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Summary. — The convergence of the multiperipheral series is investigated
in the case of the scattering of two spinless particles, when the square
of the spacelike momentum transfer W is fixed as a parameter. A « coup-
ling scheme » is introduced in which the scattering amplitude is described
as a pseudobilinear functional on some Hilbert spaces which contain
elements describing an incoming and an outgoing particle. So in this
formalism to every multiperipheral graph is associated a pseudobilinear
functional. The properties of the series are studied by means of the
« crossed » partial-wave analysis. Using Fredholm techniques and ana-
Iyticity properties it is shown, that the graph series sum, in correspondence
to physical values of the coupling constant g, is deseribed by an un-
bounded functional which eannot be expressed only by means of the
unitary irreducible representations of the principal series of 0, In this
formalism this means that the amplitude contains some Regge-pole
contributions. The Regge asymptotic behaviour of the solution and a
new formulation of the Froissart bound are pointed out. We then discuss
the usefulness of the method for the ladder-approximation case.

1. — Introduction.

In this work we sum the ladder graph series, which describes the scattering

of two spinless particles, when the square of the four-momentum transfer

*=W is fixed as a parameter and W < 0. Our investigation is essentially

directed to develop some mathematical techniques which allow a rigorous
and natural treatment of multiperipheral models.
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26 S. PFERRARA and G. MATTIOLI

The detailed attention that we have devoted to the case of the ladder series
(with an unstable exchanged particle) may be justified by observing that,
even if this dynamical model is not a perfect tool, it is a useful one for discover-
ing properties that more realistic amplitudes might possess. Nevertheless we
think that our considerations may be useful in connection with more general
theories. In this direction, recently much attention has been devoted to some
multiperipheral models, suggested by unitarity, in which the nonkinematical
aspects of Regge theories can be explored. The basic idea of multi-Regge (*)
and multi-Veneziano (2) models is an extension of the AFS ideas (®): the
amplitude is obtained through a multiperipheral exchange of some objects
which may be « Reggeons » or « families of Reggeons ».

The study of the ladder series convergence was performed by one of us
in a previous work (4): in that case the ladder graphs were considered at
fixed total four-momentum. In the space of the off-shell wave functions a
suitable Hilbert-space structure was introduced, in such a way that the iterated
integral operator became bounded in this space and the off-shell convergence
implied the on-shell one. These results provide a more satisfactory justification
for the employment of integral equations of Bethe-Salpeter type and the
formalism allows us to write down an equation involving bounded. operators in
Hilbert space without any modification of sgymmetry properties. This method
is thus particularly useful when a group-theoretical approach is considered.
TUntil now these group-theoretical techniques have been successfully used in
order to find some «kinematical properties » of the Regge trajectories (%),
however also dynamical problems have been investigated by means of group-

(1) G. F. Cagw and C. DETaR: Multiperipheral dynamics at zero momentum transfer,
Berkeley preprint UCRL-18618 (1968); G. F. Curw, M. L. GOLDBERGER and F. Low:
Phys. Rev. Lett., 22, 208 (1969); L. Canescur and A. PienorTi: Selj-consisient Kegge
trajectories in a multiperipheral model, University of California, Santa Barbara pre-
print (1968); L. Canmscur and A. PieNortr: Coupled-channel model of self-consistent
Regge trajectories, University of California, Santa Barbara preprint (1969); I. G. HaAr-
LIDAY : Self-consistent Regge singularities, I, preprint ICTP[67/36 (1968); I. G. HALLIDAY:
Self-consistent Regge singularities, I, preprint ICTP/68/2 (1968); I. G. HArupaY and
L. M. SAUNDERS: The unitarity equation of high energy, preprint ICTP/67/34 (1968);
P. D. TminG: Oeriain implications for high-energy total cross-sections from the multi-
peripheral model, Berkeley preprint UCRL-18670 (1968); G. F. CEEw and W. R.
FRrAZER: A model of the Pomeranchulk pole cut relationship, Berkeley preprint TUCRL-18681
(1968); G. ¥. CHEW: Phys. Rev. Leti., 22, 364 (1969).

() K. Barpaxkci and H. RUEGG: Reggeized resonance model for arbitrary production
processes, Berkeley preprint (1968).

(3) D. Amari, S. FuBINI and A. STANGHELLINI: Nuovoe Cimento, 26, 896 (1962).

(& G. MarTIoLI: Nuovo Cimento, 56 A, 172 (1968).

() M. TorLEr: Nuovo Cimento, 53 A, 671 (1968); G. CosENzA, A. SCIARRINO
and M. Torrer: Nuovo Cimento, 57 A, 253 (1968); On the group-theoretical approach
to the conspiracy problem for arbitrary masses, 1T, Ref. TH. 1002 CERN (1969).
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theoretical techniques, especially in the framework of the B-S equation (%).
‘We hope that the more refined techniques we shall develop in this work will
permit physicists to obtain more powerful results.

The «crossed partial-wave analysis» (%) allows us to study the much
simpler convergence of the projected series and the original amplitude is derived
by means of an inversion formula. This procedure leads to clarify the structure
of the amplitude in terms of the parameters of the Lorentz group irreducible
representations, as complex angular momentum and signature, and provides
in this way an interesting dynamical justification of the Regge-pole assumptions.

In order to derive these results, the mathematical tools are given by the
theory of analytic and meromorphic operator-valued functions and by Fredholm
spectral theory in Hilbert spaces (°). Group-theoretical methods must be
employed with particular caution, since many difficulties arise in the application
of the theory of group representations of noncompact groups. These difficulties,
whose origin is due to the fact that one has to deal with infinite-dimensional
representations, can be tackled by introducing a more general formalism sug-
gested by TOLLER (). Another difficulty, which is related to the fact that the
formalism of functions defined on the group is not sufficiently general for the
treatment of off-shell functions (1), can be solved by using the theory of the
harmonie analysis on homogeneous spaces (12); however, in the solution of the
special problem we are considering, we can ourselves to apply these techniques
in a simpler way by enlarging some results of a previous paper of SERTORIO
and ToLLER ().

In Sect. 2 we introduce the general formalism: it consists of defining the
‘seattering amplitude as a pseudobilinear functional defined on Hilbert spaces
whose elements describe an incoming and an outeoing particle of the reaction;
we call them «pseudostates ». A pseudobilinear funetional is then associated

(°) M. KEMMER and A. SATLAM: Proc. Roy. Soc., A 230, 266 (1955); R. E. CUTKOSKY:
Phys. Rev., 96, 1135 (1954); Jowrn. Math. Phys., 1, 429 (1960); Rev. Mod. Phys., 38,
446 (1961); Phys. Rev., 181, 1888 (1963); Proc. Rochester Conf. on Theoretical Physics
(1967); G. Domoxos.and P. SURANYI: Nucl. Phys., 54, 529 (1964); G. DomMoxos: Phys.
Rev., 159, 1387 (1967); D.Z. FREEDMAN and J. M. WanG: Phys. Rev., 153, 1596 (1967).

