are set to zero. Thus they only contribute to the flat background Weyl

anomaly, which vanishes in ten spacetime dimensions [7], as long as boundary effects




are ignored [16]. The inclusion of fermionic backgrounds here will not disturb the
cancellation of the flat-spacetime Weyl anomaly. We will consider the contribution
of the heterotic fermions in section 6, when we turn the Yang-Mills background back

on.

We do a background-quantum splitting of the coordinates: ZM — ZM 4 1M (y),
where the perturbation y# is treated simultaneously as a quantum perturbation and
a normal coordinate. Normal coordinate expansion in superspace [17] leads to the

quadratic action given in [8]:
L® = Lgp + Lrr + Lpr;
Lpp = %7" Diy*Diya + (77 + €7V Dsy"y* Hota
+ %‘7ij‘/iayc1/j3ydeBca
+EPVRYTaTLV;) + 3 VAVEPYY o B,
Lrr = (77 + fij)[%a(Dijay)
+ ViV Y Tag" (Tay)y + 2(ViD%y)(ViTay),
Lpr = 2(77 + €7)[Diy*(V;Tay)
— 2V Y Hyea(V;T%y) + VAV (T Tay)). (2.2)

Here we have used the superspace constraints of [8]. The relevant constraints for our

purpose are
Tap® = 2Iap = 2Hap",
Tape = —2Hape,
Tub? = Hope = Hapy = 0. (2.3)

In ten dimensions, imposing the constraints automatically requires that the spacetime
fields satisfy their equations of motion. We have the following field equations [8]:

Rap) = 2V (,Vy,)®
R[ab] = —VcTabc = 2Tabaan + 4Habcvc@
Rop = —2(Tpc[)e = 2V, Vo d. " (2.4)

The world-sheet covariant derivative in (2.2) contains both world-sheet and spacetime

connection terms. For example, acting on a field U# with both types of indices:

D,UJA = 6,UJA + UjDViBwBDA - w;-"-U,:‘. (25)

In order to carry out quantum sigma model calculations it is necessary to deal




with the x symmetry of the action (2.1). The quantum x-transformations to lowest

order are given (using the convention (7" + €7)A;B; = A_B,) by [§]

§y™M = V¥ (Tyry ) ELM,

6‘)’++ = —4Vf:‘$+a. (26)

Instead of attempting to deal with the infinite towers of ghosts that appear in “co-
variant” quantization schemes, we use the semi-light-cone gauge for calculations [7-9].
In the approach of Kallosh, this involves choosing two light-cone vectors, Af®, N@,
such that M? = N? = 0 and M°N, = % Defining spacetime lightcone indices by
M*Ta)ag = (I'®)ag, N*(La)ep = (I'®)as, we impose the ghost truncation condition
on the k-ghosts: (I'®T'®),ACs = C,. For the choice of the gauge fixing fermion as in

(8], this imposes the light-cone gauge condition on the fermionic normal coordinate:
ey’ =o. (2.7)

Additionally, the truncation condition restricts the spacetime curvature: Rapeq MN¢ =
0. We assume that this restriction does not obscure the anomaly structure.

A curious aspect of the normal coordinate split performed here is that, while it
preserves manifest supersymmetry covariance (which however is lost when we impose
the gauge-fixing), it is not covariant with respect to kappa symmetry. A great advan-
tage of the background field method for Yang-Mills and supergravity theories is that
it can be done in such a way as to preserve covariance under the gauge group, and
therefore the gauge choice for the external legs of a Feynman diagram is independent
of the choice for the propagating internal lines. In other words, the gauge for the
background fields can be chosen independently of the gauge for the quantum fields
(18]. In our case this is not true! Since we have not maintained kappa covariance
in the background-quantum split, we must impose the same gauge condition on the
background fields that is imposed on the quantum fields, just as if we were calculating

in theory with no background-quantum split. That is, we impose
ré,6° = 0. (2.8)

