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Linear Theory of Motion in Electron Storage Rings
C. BERNARDINI AND C. PELLEGRINI

Laboratori Nazionali di Frascati del CNEN, Frascati, Italy

The (single-particle) motion of electrons or positrons in storage rings is studied,
giving special attention to the effects determining the beam size in general magnetic
structures.

1. The role of the beams in storage rings is twofold, each stored particle
being at a time projectile and target. Number densities are of great importance in
connection with the practical observation of high-energy events from beam-~beam
collisions; in particular, the luminosity L has to be known! in order to get the
cross section o from the measured rate # = Le.

The case of electron storage rings (both e~e~ and ete™) must be given special
attention due to radiation phenomena strongly influencing the single-beam geomet-
rical properties.

Usually a two-step approach is followed in studying the particle motion: first,
the single-particle motion is described (1) and the effect of synchrotron radiation,
or other small perturbations, on the beam size is studied (2), (3); next, intensity
dependent effects [such as space-charge (4) or resistive wall instabilities (5)] are
considered. Both steps have been given wide attention in the literature in the past
years, but we had frequent occasions to regret how much the results concerning
the first step are scattered and how difficult it is to correlate them.

In particular, the single particle motion in electron storage rings is a delicate
matter calling for an unified treatment. We will attempt to give this unified treat-
ment in this paper; even restricting the subject to the single particle motion in the
linear approximation the description of the various effects determining for instance
the beam size will not be easy especially when considering the two transverse
betatron modes of oscillation to be strongly coupled.

1 The luminosity for head-on colliding bunched beams is defined as
L=fk f o dS

where f is the revolution frequency, & the rf harmonic number, p* and p~ the transverse densities
of the two beams.
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To put some order in the problems to be considered in the following paragraphs,
we find it convenient to indicate the scale of importance of the terms to be included
in the single particle equations of motion:

(i) first a reference trajectory (RT) will be defined; the actual motion will
develop around it and the particles will have parameters (positions, momenta) so
slightly different from those corresponding to the reference trajectory that Taylor
expansion truncated to the linear terms can be considered as fairly accurate.

(ii) displaced orbits of particles having energy constant in time will be
considered next; this step will be called as usual “betatron oscillations.”

(iii) phase oscillations and energy losses originate from weaker forces than
betatron oscillations so that they can be included as third step.

(iv) eventually the radiation from displaced particles and the radiation
fluctuations (giving rise to dampings and finite sip effects, respectively) will be
considered.

2. We take as starting point, defining ““zero-order’” motion (that is, an RT)
the equation for a nonradiating particle in a magnetic field constant in time

=1 X ), )]
where
w(r) == (ec/E) H(r)

is the cyclotron frequency vector of an electron of total energy E in the magnetic
field H(r).

The RT will be chosen in the following as a particular solution ry(z) of (1)
associated with a certain energy E, ; a better characterization of the RT will be
given later in terms of the frequency of the main radio-frequency field.

Equation (1), together with the value of E, , embodies the “machine parameters”
usually specified to describe a ring: magnetic structure, radii, quadrupole strenghts,
etc.: all of these informations are collected into the single vector function w(r).

Now we introduce further terms into the equations of motion; namely, radio-
frequency fields e; and terms associated with random events producing a sudden
change of the vector momentum of the electron, such as the emission of synchrotron
light: or scattering and bremsstrahlung on the residual gas.

As a consequence (1) changes into

% (EF) = ecte + ect X H + 25,247 8(t — 1), ¥)

where ¢ is the variation in the electron momentum due to an event of type

€6 292

‘77’ at the time ¢; .
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A function Py(q, t) dq, will describe the rate of events of type *j*’ which produce
a change in the electron momentum of a quantity between ¢ and q 4- dq; we can
define average values as follows

b(r) = [ aPi(g, 1) dg ©)
and rewrite (2) as
% (Et) = ec?e 4 ect X H 4 ¢R 4 *G 0]
where
R(t) = 2; b19(2) 4
and
G(r) =3 G =} (). ¢ 8(t — £) — (). (©6)

R(?) is the average effect of random forces; G(¢) is the term responsible for
fluctuations.

We want to study the motion defined by Eq. (4) in the case of small displacements
from RT; that is we assume that the influence of the added terms will limit the
actual motion to a small volume around the RT, so that Taylor expansions can
be confidently used.

Putting

r=r;+ dr, E = Es(l +P),

and linearizing Eq. (4) with respect to or and p, we get
O + £ p = —p¥, + 8 X w(ry) + £, X [(Or * V) 0@)],—,, + i3, @)

where

ec? 1

E;

c? —p

$ = e—i—E(R—{—G) 7 ®)

According to our definition the velocity of the reference particle v, = #; is
constant in modulus so that the arc length on RT is given simply by s = v,t.

It will be convenient in the following to use instead of the derivatives with respect
to time, as in (7), those with respect to the arc length, s, on RT, which will be
denoted by primes.