() M. ToLLER: Nuovo Cimento, 37, 631 (1965).

(®) M. TorrER: Nuovoe Oimento, 54 A, 295 (1968).

(®) N. Duxrorp and J. T. ScEWARTZ: Linear Operators, Part I, IT (New York, 1964);
See also some results of: G. CosENza, L. SERTORIO and M. TOLLER: Nuove Cimenio,
35, 913 (1965), Appendices A, B.

(*%) M. TorLER: Nuovo Cimento, 54 A, 295 (1968).

(1) M. TorreRr: Nuovo Cimento, 87. 631 (1965), Sect. 6.

(*?) I. M. GeEL'FaAND, M. I. GRAEV and N. YA. VILENKIN: Generaliced Functions,
vol. 5 (New York, 1966); I. M. Ger'Fanp and M. I. GraEv: Am. Math. Soc. Transl.,
vol. 37 (1964).

(*3) L. SerTOoRIO and M. Torrer: Nuovo Cimenio, 33, 413 (1964).
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to each iterated graph and it is expressed by a multiple integral containing
the wave functions of the four interacting particles.

In Sect. 3 we formulate the problem of iterated graph convergence which
in our formalism means convergence of the series of pseudobilinear functionals.

Sect. 4 is concerned with the crossed partial-wave analysis of the functionals:
projection formulae are derived for graphs satisfying some conditions which
are verified in our specific problem.

In Sect. 5 and 6 we study the convergence of the series of the projected
functionals, and we will find out that it is a sum of matrix elements of bounded
operators. On that basis we will be allowed to study the convergence, in the
uniform topology, of the corresponding operator series. A set of values of the
coupling constant g is found, where the convergence of the projected series
is proved. In this domain the sum of the operator series is obtained by means
of the resolvent of a projected off-shell integral operator, which is an analytic
operator-valued function of g and 1 (in a strip of the I-plane) of the Hilbert-
Schmidt type. The nonprojected amplitude is obtained through an inversion
formula derived from group theory. The Fredholm theorems and the an-
alyticity properties of the projected pseudostates enable us to perform the
analytic continuation in g of the projected series outside the uniform-convergence
domain. The nonprojected amplitude is obtained by shifting the integration
path in the inversion formula (this is a generalization of the inverse Laplace
transform). Ounly singularities of pole type are present in our model.

In the present formalism the Regge-pole behaviour of the solution is derived
in the high-energy limit and also a new formulation of the Foissart bound is
pointed out.

2. — The scattering amplitude as a pseudobilinear functional on the pseudostates.

The formalism introduced in ref. (®) allows us to describe the six reactions
connected by the substitution rules, by means of a single multilinear functional
defined on the topological product of some Hilbert spaces whosge elements
contain the states of a single particle and of the corresponding antiparticle (14).

We consider the multilinear functional:

@1) 0G0, F2, 0, Fo) = 00 @ Tf10, 10 @ T, £ © Tf9, [0 @ Tfuo) =
([ @ o, 8 =TT @ f¥1) + ([/* © foo), S— L[ @ f1]) +
([0 @ f9), 8—T[f* @ f9)) + ([ @ [0, S — I [ @ f]) -+

+ ([0 @ 190, S—T[[® @ ) + ({2 @ ], §—I[f¥ @ [])

_|.

(**} We follow the definitions and the developments used in Sect. 4 and 5 of ref. (3).
All references about the representations of the Lorentz group can be found there.



A GROUP-THEORETICAL APPROACH TO THE MULTIPERIPHERAT, MODEL 29

defined on the topological product

(2.2) HD S FPD ¢ S ¢ P
of the Hilbert spaces:
(2.3) HD = HD P A (t=1,2,3,4),

whose elements are of the type
(2.4) Foo = fo @ Jgfae fo e fuoggpuo

where we call £ the Hilbert spaces of single-particle states and 2 the Hilbert
spaces of antiparticle states. These spaces are connected by the T'CP trans-
formation. Furthermore we call J the antilinear canonical mapping which trans-
forms the Hilbert space # in its adjoint /2. Let now TP, P, P® PW) he
the scattering amplitude, defined in the usual way; using (2.1) we may write-

@5) 6w, o, o, fooy = BT f f f (3 P0) 2P, P, poo, oy

.j(l)(P(l)) f(z)(P(z)) f(s)(P(a)) f‘“(P“") ﬁ S( P — ?n) dspo,

2=l

where M, is the mass of the particle of type (i). f*(P®) is the wave function
associated to the vector f: if PP >0 it describes the single-particle state
f®, if P’ < 0 the corresponding antiparticle state f¢ (1), In the spaces D
the scalar product is given by

(2:6)  (FO,JO) = (79, fO1) 4 (fuo, foor) = f]““* )J ! (P)8(P2— ME,) AP

and therefore S is realized by function L? on the two-sheet hyperboloid
Pr= 2

[0
From Lorentz invariance it turns out that

(2.7) T(LP®, LP®, LP®, [P®) = T(PW, P®, P®, Pw) if LeO,,.

(**) In order to obtain from the functional (2.5) the matrix element of S§-I for
one of the six processes we are considering we have to determine its arguments in the
following way: a) if (i) is an incoming particle, put F9(P) = f(P)6(P,) where f(P)
is the correspon&ing wave function (6 is the step function); b) if (ée) is an outgoing
particle, put FO(P) = fuo— PYO(— P,) where f(P) also represents the wave function.
As a pure mathematlcal abstraction we consider also functions f®(P) different from 0
for both positive and negative values of P,.
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It is convenient for our purposes to introduce a new set of variables as follows.

We choose on the orbit 2 = W the four-vector

(0, 0, 0,v/— W) if W<o,
(2.8) Qw =

(VW, 0,0,0) it W>0.
If L,, L,, have the properties

(2.9) LQQW = Q I LQ’ QW =@’ 9

we can pub

PO =1, (%”—}—P) %—1—1? P,

P2 = L, (—%W—P) =—2X _LgP
(2.10)

Po =1, (%W—P) %—LQP,

P(4’=LQ:(~%117~[—P’) ﬁ_g_}_LQ

in the variables defined by (2.10) the multilinear functional (2.5) is written as

(2.11) 0(]7(1,’ ]?;2)’ ']‘{(3)’ ?(4)) — ff rf&(@ Q')

~T(%+LQP,—~—LQP' Y I.P, -—QLJFLQ )
.]’(1)( + L, P) fo (-—3,—~LQIP’) 0] (%—.LQP) j (ﬁQL+LQ )
2 - Q, 2
oG mer) o[ (=5 —rer) —on]
) {(Q—LQP)2—M§] é [(—92——/ -+ LQ,P')z_MZ] d¢Pds P d+Qdsq’,

where we used the Lorentz invariance of the measure: d*P = d* L P.
Let us write the particular process we want to consider, as follows:

(2.12) 1) + (2) — (3¢) + (4¢) .