As we will see below, there are divergeﬂt one-loop diagrams at first order in the
two-metric perturbation which appear to make the theory non-renormalizable even
in flat space, in contradiction to the results of [7]. These terms vanish when the
gauge condition is applied to the background fields, as they must. This observation
allows us to settle some questions that have been raised about the consistency of
semi-light-cone gauge quantization [19,20]. The Lorentz non-invariance reported in
[19] for the type II string is proportional to the gauge-fixing condition, and thus

vanishes when this condition is taken into account. The same is true of the Weyl



anomaly reported in [20], when the terms involving €' are carefully regulated, as we
will show in section 5. Part of the results and observations that allow us to recover
a consistent sigma model quantized by ghost truncation appeared previously in [21],
where it was shown that making a light-cone gauge choice for the background fields
(T'®V,)_ = 0 and using the two-dimensional field equations produces the vanishing of
both the Weyl anomaly, and a one-loop counterterm that would make the sigma model
non-renormalizable, and a Lorentz non-covariant gravitational anomaly. In [21] we
proved the need of including the Fradkin-Tseytlin term in the effective action, in order
to have no conformal anomaly, when the choice for the background ([®V,), = 0is
made. The normal coordinate splitting is useful in spite of its x-noninvariance, since it
allows a normal coordinate expansion which is manifestly covariant in the superspace

background fields, as we have seen.

3. The divergent effective action

Our goal is to show that the divergent part of the effective action can be re-
moved by a renormalization of the supercoordinate together with a gauge transfor-
mation on the antisymmetric tensor, as long as the spacetime fields satisfy their
(ten-dimensional) equations of motion.* Thus the situation is very similar to the
bosonic NLSM, in the case when the spacetime background of that model satisfies
its equations of motion. For our model, this proof has been given in the conformal
gauge in [8]. However, since the Feynman diagrams for the gauge-fixed theory are no
longer covariant with respect to two-dimensional or ten-dimensional general coordi-
nate transformations, it is no longer possible to use invariance arguments to determine
the anomaly structure. The importance of using a general reparametrization gauge to
investigate the Weyl anomaly has been emphasized in the flat-space case in [16]. Here
we will perform the calculation without imposing conformal gauge, keeping terms to
first order in the two-metric perturbation. We will find that outside the conformal
gauge an additional renormalization of the supercoordinate is required, which will

not affect the Weyl anomaly.

We first note that Feynman diagrams which have only bosonic quantum prop-
agators are explicitly covariant in the sense of two-dimensional reparametrizations
(as well as being covariant with respect to spacetime reparametrizations and local
supersymmetry). This means we can use the same dimensional argument as in the
bosonic case [12] to show that the complete divergent contribution from these dia-

grams is given by the covariantization of the conformal gauge result in [8]. The only |

4In the bosonic case it is possible to explicity derive the anomaly that appears when the spacetime
background does not satisfy the ten-dimensional equations of motion. We cannot do that here, since
the constraints we have imposed automatically impose the ten-dimensional equations of motion.




Feynman diagram that needs to be calculated is the bosonic tadpole. We regularize

the divergent integral that appears using

1 2 1 . 1 | 2+e¢ 1 _ 1 /mye €
(27)? /d ke~ @) /d + k(k2—+m_2) = G(}I) I(~3)- (3.1)

We are assuming that the infrared divergences can be regulated as in [12]. Using the

field equations (2.4), the divergent part of the effective action is [8]

Rl L A AL AR

+ eijl/;bI/ja[—Tachc‘I’ + Ty V4] - 2€ijvzbvjavbv°’q>}

- %‘(E)e/d”‘a{ oM L 2€ijDi(V;'aVa¢)}

P bos 6Z]l,{
1 m\ e ISL ;a
S (e d2+¢ { M _ T 5] ,‘ZM 7N A }’ 3.2
é('u’)/ o vb°'6ZM+€6 6JZ OnAm ( )
where 1 1
oM = —EMV® | Ay = -——En°V,9,
08 27‘, 27‘.
and the two-dimensional equations of motion are
§L y g
EQMEZTW— = - ’7”Div;'a + 61]‘/50‘/]‘5[{:130 =0, (330')
oL ij iJ ay/a
Eg™ i = (17 + ) VPV (Ta)op = 0. (3.30)

Thus the divergent effective action arising from the diagrams with only bosonic
lines can be written in terms of a supercoordinate transformation and a gauge trans-

formation of the antisymmetric tensor.

We now turn to the diagrams with fermions propagating in the loop. As mentioned
already, these diagrams are not manifestly covariant, so we cannot use the usual
covariance arguments to fix the form of the effective action. In principle, then, we need
to calculate the divergent contributions to all orders in the two-metric perturbation.