In order to describe this process at fixed momentum transfer it is convenient,
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following Sect 4 of ref. (8), to introduce the new Hilbert spaces (1¢):

HA = T ©Q H® ,
(2.13) o= =
HE=HD QHY,

whose elements we indicate with 4, f® respectively. Of course only elements
of the form f4 =7V QF®, 2 —Jf®Q JJ® are connected with quantities of
physical meaning; as pure mathematical abstraction we shall use also finite
and infinite sums of elements of this kind. A pseudobilinear functional &(f?, f4)
can be defined over the dense subspaces F4c 4, FEcs#® formed by ele-
ments of factorized type and by their finite sums by the relation:

@14) B = ST @JIT, [ @ [) = 6, T, T, o).
We call the elements of %4, #* the pseudostates of the reaction. In the

variables defined by (2.10) the wave functions of the factorized pseudostates
are written as follows:

[ o) i)
fo(P) = fr (—;-—Le'l”) freo (_g + Lol ) '

If we integrate in (2.11) over d*Q’ by means of the J-function and take into
account of the Lorentz invariance (2.7), the relation (2.14) becomes:

e o, =22 [[[ e
a(er—GopLp L) e
|G ) o[ (=) -]
a[(%—’f— )Z—M?] [( W+P) Mi] dtPdsP' 449 .

We now decompose the Hilbert spaces ## and %, as a direct integral, in the

(1%) See algo F. T. Haps10oaNN0OU: Nuove Cimenio, 44 A, 185 (1966).
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following way:
®

=@ ars,

(2.17) o
HE = | dQ A,

then we have

17402 =|d*@|fel®
(2.18)

172 = f asQ|2)®,

where fg, fo are elements of the spaces g, #7% with the norms
r Q Q
115 = [racero | (% -+ 2) — 23] o (&) ] awr,

i =[rseero | (G—r) — o] o [(% 4 2) 3] aer

From (2.17) we have the following decomposition of (2.16):

(2.19)

(2.20) B, j4) = f QB 1),

where we define the @-fixed functional as

(2.21)  Dffe, é)—gy—z—ff H(PYT(P', W, P)fe(P) o [(QW+P) —-MZ]-

[l o[ o (o) e

and we have put
TP, W,P)=1T (QW—I—P On —P’,Q—QW—P QW—!—P)

We now assume for simplicity

(2.22)

{MlzzMzzMa,
M352M4:Mb,

and the reaction we consider is

(2.23) a+a—b+b.
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Let us define the following sets:

I'H(Mo, M) Q> (M. + M,)?,
(2.24) I (M., M) : Q*<(M,— M,)?,
I' (My M) =T+0l (I+nl" =g),

then we rewrite (2.20) as

(2:28)  O(f, ) = | 4'Q Do(fa, fo) = | *Q Dolfe, fo) + | 44Q P[4, 13) -
r r-

I+

The first member of the second equality in (2.25) is the §-7 matrix element
between the initial and final states of the reaction

(2.26) a+b—>a+b (@+b—a+b).

W is the square of the c.m. energy. The second member (which describes
the scattering in the crossed channels) is a pseudobilinear functional on the
« pseudostates » of the crossed reactions of (2.26):

a+a->b+b (b+b—>a+a),
(2.27) ~ _
at+b—at+b @+b—-atd).

W in this case is the square of the four-momentum transfer.

The aim of our investigation is the study of the region W< 0 (which cor-
responds to the reactions (2.27)). We start by considering the Q-fixed functional
defined by (2.20); successively we will return to the W-fixed one by means
of an integration on the orbit Q2= W. Finally we will study the limit of
T(®'y W, P) for 8= (P—P')2—>oc0, which corresponds to the high-energy
behaviour of the first reaction in (2.27).

8. — Perturbative expansion of the pseudobilinear funtional.

In the perturbative models that we consider the scattering amplitude
TP, Qw, P’y is obtained by iteration of a given amplitude:

_%+LQP' %——LQP
(3.1) 5
—%-LQP’ %—l—LQP

we call G(P, Qy, P’) the amplitude associated to this bubble.
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Thus we have the iterative series (17)

S

and this is a formal writing as long as we do not take up the problem of series
convergence.
The @-fixed functional related to the n-iterated graph is

(3.3) Do ({3, f4) = f / daPm . daPw B (P®).

K(PO, @y, P®) ... K(P"Y, Qy, P™YG(P™, Q,,, PitD)f4(Penty.

o[l Yo (5]
R DG |

where

(3:4) K (PO, Qu, POr) =

_ 1 G, @y, P12)
@A) [(@wf2 + P) — M e[ Q]2 — Py — I + e

and f7, fo correspond to « pseudostates » e.g. they are obtained (by direct
integral decomposition) from elements fZ, f4 belonging to %% and %-.

The perturbative expansion of the pseudobilinear functional @(f3, f4),
which corresponds to the series (3.2) is given by the series of functionals

(3.5) D (for fo) = 2 Do, (fas 12) -

n=1
In the ladder approximation the reaction a - @ b -5 is described by the
(*) H. A. Berer and E. E. SALPETER: Phys. Rev., 82, 309 (1951); J. SCHWINGER:

Proc. Natl. Acad. 8ci. U.S., 87, 452 (1951); M. GELL-MaNN and F. Low: Phys. Rev.,
84, 350 (1951).
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following series:

(36) —+ + ..
and in this case we have
(3.7) G(P, Qy, P') = -

T PPy —p oty

where g is the square of the coupling constant g, and y >0, as we assume
the exchanged scalar particle of mass u to be unstable. In the theory given
below we refer to an unspecified amplitude G(P’, Qy, P) and some conditions
for its applicability are derived. These conditions are verified in the ladder-
approximation case: we will show this in some detail in Appendix A.

Our purpose is now to look for a method which allows us to calculate the
sum of the series defined by (3.5). In order to solve this problem it is essential
to formulate it in a well-defined mathematical framework. In this connection
it will be extremely useful to be able to relate our series to an operator series
of the Neumann type. For this purpose it is important to observe that every
bounded pseudobilinear functional can be written, from a general theorem (18),
as & matrix element of a bounded linear operator. This fact suggests to establish
under which hypothesis the generical n-functional @, (fo: g) is bounded and
then to study the corresponding operator series. We shall prove the uniform
convergence of this series for a set of values of the coupling constant g and. in
this domain the uniform convergence of the series of the bounded functionals
follows too. The graph series sum we obtain, can be extended outside this
set, by means of an analytic continuation in g, using the results of Fredholm
theory and of spectral analysis: this is the very important consequence of the
employed formalism, because in the context of the Regge-pole theory, physical
amplitudes correspond to higher values of the coupling constant, such that
the series of the bounded functionals converges in a weak sense towards an
unbounded functional. In order to develop our program we introduce the
crossed partial-wave projection method. This decomposition is a very powerful
mathematical tool as well as it clarifies the physical structure of the amplitude
in terms of usual Regge parameters and it allows a new formulation of the
Froissart bound in the present formalism.