Here we calculate to first order.

Define the two-metric perturbation by

- 1
gi; =i — hi; |, hiy; = hi; — Enijh: , (3.4)

so that

39 =0 — K9 + HY (3.5)

where H¥ is quadratic in the metric perturbation. We carry out our computation of
the one-loop effective action to linear order in the metric perturbation hi;. Note that

k' is of order ¢, using dimensional regularization in (2 + ¢) dimensions. Using the




conventions of [8], we have (7" + ¢¥)4;B; = A_B,.

The terms of Lrr that are needed for the calculation of the divergent part of the

effective action to linear order in h;; are:
V8(DyyI®y) — R**VE(D,yI®y) — R VE(D_yT%). (3.6)
The first term gives the propagator for the fermion as:

a B8 = i@, (3.7)

while the propagator for the boson is:

In writing the fermion propagator we have performed the rescaling, as in [8]:

(XT0d

¥ — (V_e) ye. (3.9)

I has been argued in [16] that this will not contribute to the effective action via the
chiral anomaly as long as V® satisfies its equation of motion. Every term in the
interaction Lagrangian will pick up a factor of (V_@)% for each fermion y®. For ease

of writing, we omit these factors until the results are given.

First consider one-loop diagrams with one or two external legs. If both prop-
agators are fermions, then to get a divergent integral we need at least one vertex
with a D, derivative. All diagrams with one derivative vertex and one non-derivative
vertex are zero, because of the symmetry of the spinor indices: derivative vertices
are symmetric and non-derivative vertices are anti-symmetric in spinor indices. The
fermionic tadpole diagram is a purely quadratic divergence, which is zero in dimen-
sional regularization. The diagram with two D, derivatives gives the momentum

integral

2eep, B-(k+P)-(2k + )% _
[ &k el (3.10)

So there is no contribution to the divergent effective action from this sector.
Considering now diagrams with a boson and a fermion propagator, we need the
interaction terms
2D_y*(ViTay) — 27 Dyy®(ViTay) — 2R7 " D_y*(V-Tay)
— 2V Hyed(Vi T%y) + VAV Y (TesLay). (3.11)
Again we will need at least one D, derivative to get a divergent integral. If there is

one D, and one D_ derivative, then the momentum integral becomes | d‘k%‘i—, which
is zero by symmetric integration. Thus we only need to calculate the diagram in




figure la, with D, at one vertex and the spacetime background fields at the other
vertex. This term is non-zero, however, and we find the resulting contribution to the

effective action is, to linear order in A¥,
oo 2 mye 2+¢ E-H— a bP® e
re, = E(Z) /d 0 Ta [2HacVS(ViI'ToIV,)

~ VAVE(V. T, T;.)). (3.12)

R

FIG. 1 - Feynman diagrams for the divergent effective action. Wiggly lines represent the

(b) () (d)
/, \\ . m % m
1} \ -— - - - -_—
M . y \ O y
’ ;ﬂ

. . PRt} . .
metric perturbation h °, double lines represent spacetime background fields, + and — represent
two-dimensional derivatives D ,andD_.

From diagrams with more external legs, counting powers of k. and k_ reveals that
only the diagrams of figures 1b, lc, and 1d can contribute. Figure 1d, however, is
zero by symmetric integration, and the other two, though they are of the same form
as the first term in (3.12), are found to cancel each other, so the complete divergent

effective action from this sector is that given in (3.12).

Using the two-dimensional equations of motion (3.3a,b) and the I'-matrix algebra,

we can write (3.12) as

o 1/ mye ¢ 6L
7= 1 (B) [ ot s + vatviren), (3.13)
where 4 -
vie = -7 Ve BB,
and
h++ b »
Ae = -~WV [2H e (L°TVL)* + V2 (TToTie )%

The term involving A* vanishes when we impose the gauge-fixing condition on the

background fields, as discussed above.

Finally, we put the two sectors together and find that the complete divergent

effective action to linear order in h;; is

/ &g [ 6ZM +€90,2M9,2" 3NAM] (3.14)
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where

4 h 1
oM = ——(V°<I>)E + —WV"T OB M Ay = --2—7—;EM°V°,tI>. (3.15)
Thus we see that the divergent effective action at one loop can be written as a shift of

the supercoordinate plus a gauge transformation on the antisymmetric tensor when

the spactime fields satisfy their equations of motion.

The gauge transformation term, in spite of appearances, is not a total derivative,
as noted by Tseytlin [15]. This is because €/ is not a constant in (2 + ¢) dimensions.
Rather, we have €9 — Q¢9. We cannot simply drop this term, but must include
it in the B-function for the antisymmetric tensor. As we will see below, this term is

crucial for the cancellation of the Weyl anomaly.

4. The Weyl anomaly of the heterotic GS NLSM

We now derive a formula for the Weyl anomaly of the model (2.1), following the

bosonic case.

Introduce the generating functional W[J] by
eV = [ [dZ]e:cp[ 512] ~ [ @05 (2(0), @) + Sopan, (4.1)

with J(Z(o), o) a (bare) generalized source term (see [14] for details of this procedure).
In (2.1) the ghosts have been included implicitly in the measure [dZ]. The ghosts do
not contribute to the background-dependent part of the anomaly, and will be ignored
in the following. For instance, in the semi-light-cone gauge used in section 3, the
ghost terms are essentially Lagrange multipliers for the constraints. The calculations
we will perform below involve taking derivatives with respect to the renormalization
parameter g. The contributions to these Green functions from the ghosts will be
proportional to the constraints and hence will vanish. An alternative derivation of
the Weyl anomaly can be given starting from the gauge fixed and normal coordinate
expanded action (2.2), following Hull (12]. Here we will follow Shore’s approach (14],
and take the action (4.2) (see below), before normal coordinate expansion, as our

starting point.

We can rewrite the classical action (2.1) (ignoring the heterotic fermions and

ghosts) as
1 .. .
S = /d“*a{v,-z’”vjz” (577 Greae + € Bng] + \/5(%)12")@(2)}, (4.2)

where we have defined Gyp = EnoEm®, and we have included a Fradkin-Tseytlin
term with a to-be-determined coefficient a. The world-sheet curvature is denoted

R(®)_ Note that Gnas is not a “metric for superspace”, in particular, it does not have
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an inverse. It should be pointed out explicitly that, a priori, there seems to be no
need to identify the ® field appearing in (4.2) with the dilaton field introduced in
(2.4), effectively when solving the constraints (2.3). As it will become clear in the
next section, the fields are determined, one in terms of the other, by the choice a = 2—1;

that follows from the requirement of Weyl invariance, at the quantum level.

- Consider a Weyl rescaling in 2 + € dimensions: g;; — Q2g;;, €/ — Q¢€’/. Then the

Weyl anomaly is 5T
T; = -Q

V3 < Ti(0) >= ~0) g

The anomaly can be related to the renormalization group by the trick of introducing a

(4.3)

Q=1

position-dependent renormalization mass (o) [14]. The renormalized fields (denoted

with a superscript (7)) are defined by
Cun(2,0) = p(0)[Gin(Z) + 3 e"¢n(G), B, 3)], ete. (4.4)
n=1
With the 3-functions (defined for constant p)

d 5
yd—#—GSM)N = (5N, ete., (4.5)
we find the renormalization group equation (on-shell, i.e., at J(") = 0)

(o) W10 =

. § . 6
dz| By (2, 0)————-—-+ B8 (2, 0)—————
/ [ ) e ze) P gz

R ) :
Q e —————————
The local B-functions are defined by [14]
Biin(Z,0) = Byn (G2, 0), B7(Z,0), 87(Z,0)). (4.7)

Except for the Fradkin-Tseytlin term, the renormalization mass enters the action

in the same way as the Weyl scale factor. Thus the anomaly can be written

§
bp()

VI < THo) >= —p(o) W0] +ayg < A® >, (4:8)

where A® = (—\}—E)Bi(\/ﬁgijaj‘l’). The renormalization group equation gives the first
term on the RHS. The second term can be rewritten using
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JIA® = vIVEVEV RV, + ¢ VPVPH pp V.8
a (2)(va 65 a
+ 2\/_(3R (VeV,®) - 5ZMEM V.®
+ /gD (VY ,®). (4.9)
Taking the vacuum expectation value of this expression, and using the fact that the

vacuum expectation value of an arbitrary composite operator is given by

< F(Z) >0 = /dz F(Z)E?EKZ[%—) o (4.10)
we get
VI <AP >=
/ dz| 2ENBVBVQ<I>EM“3—§% + H* Vol Bi?:({g]’ -
+ vwv&é@o] + /gD (VY @)-5%;%}. (411)