(*®) M. A. Namvmark: Normed Rings, Chap. 1.5, Sect. 8 (Groningen, 1964).
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We consider this procedure in the next Section but it is useful before to
introduce a system of appropriate variables. We express a generical four-
vector by two Lorentz-invariant variables and by two co-ordinates on the
one- and two-sheet hyperboloids. Note that these hyperboloids are equivalent
to the coset spaces 0,,/0,, and 0,,/0, respectively (*). To do this we firstly
define the following transformation: given a four-vector P = (P,, P,, P,, P;)
we pub

Py=pz, p=V|P;—Pi— P} >0,
T — P:_pPi— P2
P, =pVz>— g cos == "1 T 11
(3.8) 1=DP 0 @ @ 'S y
P2=sz2—gsin99, 2z0, O<e<2m,
P,=P,.

We have for the Lorentz-invariant meagure
(3.9) d*P = dP,dP,dP,dP, = p*dpdpdP,,

where dp = dzdg is the invariant measure ou the hyperboloid p?=p. We
now introduce the new system of variables

oo
(3.10) (7”7 + P) =",

2=z,

p=0

Then we obtain

— ) W2 _2W
P =10(u,v)=]/l(“ 2 +_4W (uH)I,

(w—w)2 4+ W2 —2W (4 - v)

(3.11) o =o(u,v)= [(w—o) - W2 —2W (4 + 0)|’
P3:P3(u7@)=£%%’

(1%) See ref. (12), Chapt 6.
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and for the measure (3.9)

(3.12) AP = f’% du dvd7;
on the mass-shell we have

w=u=M2,
(3.13)

v=0v=M3.

From (2.21) we write in the new variables

(3.14) Do(fs,

275)4 fff B plu, v) po, 77)_
f/ fo* (w, v, D) M(u, v, B-9', w, ”)fA(“yvyp 4\/———4\/——
8w —u) 8(v —0) 6w —u') 8(v' — T ) dudvd P de’ do' AP’ =

==ff‘3*(23)MwA P fo(P) 16dedp

and we have put
My(p-D') = M(u, %, p—Pp', 4, v'),
(3.15) p=p%,v),
fz(f’) = f‘;(@, v, f’) ’ fz(ﬁ) - fﬁ(ﬁ, v, f’) .
It is interesting to observe that the square of the c.m. energy is given by
(3.16) =P —P)} pon=2p1—pD),
we also write

G(P$ QW7 Pl) = GW(“@ v, ﬁ 'ﬁly 7”’/7 ”I) ’
(3.17) W1 G (u, v, PP’y 0y %)
KB, Qws P T i(2m)* (w— M; + ie)(v— ML+ ig)

In short we put

(4, )
— d == g :d. d y ) = ?
18 p=nn), A= TZsdudo, o) = olo)

A@) = (u — M 4 ie)(v — M5 -+ ie) .
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It is convenient now to define the new functions

(3'19) AW(O% f’ f’,) = GW(wy ﬁ 'f’ly Z') ’
(3.20) By(P-p'y ') = Kw(@, P9, @),

80 that finally we may rewrite (3.3) as

(3.21) ¢Qn( g: fg) =/---ff3*@1)Bw(ﬁ1 'ﬁza %a) Kyp(925, ﬁz 'ﬁsy %) ...

oy n ntl
KW(wn—u ﬁn—l *Pus xn)AW(wn, D '_pn-l—l) ﬁl(p'rﬁl) _p— H dxz H dpz .
—16W ;s g

4. — The erossed partial-wave analysis.

In this Section we perform the decomposition of the series of the pseudo-
bilinear functionals (3.3) by means of the irreducible representations of the
three-dimensional Lorentz group 0,,. In order to do this we consider the
unitary representations of 0, acting on Hilbert spaces formed by functions L2
on the coset spaces 0,,/0, and 03./0,,. We consider the group 0,, with the
reflection operation ¢ included, defined by

(4.1) p=—7.
The representations 2°(g) we are considering act in the following way (20):

(4.2) DAPID) =1B,),  B,=97'P, 9€0s; .

The infinitesimal operators of the Lie group are L,, I,, L, (with the analogue
angular-momentum commutation relation) aud the Casimir operators are
LP=L—Li— L] and T (T = 2°()).

We consider the decomposition of the representations (4.2) under the group-
chain 0, >0, and we call D¢(P) the eigenfunctions of the operators L? L,, 7.
They satisfy the following set of equations:

d o 1 e\ . )
49 (GE =0+ iy o) PR =10+ )DL, g),
Wd) i DR ) = D)

@5)  D¥(—z, @) =D, ¢) .

(3%) See ref. (12).
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These functions are explicitly given by

(4.6)  D¥(z, ) = Op,[0(e—1)Pu(e) + 160 (— 2 — 1) Ppu(—2) 6™,

Tm

@7 DIz, @) = Ok [P, (i) + ve™™ Py, (—iz)]e™?
where P,.(2) are the Legendre functions of the first kind (2*). If Rel =—$%
or Iml =0 the D¥%P) form a basis for the irreducible representations of
the principal and complementary series of 0, respectively (**) (I not integer);
if 1 is any other complex number the functions (4.6) and (4.7) still define non-
unitary irreducible representations of the group.

If we write the norms defined by (2.19) in the variables introduced in the
previous Section we obtain

il = s, B —E—ab,

,. oV
(4.8) r= ~

B2 __ | 148/ = S\|2 P ~

17 —f 2,5, s — L — a,

therefore the Hilbert spaces 4 and % are realized by functions L? on the
two-sheet hyperboloid.

In order to avoid convergence difficulties we assume f4, f2 € L' n L* which
is a dense set in L2 Then we have the projection formula

(4.9) g —ff“ P) DR (P)ap

This transformation can be defined in the strip —1 < Rel< 0. From the
Plancherel formula for the group 0, (see Appendix A) the following complete-
ness relation can be written

w0y U= I e = g @
Preml e
where
{ﬁ is the set Rel=—1%,
(4.11)
nl) = @11+ 1) ctgle .

(*1y A. Erperiy, W. Macxus, F. OBeroeTTINGER and F. G. Tricowmr: Higher
Transcendental Functions, vol. 1, Chap. 3 (New York, 1953).

(22) V. BARGMANN: Ann. Math., 48, 568 (1947); I. M. Smirox0V: Sov. Phys. JETP,
6, 919 (1959).
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Formula (4.10) can be extended to an arbitrary L* function. For brevity
we write

33 |aiy@ =fd/1,

where A = (I, 7); we still have

(&.12) i = A f aap e,
with

(4.13) I = X Ifeal®

and we put "

(4.14) fot = {14 .

From (4.12) and (4.13) we have obtained the direct integral decom-
position (28):

(4.15) =P j dA 24

For f§ formulae analogue to (4.9), (4.10), (4.11), (4.12), (4.13), (4.14) and (4.15)
hold too. s#4* and 24 are the Hilbert spaces of the sequences like (4.14)
with the norm (4.13). Note that the measure of the direct integral (4.15) has
as a support only the right line Rel = —1 (principal series). For our pur-
poses, however, it is also necessary to consider the Hilbert spaces #744 and 24
corresponding to values of I in the strip —1< Rel< 0.

In order to perform the projection of the pseudobilinear functional series (3.5)
we now evaluate the convolution of the function Gy(», D-9', #') with the hyper-
bolic harmonics D2¥(P).

The following theorem holds (24):

(*3) We hayve so performed, in two steps, the following decomposition of our Hilbert
spaces: ,%”"rvfd‘lQ f d/l%é"l. This decomposition does not coincide with the central
Q?<o O
decomposition obtained in Sect. 7 of ref. (3) of the reducible representations of the
Poincaré group acting on 54 and which is written as 4~ f aw f ad %2 The con-

w<0
nection between these different decompositions is obtained, observing that: JK$A~

~ f dyW(Q)%éA (similar formulae hold for 4—B). Moreover the spaces 5% and %
are not Lorentz invariant but their introduction is useful in order to simplify the,
mathematical problem.

(**) 8. FErrARA and G. Marrror:: Internal report, to be published.
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If Gulx, D9, a")el®, 1<p<<2 in the variable §- P, almost everywhere in
the variables ®, #', then we have in the strip C,, —1/p<Rel<—1-+1/p

(4.16) /Gw(w’ pP, @) DET(P) AP = G (@, #') DEVV(D)
2'2=p’

where the function G¥(x, #’) is analytic in the strip C, and can be evaluated
by the projection formula (4.21) of ref. (*%).
If we define the following function:

(@17) ()0, D)= [ Aot BB T80

f )
we have, by means of an allowed exchange of the integration order (see ref. (24)):
(4.18) (A, 145 @) = Ay @) for .

If we put

(4.19) (BWK;—ZAWfé)(ﬁl) :f'--fBW@l'f’z') @) Ky (22, f’a'f’w @5)*

Ep(@n1y Pums Boy @n) Ay Bu* Buia) fo(Brss) 1T A2 ﬁ an,,
we obtain - -
(4.20) (B, K2 A, fo — Bir Kl Alefdis
‘where

(4.21) B;tKlrn—zAlthlr f J'Bzr OSZ)K“(QUQ, (,03) _K (wn_” wn ”(-%'n ;fAlt n dw’

=2

If we define the following projected functional:

(4'22) (sz, ]‘.AA z B*lr( K""ZA fAI w__

=3 f f 125 BY () K ¥,y @3) vvo K (@0, @) A (@) for 1 d*

i=2

we may write (see (4.10))

(1.25) Palfss 1) = — P j aa B, 15



42 8. FERRARA and G. MATTIOLX

(This equality holds only if the integral on the right side converges.) The
projected functional (4.22) can be associated to the m-th—order fixed angular
momentum ! and fixed momentum transfer @ graph. In the next Section we
establish some sufficient conditions for the boundedness of the functionals
(4.23); to do this we will start by studying the boundedness of the pro-
jected functionals (4.22).

5. — Off-shell wave functions and boundness of the pseudobilinear funetionals.

We introduce in this Section a suitable Hilbert space of projected off-shell
wave functions f¢ (w, v). The norm [|fY | in this space has the property that
the off-shell integral operators we consider are bounded with respect to this
norm (*). The Hilbert-space structure is described in detail in Appendix A.
In this Section we indicate in a formal way | fe,| this norm. Let f,(u, v, D)
a generical off-shell function defined almost everywhere in the space of the
(u, v) variables, whose on-shell restriction is f (M}, M2, D) = f(P).

We define the following quantities:

(5.1) ' (1, v) = f foltt, v, B) D" (5)ap

Pi=g(u, v)

we call ,}’fg the Hilbert spaces of projected off-shell functions which satisfy
the property

4o

(5.2) 2 lfglr<co,

me=—co

where | fgmu is the suitable norm defined in the space of fo.(u; v).
If we call #7 the Hilbert spaces with the norm [fZ | we obtain

(5.3) Hh = DAL

Consider now the functions K7 (», #'), Ad(x), BA(x) defined by (3.17), (3.19)
and (3.20); they act as kernels of integral transformations on Jf‘gm, %‘:ﬁ and.
Jfﬁf respectively, The Hilbert-Schmidt norm (2¢) of these transformations can
be written explicitly as an integral (see Appendix A) which introduces a further

(?%) This method is strictly connected to some techniques of regularization of the
relativistic B-8 equation, first introduced by I. G. TAYLOR (Suppl. Nuovo Oimento,
1, 857 (1963)) and more recently developed in ref. (4). We apply these last results to
the projected fixed-momentum-transfer off-shell wave functions.

(*%) See ref. (%), part II, p. 1009.
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condition on these functions. If these integrals converge these functions are

the kernels of H-S operators in the Hilbert spaces we have introduced above
and we have

(5.4) Af(x) defines a H-S operator A7 from #7454 in #F ,
with domain P4 = #7452 and range Z44CHY ;

(8.3) Bi(x) defines a H-S operator Bf from 75 in 54
with Dpd = HgL, Rpa C A

(5.6) K24, »') defines an H-S operator K4 in # é‘m

with ZpdCDrg— Hg .

We shall indicate in the future by |AZl, 1B, |E4] the H-S norms of
these operators.

For our purposes it is also necessary to introduce the on-shell operator Az
which corresponds to the kernel of the first graph (the irreducible one):
Gw(Z, PP, &) = Ay(®, D+ D'). The definition of our norm ensures that the H-S
condition for A4 follows from (5.4).

Note that the operators A2, B4 and K; cannot be of the H-S type on the
spaces 44, 54 and #4 defined by a direct sum as in (5.3): 4.e. consider the
operator K;’,f on #4. The square of its complete H-S norm is

(5-7) Z lK;}lz 6mm' = :2 I-Kp/ﬂz ’

which is always divergent.

However the propositions (5.4), (5.5) and (5.6) are sufficient for the bounded-
ness of the operators on 44, #24 and #4. In fact consider for example
K4, we obtain

, V34| Glmmly Glmiary
08 UFI= 0 T ety ST S (Sl

Thus we have that the H-S norm of K7 restricted on Jfgm exceeds its norm
on 4,

Tf the H-S norms |44}, IB;,iI, | B4] converge we obtain, considering the ex-
pression (4.18), (4.20) and (4.22):

5.9) { [@A(24, 14| <\ Z2N [ 1241 |744)

|Pg. (124, fah) < |BgliEgl-2 |4l fe4 1 17N -
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From (5.9) we have the boundedness of the projected functionals defined
by (4.22), in fact

{ o2 < 1341,
(5.10)

1251 <IBZl [Egl—2147] .
From (5.9) it turns out that the projected functionals may be also writen as
(5.11) DLt 181 = g (132 T 4y

where the operators T;}” defined as

gT#l = ZW
(5.12)

7T~ AL,

are bounded.
If also the following conditions are verified:

(5.13) sup 44| = gay
{05}

(5.14) sup |BA| = gby
{0}

(5.15) sup |KZ] = gow ,
{0}

the pseudobilinear functionals D, (fo) 5) are uniformly bounded in A in the
strip C, and we have:

1951 <gow
(5.16) ‘
195 <9" by 057, n=2,3, ...