Combining (4.6), (4.8), and (4.11), we find that the Weyl anomaly is given by

Vg < T'i(o) >=(fp.) /dz 5NM+2aE< NEV(Ipv) eI E °)—m]——
. §
(3B, + aH(r)aNMVgr)q,(r))(r)L[O]_
. o §W10]
® e gy
+(B% + eV RV, @ )5(I>(")(Z,a)
. 140
Hyeg(n) @) 4
+a DYV ), @ )5J(r>(z,a)]‘ (4.12)

Here the notation (f.p.) denotes the finite part, which is necessary when rewriting the
bare quantities in terms of renormalized quantities, since the Green functions obtained
by ta,king variations of W[J] with respect to the position-dependent coupling functions
G m(Z,0), etc., are not guaranteed to be finite. The energy-momentum tensor, on
the other hand, is guaranteed to be finite, so these poles must cancel against the poles

introduced by rewriting everything in terms of the renormalized quantities [14].

We can replace the 3-functions in (4.12) by the actual S-functions

BN = Gy N+ﬂMN (4.13)

as long as the contribution

5 § §
(r) (r () A b / /4 }
/dz( G0 Z.e) —————+ By 50.Z.0) + @ 6<I>(')(Z,o')> (0]  (4.14)
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is finite off shell [14]. In our case this means we cannot drop terms in I'* proportional
to the field equations, but must perform our subtractions such that all divergences
are absorbed by the counterterms for Gpn, Ban, and ®. This is the procedure we
will follow. The alternative is to use a formalism which allows for renormalization
of the supercoordinate Z™, which involves some subtleties which we wish to avoid
[13-15]. In the next section we derive a Ward identity which allows us to show that
‘as long as the divergent effective action takes the form (3.14) it is possible to make

the expression (4.14) finite.

The main difference between (4.12) and the corresponding expression in the bosonic
case is the last term. Before discussing the fate of this term, we will discuss how the

expression (4.12) changes under a diffeomorphism in superspace.

5. A Ward Identity for Diffeomorphisms

It is important to understand the possible sources of ambiguity in the expres-
sion (4.12) for the Weyl anomaly. Starting from the classical GS action (4.2) and
performing the change of variables ZM¥ — ZM 1 (M one finds the identity

. 65 1Y ra a i3
Mm" =7 JV,- VjD(vDCa + CBTBD ) + GJVEDVJ'BCAHABD
+ SVIRICAV 48 - JGDH (VoG IRV

Performing the same change of variables in the expression (4.1) for W[J] and

evaluating at J = 0, one obtains the Ward identity

’ W0
.D. dZ 2E( )D V(") (r) (r)B (r) . (r) a
(fp)/ [ N (VU + (T g, )E M ST (57
P ry(r) (r) (") a(r)
+ ¢ H PNM6B(’)NM(Z,0) + VTV _.__..._6@(1_)(&0)
a SW10]
- (r) & ¢(r) — 5
D(V ga )6J(r)(Z,O')] (5 2)
This identity can be used in (4.12) to give
\/§ < T‘;(O') >=
(f.p.)/dZ{ [ﬂfc‘;’M +2E3'P(Vpla + (PTopa + aVDVGQ)(')EM(r)a]———.lSW[O]
5Gym(Z,0)
3 a SW10]
+ [ﬁﬁM + (CA =+ a6;4V Q)HANM] m
A sW 0]
Pyt o (r)
+ (B +(AV4® +aV?EV, 3] F0Z,7)
' §W(0]
DV, — aVe VL) L (5.3)

§J0NZ,0)
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We have used an obvious notation to denote that all of the quantities appearing

within a set of brackets are renormalized.

We now apply this expression to the results of section 3. To one-loop order, W [0]
in (5.3) can be replaced by the classical action, and the % term can be ignored, as
it is of order (a')?. Also, ﬁ,—(“:y becomes ,/3é(Z' — Z). The B-functions are identified
from the divergent effective action by subtracting the pole and taking NZ%' The
supercoordinate transformation is rewritten using (5.1), integrated over the world-
sheet, to identify the coefficients of chfm, etc. Note that the diffeomorphism current

term does not appear, because the effective action is under an integral. This gives us

the identity which proves that a divergent effective action of the form (3.14) can always
be absorbed by a renormalization of the coupling functions without a renormalization

of the supercoordinate ZM. The result is
. . (e (m)B "r
V3 < T(0) >1m100= 20V VT [V (Ca — va + aVa®) + (¢ — v°)Tppa]'”
+ VO LPYE Bed 4 4 05,4v°0)  HO 4pp
1 ..
+ —€IDy(V;2V, &)
27
— /GD} (Vi — aV;7V @), (5.4)

The spinor terms, involving v*, which came from the Feynman diagrams with fermion
propagators, give a contribution proportional to the spinor equation of motion (3.3b).
Note that there is no diffeomorphism current for the spinors because the derivation

of the spinor equation of motion does not involve an integration by parts.

Using the superspace constraints (2.3) and the two-dimensional equations of mo-
tion (3.3a, b), the dependence on the diffeomorphism parameter ¢4in (5.4) is explicitly
seen to cancel, as it must, because of the Ward identity (5.2). Our final expression

for the Weyl anomaly is then
. . 1 .. 1
i . 1 1 . @ (r) _ . a (r)
V3 < TiH0) >1t00p= (77 + —%ea)p,(vj Vad)" + (a —Qﬂ)Dl(vj V.2)". (5.5)

It is clear that without the Fradkin-Tseytlin term (a = 0), there is a non-vanishing

Weyl anomaly. However, if we take a = zin then we are left with

. 1 .. .
V3 < Ti(0) >1to0p= 5-(17 + ) Di(VVa3)" = 0. (5.6)

This follows from the equation of motion (3.3b) and the gauge condition (2.8) imposed
on the background fields. It is crucial that the gauge transformation on Byny and
the contribution from the Fradkin-Tseytlin term combine to give (7 + ¢/), which is

exactly the combination appearing in the spinor equation of motion.

In concluding our treatment of the potential ambiguities in the anomaly calcula-
tion, two remarks are in order. If we set the Fradkin-Tseytlin term to zero (a = 0),
it is possible to shift the anomaly from one sector (a Weyl anomaly) to another (a

diffeomorphism current anomaly). In fact, in the ¢ = 0 case the first two terms in
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(5.4) can be eliminated by taking (* = v, but this will leave the diffeomorphism cur-
rent as an anomaly. As a final comment, we note that Shore’s approach [14] gives us
the correct coefficient of the notoriously tricky ¢/ term for anomaly cancellation. As
was mentioned in section 3, the ¢"/ term is not a surface term, in (2 + €) dimensions.
In the treatment we adopted here, this term appears exactly with the appropriate

coefficient to ensure the vanishing of the Weyl anomaly.

6. Yang-Mills Backgrounds

The effect of including Yang-Mills backgrounds [22] on the Green-Schwarz beta-
functions has been considered by Grisaru et al. [23]. The action for the heterotic

fermions is

Shet = % / d**o./ge_‘p* (8" D; — VAAL)Y". (6.1)

Grisaru, et. al. have shown that the beta functions are absorbed by a superdiffeo-

morphism with ) ) Ve

© = ame” 2 Toanyreve X T ™) (6.20)
1

a _ sa 20 25

ST (Vox™) (6.26)

(here x* is the gaugino), together with a gauge transformation on the gauge potential
8 8 gaug gaug
A%. Thus the gauge potential renormalizes in the same way as the other coupling

functions, as in (4.4). Our expression (4.8) for the Weyl anomaly becomes

) 6 1 .
V9 <Ti(o) >= _#(0)6;¢(0)W[0] +a/g < A® > —5\/_6 <YP’e Dy’ >. (6.3)
The expression (4.12) for the Weyl anomaly gets an extra contribution
. 3 a r §W O] /
(f.p.)/dZ (Bag + V2@ Fpr,) )—&é : (4.12")

The ® term is cancelled by the contribution to Bf‘ coming from the first term on the
r.h.s of (6.2a) in the same way that happens for the analogous & terms in (4.12).