From (5.16) it follows that also the nonprojected m-th functional given
by (3.21) is bounded, in fact (27)

[Dq,]l = ess. max | D4 | < ga ,
{7}

(5.17) o s
19, = esizéé}max 194 | <ga,b,e?, n=2,3, ...

(*") We indicated by ess. max f(x) the least number ¢ with the property that the
set of values of x such that f(z)> 0 has vanishing measure. In general, if the

functional @ is given by a direct integral @:?d/l 4, | @] = ess. max 2]
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From (5.17) it turns out that also the nonprojected functionals can be written
as matrix elements of bounded operators as

(5.18) Do, (for Q) = 9" (o) Tipufd) s

where the bounded operators I7, are given by
(5.19)

Note that the functionals @, , which are defined only if their arguments fg, fg
can be derived (by means of a direct integral decomposition) from elements
belonging to the dense spaces ¥4 and #4, can be extended, by means of
formula (5.18), to generic elements 2, f4 of the spaces 7%, #7%.

6. — The convergence of the series of bounded functionals.

The uniform convergence of the series of the bounded pseudobilinear fune-

tionals (3.21) follows from (5.17) in the open set g<<1/ey. The sum @ = > D,,
n=1
is a bounded functional on #x#% and for its norm we have the inequality

b
(6.1) [ @] < gaw (1 4 gby 4 g2 ) :
— gCw,

The functional @, is so generated by a bounded operator Ty which we call
the W-fixed crossed scattering operator.

For larger values of the coupling constant in general the series of the func-
tionals does not converge in norm towards a bounded functional. However
we can still define an nnbounded and not everywhere defined functional putting

(6.2) D (fos fo) = 2 Do (f5, 1o) = 2 9" (fo T, Q) -

n=1 n=1

This functional is defined only for pairs of the arguments such that the series
on the right-hand side converges (weak convergence). If this series converges
we can compute it for small values of g, such that the series converges in the
uniform topology, and then continue it analytically to the interesting value
of ¢; this is just the sum if it converges. It will be pointed out that this technique
can be applied only if the weak convergence is restricted to the spaces Z® and
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Z4. However this is sufficient and in fact these spaces just contain the elements
of physical meaning (of factorized type).

The analytic continuation, in g can be performed using the crossed partial-
wave projection, therefore we start by considering the series of the projected
functionals

(6.3) S D54, fal) = 3 gn(f24, T4 ) .

n
n=1 =1

If g<1/ey, le 0, we can write the sum of (6.3) as
(6.4) tp‘g(f';’l, géA) = ‘(fZAa T;Irzfz/l) y

where T% is a bounded operator given by

(6.5) Ty = A5+ BJ AL+ 3 BAKA2 42,

n=3

and the right-hand side converges in the uniform topology (see (5.13), (5.14)
and (5.15)). In the open set ¢ < 1/ey, I e C, the series (6.5) converges uni-
formly with respect to g and 1(28). If we call Ry the resolvent (?°) of Ky defined by

(6.6) Ry =K1 —Kg,

we write (6.5) as

(6.7) T§ = A2+ BAAA | BARA A4

ww W

and the norm of the operator 74 satisfies the inequality
A , bwow
(6.8) 1Tw] < gaw \1 + gby 4+ g* ———] .

From the Fredholm theory we have, under our hypothesis, that (*): the
resolvent operator R is analytic for Ie C,, g < 1/ey, meromorphic for 1e 0,
9> 1jer and it is an integral operator whose kernel we indicate by RA(z, o).

The operator T4(g) (we have explicited its dependence on g), which is

(23%) We have in fact:

IEZ 4 o B ™) | < (LR 4 L EA™™) < (gog)m it (1+ gy + ..o+ (o)™ ).

(%) See ref. (°) and also: F. Riesz and B. Naey: Legons d’analyse fonctionnelle
(Paris, 1965).

(3%) See ref. (29).
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a multiple of the unit operator on %”‘;A, is explicitly written as
(6.9) T¥(g) = A¥(%) —I—JdmA;Z(w)B,‘;(m) +ffdw da’ BY () RE (2, ') AZ (&) .

The function (6.9) is analytic in the open set le C, g < 1/ey, meromorphic
for le C, g>1/ey. Of course we have

1 T2@)] = 1T @)l -
The sum (6.4) of the series (6.3) is given by

(6.10) DA(f2A, 44y = TA(g) (24, f44) .

From the above properties and using the completness relation (4.23) we
derive for g<<1/ep:

> [ad o7, 1t =

6.11) D2, 12) =§¢’en(f3’f 16W <
o

. @2 < /1 AA A /I AA
= B [ad3 ob, 1 16wfd/”’ 4.
o

For more generality we now consider the W-fixed pseudobilinear functional
(6.12)  Dulfz, 1) fd w(Q) Do(fay fo) 5 Auw(Q) = 6(@*— W) d*@Q.

4, fz are elements of the Lorentz invariant Hilbert spaces (*9):

(6.13) Aoy = f duw(Q) #4,
with the norm
(6.14) IFal? = | Auw(@) [ fol?

and similar formulae for f7.
For g< 1l/ey the W-fixed funetional is bounded and it is

(6.15) 1] = o5, max [ <ga (14 g0+ 51 7200)
) (@2=m) — g6y,

(31) See footnote (22).
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Then we have (32)

(6.16) Dy 1) = (fzr Ty(9)fp) -

From the Fubini theorem we can write

617 Bl 1) = —L ()[04 TG, 15 =
g

_[aarig) f @3, 149 — 2 —[anrgywe,

P

ol

P

Fig. 1.

(3?) See ref. (18),

—16W “;

32

where the quantities ¥4 = fdMW(Q)-
- (24, f44)(p*/— 16 W) are the projections
of elements belonging to some normed
spaces (%2). It is shown in ref. (8) that
the functions ¥4 are analytic in the
strip —2<Rel<l it 74, ffec P4, ¥*
respectively.

These remarks enable us to con-
sider the series of the functionals

> Df%, 4 for g>1jey. For these

n=1

values of the coupling constant the se-
ries does not uniformly converge, the
functional (6.12) is not bounded and
the crossing scattering operator does
not exigt. However the quantity (6.12)
has a physical meaning if its argu-
ments fy, fz can be derived from pseu-
dostates f%, 4 of factorized type (3%).
Therefore we may evaluate @, (fZ, f4)
for g > 1/cy performing an analytic
continuation in ¢ using the formula
(6.17). This continuation is possible

(*%) This result is found in Sect. 8 and 9 of ref. (8).
() More explicitly it turns out, from the unitarity of the S-matrix that, for P~

and 4 of factorized type,
o, 141 = [aw e,z 1)

= Jofn, @, F®, Jo)| < 2 fov ] 7o || foo 1o

and therefore the quantity ®,(f5, i) is finite (almost everywhere for fixed W).
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from the analyticity properties of ¥4 and of Ty(g) that we have derived.

Note that if a Regge pole has a real part larger than one the analytic con-
tinuation is not in general possible and the functional (6.12) becomes divergent
even in correspondence with physically significant (factorized) pseudostates.
This is a formulation of the Froissart bound in the present formalism.

The analytic continuation of (6.17) is obtained by a modification of the
integration path as in the Figure, when the poles of T4(g) cross the line
Rel=-—1%:

(6.18) By (2, 1) = f AATHg) P, QW) cd,.

2

Note that if 4 and 2 do not belong to £* and #? the function ¥4 is no longer
analytic and the integration path cannot be modified, so that the functional @y
need not to be defined for arguments of this kind.

In order to show the Regge behaviour of the W-fixed scattering amplitude
we compare the usual expression

619 Dulfh, )= [ [0 0 170V 1wt ) 1469~y

with the formulae (6.17) and we obtain

(6.20)  Tyle)= { dATHg) D) =2, | Tw (@) Dy (2)(21 + 1) etg omdo =

» T
20m) 2m)

— f [T54g) + TE ) 0a( £ )@+ DU,  +251, G=p-p),

2m)

where the last step derives from some well-known properties of the Legendre
funetions.
We observe that 8 (see (3.16)) is linearly related to z and

=1

(6.21) Q—1-1(?) P S (22)*

then, in the high-energy limit, the main contribution to (6.20) comes from
the pole I,(W) of T¥(g) with the greatest real part:

(6.22) Ty(z) ~ B (W)™

2>

and this is the Regge asymptotic behaviour.
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We thank Prof. M. Torrer and Dr. G. CosENzA for many stimulating
discussions and helpful correspondence.

APPENDIX A

In this Appendix we explain in some detail the Hilbert-space structure
which we introduce in the space of the projected off-shell wave functions.
So we can write down in a explicit way the conditions on the H-S norms of our
operator. Finally we discuss in short how these conditions are verified. Con-
vergence difficulties arise from the on-shell singularities of the kernel Kij(w, 2'):
in fact in the usual L®-norm the integral operator Ka is never bounded. In
order to avoid these difficulties we define the scalar product in the space of the
projected off-shell functions félm(u, ?), in such a way that the singularities are
subtracted.

Starting from a function fglm(u, v) defined almost everywhere in the (u, v)
variables and defined on shell let us introduce the new quantities

A1) far = fou(, )
A PN
(A.2) ]eél';z)(u) — f@m(ua V) ; Em%_((/ua V) or(e) [a(u)]z,

' A = A e =
(A.3) fél"(‘:%)(,u) — me(u’ /U) 7 Ey%(u7 ?J)ﬁ(u) [b(v)]z’

(Ad)  for(w, 0) =

— o 4 (7 %
_ (1 9) =l D) — Finl@y v)rl) -+ feulds DVHNBO) [y

(—u)(v—7)

where a(u) is a suitable real function of u, belonging to C*, whose support is
a compact set Aw = (4, #,) which contains the point % =74 where a{u)=1;
Pf(w) has similar properties.

Inverting these definitions we obtain

(A5) 1t 0) = o)) + 742 VB
Aw (0 —0)ot) | aw (w—uw)v—71)
+ f(?m (U) [b(v)]z + m (“’ /U) {a(%)b(@)]z

In order to simplify the formalism let us call r,=u, rs=wv, 7= (%,v);
of course 7, is not a true variable but its introduction is convenient for
uniformity of notation. In this way the four quantities associated to every off-
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shell function fﬁm(u, v) may be written in a more compact form {fo'?(r))}.
Let us consider now the set 9%1,” of the functions fﬁm(/u,, v) which satisfy the
condition

4 .
(A.6) S &P @) dr, < oo
=1
HE becomes a Hilbert space by introducing the following scalar product:
4 : .
(A7) (félm ggm) = z ﬁ‘ﬁf‘” (”"i)gg,ff)(ri) dr;;
=1

from (A.6) and (A.7) we observe that fg,e#%, if and only if the quantities
7‘31,,‘. belong respectively to the Hilbert spaces J/{};” formed by the functions
fa(r,) which are L* in their variables. It is clear that the previous definitions
establish an isomorphism between the spaces #4, and #4,— ®H). By

means of this isomorphism we associate to the operators K, Aw, By the
following operators:

Ra= UK4U-, from 4 in #E,,
(A.8) Ad — v AL, from #4 in AL,
f%{%, = B0, from jfglm in #54,

where U is an isometric operator with inverse. Formulae (A.8) enable us to
study the H-S norms of the corresponding operators K, A#, By, This is much

simpler because in this representation the operators K2, AZ, B2 are written
as matrices of nonsingular integral operators.
For example the equation

(A.9) g (w, v) :fKﬁ(u, v, 'y v') fa (u', v') du’ Ao’
becomes
. i [ .
(A.10) gg,f:)(yi) = Z ‘/K;Vlu’j)(ri, 7';) g,,(.j)("'.{i) d"'; ’ t=1,2,3, 4,
=1

and the H-S norm of the operator Ki is given by
~ 4 . ¥
(A.11) | Kl = | il = ( 2 ffdhdﬁlK{é”'”(% 7"9)\2) .
2.3=1

The norms of the operator Af B2 are written in a similar way.
Tiet us consider now the case of the ladder approximation. Then the function
Gy, v, -P', w',v') has the form (see (3.7)
(A.12) Grwlu, v, ﬁ 'ﬁly w'y v') =
== _g .
Lt o) L@ o) — L2 W)u—v) (' — ) —2p (u,0) p (w',0") P B'—p*—W [2+-1y
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In general a convenient situation, in order to study the integral conditions
(A.11), is obtained by transforming the kernel of the integral operator Kg
so that it assumes a symmetric asymptotic behaviour with regpect to the two
group of variables w, v and w', v'. This can be achieved by means of the
following transformation on the function Gy(u, v, p-p’, w', v'):

(A.13) G(w, v, ﬁ'ﬁ,’ w'y v') = I'(w, v) G(u, v, ﬁ 'ﬁ” ', ”’)F(—u}—vT) y
where
f— - 1)
Py = V2D o) = (Ve ),
b(v) = (V(v —B)® + 1)k

It is immediate to observe that the n-th functional (see (3.21)) is unchanged
and the required symmetry is now verified.