The gauge transformation on A% gives no contribution to the Weyl anomaly be-
cause of the Yang-Mills Ward identity. (As noted in [23], the anomaly induced by
the rotation of the chiral fermions in the Yang-Mills gauge transformation ¥ — A,
§Ai* = D;A** is cancelled by assigning a variation to the antisymmetric tensor field:
6Buyn = —w%A“B[MA;&). This cancellation is plagued by the ambiguity arising
from the definition of the € tensor in 2 + € dimensions.) The contribution from the
fermionic part of the superdiffeomorphism is also zero, as discussed above. This leaves
the bosonic part of the superdiffedmorphism and the fermion bilinear < ¥ D_1 > to
be considered. From the results of the previous sections, we know that the bosonic
part of the superdiffeomorphism will contribute to the Weyl anomaly through the

diffeomorphism current. The first term in the expression (6.2a) for € will be can-
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celled by the Fradkin-Tseytlin term using the gauge condition on the background, as
discussed in section 5. The second term on the r.hus. of (6.2a) is a new contribu-

tion, arising from the two-loop diagram in fig. 2 [23], which contributes to the Weyl

anomaly as in (5.3):

. 1 g aye
TN >= — Y D[S x'TeaaX’)l- (6.4)
./-‘_. o . .
! \ FIG. 2 - Feynman diagram that gives rise to the contribution

(6.4). Dash-dot lines represent the heterotic fermions ‘¥

" Due to the chiral rotations performed in [23] in order to write the beta-functions in
terms of the parameters in (6.3), the fermion bilinear < D_% > has the possibility
to contribute to the Weyl anomaly. This could cancel the unwanted anomaly in (6.4).
In fact, the regularization ambiguities that arise allow for another solution to the

problem of Weyl anomaly cancellation.

This can be seen by considering the contribution to the effective action from the
Feynman diagram in fig. 2 which, in the conformal gauge, reads
1 Ve ve
: = T.Teladi | ——=x" |- 6.5
wMﬂFqVFﬁ[X ° *QV?ﬁX)} (63

There is an ambiguity, however, in how one writes this term in an “invariant” manner.

If one picks a pair of world-sheet indices and covariantizes them via e.g. 0,V —
(v — €/)8;V?, then the ambiguity resides in the option of writing the same term
as 0, V°® — Bi('y{j — €7)V7. The difference between these expressions comes about
because the e"’_' tensor is not a constant in 2 + € dimensions, as discussed above. This

difference is proportional to

a <

{5 V'— s a..s |
DT (TN | (6.6)

Using this ambiguity, we can write the contribution to the Weyl anomaly from the
Yang-Mills terms in (6.2) by combining (6.4) and (6.6) with appropriate coefficients
to give v
1 GVC .
- = = (T %] = ,

We suspect that a more careful regularization procedure for the chiral fermion action

(6.1) would give the correct coefficient for this cancellation to take place.
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7. Discussion

We have derived a general expression for the Weyl anomaly of the GS sigma model
in a curved superspace which satisfies its equations of motion. By explicit calculation,
we found the one-loop beta functions to first order in the perturbation of the two-
dimensional metric, and found that the resulting Weyl anomaly vanished when the
semi-light-cone gauge conditions were applied to the background fields, and for a
non-zero coefficient of the Fradkin-Tseytlin term. This provides the demonstration
of the vanishing of the Weyl anomaly for a string in non-zero fermionic backgrounds.
The coupling to Yang-Mills backgrounds does not seem to spoil this cancellation,
although in this case an ambiguity in the treatment of the ¢ tensor in dimensional

regularization plays a role in the cancellation of the Weyl anomaly.

The non-vanishing of the Fradkin-Tseytlin term is a puzzle. This term is not
k-invariant. Therefore our introduction of it to cancel the Weyl anomaly introduces
a potential anomaly in the x-symmetry. In the absence of a covariant quantization
scheme for the Green-Schwarz sigma model, it is difficult to check x-invariance at the
quantum level. It is possible, of course, that the k-variation of the Fradkin-Tseytlin
term is precisely what is needed to cancel a k-anomaly coming from the rest of the

action, in the same fashion as occurs for the Weyl anomaly.

The flat-superspace calculations of [16] demonstrate a strange boundary effect: the
Weyl anomaly is shown to cancel only up to boundary terms on the world-sheet. As
noted there, it is not always possible to ignore bouﬁdary terms on the world-sheet. It
would be ihteresting to see how the coupling to superspace backgrounds affects these

boundary terms.
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