If we apply the theorem on the convolution with the hyperbolic harmonies
given in Sect. 4 (see (4.16)) to the function (4.12) we obtain for its Laplace
transform (35)

A.14 lr 7 I — g it ! i
( ) GW(M7U7IM'7/U7) Zp(u,’l))p(’ll/’,vl) VW(%7®7M’7))7
where
Vi (u, v, u'y v') Nﬁt—z[P(——z)—rP(z)] if g(u, v) = p(u', v')=1
w i, v, ¥, = Sin Tt 1 y olu, v) = pu', v')=1,
T 14 ! 2%27: N . !
VW("’%”;’“’”): B (—iz), if 9(“7@):_@(""'9")’):1’
Visin I
(A.15) Ao
Vittw, o, 0, ') = ——ZB(—ie), it (u, v) = — olw), o)) = —1,
Vsinle
7 (u, v, ', 0') = _2n2@-[P(z + TB(—2
¥l 0, 0',0) =~ ZEURE) + wB(—2)]
it o(u, v) = o(w', v') =—1,
and

& = 2y, v, w', ') =

_ z(u+0) 4 3+ o) — (12 W) (u —v)(u'— v') —2p(u, ) p(w', v') — §W — po +
2p(u, v)p(u', v')

Y

T+,

2p(u, v)p(u', v')
The functions Vi (u, v, %', v') are analytic in every strip U5: —1 + < Rel<—§
(0<<0<<). Inref. (*) it is shown that the norm defined by (A.11) is convergent
for the function (A.14), therefore in the ladder approximation the (5.4), (5.8)

(*) See Sect. 4 of ref. (13).
() 8. F'mrrARA: Thesis, Rome (1968).
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and (3.6) are verified. Moreover it is shown that in the strip Cs the following
condition is verified:

(A.16) |K# < ger (and similar expressions hold for the operators A4 and B2

and so the conditions (5.13), (5.14) and (5.15) hold too. Then the results we
have pointed out in Sect. 6 are valid in our oversimplified model: ladder
graph series converges and its sum verifies the Regge behaviour and the Frois-
sart bound.

ArPPENDIX B

We now derive the completness relation (4.10) by means of the Plan-
cherel formula for the group 0., (*').

The Haar measure dg on 0,, and the invariant measure on 0,,/0, (two-
sheet hyperboloid) are so related

an

(®.1) [ [t prasas =z [0

lz2[21 o

From the Appendix B of ref. (*®) we have

__re+1) .
(B2) -le(COSh Z:) - F(l—m + 1) dmo(é) ’
then it turns out that
(B.3) P,(cosh £) exp [img] = Dro(9)

where Di.(g) are the matrix elements of the analytic irreducible representa-
tions of SU,;;. Remembering now the explicit expression for the hyperbolic
harmonics (4.6) and choosing

. I'l—m +1)

rm = —]—v(l—_l_“l)— ’
we have
~ ~ o~ 1 T T
(B.4) [torrmar—g | 10250 =1,
Piel (804,1.8)

(®) See Appendix B of ref. (%), formula (B.11).
(38) This formula is easily obtained comparing formula (B.9) of Appendix B of
ref. (") and formula 3 of ref. (2!), Subsect. 8°2.
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where 7 is the reflection and (SU,,, t) is the group SU,, with reflection. There-
fore we obtain

~3+io
@5 [l =g [ iford=g [ Sire) e,
Pl (T4 1. 0) e
RIASSUNTO

Si investiga la convergenza della serie multiperiferica nel caso di diffusione di due
particelle senza spin, quando il quadrato del momento trasferito di tipo spazio & figsato
come parametro. Si introduce uno schema di accoppiamento in cui 'ampiezza di dif-
fusione viene descritta come un funzionale pseudobilineare su certi spazi di Hilbert
che contengono elementi descriventi una particella entrante ed una muscente. In tal
modo in questo formalismo ad ogni grafico multiperiferico rimane associato un funzio-
nale pseudobilineare. Le proprietd della serie sono studiate per mezzo dell’analisi in
onde parziali inerociate. Facendo uso delle tecniche di Fredholm e della proprieta di
analiticita viene mostrato che la somma della serie dei grafici, in corrispondenza a valori
fisici della costante di accoppiamento g, & descritta da un funzionale non limitato che
non pud essere espresso solamente tramite le rappresentazioni unitarie irriducibili della
serie principale di O,;. In questo formalismo cid significa che Yampiezza econtiene
un contributo di poli di Regge. Si ricavano Pandamento asintotico di Regge della solu-
zione e una nuova formulazione del limite di ¥roissart. Viene discussa 1"utilitd del metodo
nel caso dell’approssimazione di grafici a scala.

Toaxon Teopun rpyun k muorouepudepudeckoii Mome.

Pestome (*). — Hccrenyercs CXOmMMOCTE MHOTONEpH(GEPHYECKHX DSIOB B CAYYae
paccesmust MBYyX OECCIMHOBBEIX YACTHI[, KOTZA KBAAPAT HPOCTPAHCTREHHO-NOMOBHOTO
HepenaBaeMoro mmmynsca W o ABnsAeTcs (EKCHPOBAHHBIM, KaK HapaMerp. Beomurcs
«CXeMa CBA3M », B KOTOPO aMIJIITYA PACCesTHUS ONUCHIBACTCA, KAK IICEBIOOHIMHEHHbIL
(ysxmonan ga HEKOTOPHIX TUIHOEPTOBBIX POATPAHCTRAX, KOTOPHIG COLEPIKAT IIIEMEHTHI,
OIUCHIBAIOINE IANAOIMe W yXoasmue-yacThel Taxum o6pazoM, B 3ToM dhopmanusve
KaX oMy MHOromepudepiieckoMy rpaduKky COMOCTaBIAeTCS TCeBHOOMIMBEHHbI (yHK-
mwoHan. Wecnemyrorcs CBOMCTBA 3THX PSNOB C HOMOIUBIO « HEPEKPECTHOTO » aHamm3a
mapruanbHeX Boy. Mcemomssys Texmmky ®penronsma ¥ CBOMCTBA AHATUTHYHOCTH,
IfOKa3BIBACTCA, 4TO Tpaduyeckas cyMMa PsOa, B COOTBETCTBHH C (DE3HMYCCKUME 3HAYE-
HEAMY KOHCTaHTHI CBA3H §, OMUCHIBACTCA HEOTPAHMYCHHBIM (DYHKIMOHATIOM, KOTODBIL He
MOXeT OBITh BBIDAXKEH TONBKO IIOCPEICTBOM YHUTAPHBIX HEIPHBONUMEIX IIPENCTABICHYIL
raBHOIO psima O, ;. B 370M dopMaisMe 3T0 03HAYACT, YTO AMINIHTYIA COTSPKUT BKIIATEL
HEKOTOPHIX momocos Pemke. OTMeUarorcsi acCHMITOTHYeCKOe TOBenmenme Pemxe rony-
YOHHBIX pellleHuii B HoBaA (GopMymmupoBka rpamuust ®dpoiiccapra. OB6CyxmacTes IeH-
HOCTh 3TOTO METOJA IUIF CIIy4as JISCTHHYHOTO HpUOIDKCHUS.

(*) IIepegedeno pedaryueil.
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