To establish the relationship between these derivatives we first note that, calling

dl the arc length on the actual trajectory, one has, to first order in dr,

dl = ds{l 4 x, * dr'},
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so that
d_d s o d
E:UEZZU{I -{—l‘s 81‘}1%. (9)

The quantity v appearing in (9) is the velocity on the actual trajectory. It is
interesting to note that from the definition of p it follows that

v—uv,  c* (moc2 2p
~ E

v, v2

and therefore (v — v,)/v, is much smaller, for ultrarelativistic particles, than the
first-order quantity p. Hence in the following we will assume

V= v,

in accordance with the well known fact that, in electron circular accelerators, the
angular frequency very nearly behaves as the inverse radius. The approximation
v, ~ ¢ will also be used whenever possible.

Having decided to use the derivatives with respect to s in the description of the
motion, it is natural to use as frame of reference a frame defined on RT in the
usual way by means of the orthonormal tangent, normal and binormal vectors
a(s), B(s), v(s), such that

t, = v, B’ = —K(s) a + H(s) v, 10
o« = K(s)B, ¥ = —H()B, (10)

K(s) and H(s) being, respectively, the curvature and the torsion of RT.
Any vector u can then be written as

0= 0+ U B+ UgY,
and in particular we chose
or = x(s)p + z(s)v. an
It can be useful to write down explicit formulas for r’, or”:

St = —Kxa + (x' — Hz)B + (' + Hx)y,
3!-” = (—K'x — 2Kx’' + KHz)a + (x" — K*x — 2z'H — zH' — H?x)p
+ (" — zH? -+ 2Hx' + H'x)y.

These formulas, together with (9), can be used to rewrite Eq. (7) in terms of
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derivatives with respect to s. To further simplify Eq. (7) we also use the definition
(1) of RT, from which it follows that

wl(rs) = _UsH(S)9 wz(rs) = 0;
wy(r)) = —0,K(s), (12)

and the fact that, on account of Maxwell equations and (10), the field gradient
must be such that, on RT,

(6t - VIw, = (L+ M) vx — K?nvgz,
(dr - Vwg = —K%wx + (L — M) vz,

where
ow ow
K2 — . -2 _ 773
Konvs 74 ox
1, _ Owy 1,
Lvs—«—iwl, Mvs——— Ix +§w1.

Then the equations of motion (7) can be put in the form

P = (1 — Kx),
x”_.l_.Kz(l ——n)x: -—Kp—l—)HZ’—I—H,Z"—(L"“M)Z"I— ¢2’ (13)
2"+ Kz = —Hx' — Hx+ (L + M)x + ;.

The left-hand side of the last two equations (13) has now a quite familiar form;
ordinary focusing forces appear expressed by the field index n. Fringe fields can
be properly accounted for since derivatives of the magnetic field, such as H' and
L, have been retained. However it is often a very good approximation to consider
machine parameters as stepwise varying functions of s, thus simplifying (13) by
elimination of the terms describing fringing fields. In this case a lattice is precisely
specified and (13), apart from the i, terms that will be specified later, become
constant coefficient equations in every cell of the lattice. However, edge focusing
or short magnetic quadrupoles can be easily and accurately introduced in this
lattice structure by the addition of zero-length cells in which the parameters have a
8~type behavior.

Rewriting (13) in the case of step machine parameters, one has

P = (1 — KX),
x4+ K21 —n)yx — H — Mz = —Kp + sy, (14
z" + Kz -+ Hz' — Mx = 5.
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3. Our problem is now to find the solution of Egs. (14). As we will see to
find the solution we will use the fact that for electron synchrotrons or electron—
positron storage rings the radiation reaction force is usually much smaller than
magnetic forces (or the centrifugal force in a typical magnet). This fact we will
refer to in the following as condition “a”.

Condition “a” allows the use of perturbation techniques to solve (14). Hence
the first thing we need is an explicit expression of ¢, which was defined by (8).
Let us consider separately the various terms appearing in ¢ starting from R.

In R we can single out radiation effects by writting R as a sum of a term R,
due to the emission of synchrotron light plus other terms p*E, .

The reason for this separation is that while the radiation reaction is known to
be dependent on energy, position, and velocity, all other known random forces
(mainly those due to collisions with gas atoms or with other particles of the
circulating beams) are only energy-dependent.

Thus we will write

1

1o R s
ESR_ E + o} + a¥p, (15)

where the subscript s indicates a quantity to be evaluated for £ = E; and

op*
a*t =
op lg-x,
The radiation reaction is given by (6)
2e2 . . vE o
R, = — ggryﬂ %rz -+ ?(r 'r)zg,

where y == E/mc? Introducing the quantity

2 4 2
Wg == (5 e’K*® ‘%‘1—) = § ”engKz,
where 7, is the classical electron radius, R, can be written, to the first order in the
displacement, as

%SR,:—wsg[l—l—Zp—{—Z(Kn——HTz)x—l-z%lz
i (16)
—2?2’]a+(x’—Hz)p+(z’+Hx)Y§.

We assume further that the fluctuation term (1 — p)G, being the difference between
the actual random value and the average value of the electron momentum variation,
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is such a small quantity that it can be evaluated directly on the RT; namely we
assume (definition of g,)

(1—p)G==G,=gkE,.

At last we consider the rf field, which is assumed to be longitudinal and dependent
on a parameter o measuring the phase of the particle with respect to the tf field
and on s.

We further assume that the dependence on o and s can be factorized so that
we have

ee/E; = [ (o) ¥(s)e. an

The field must be such as to satisfy the condition that, for fixed o, §e + d1 be inde-
pendent of the path, so that one must have

§e cdl = 3§RT e, - ds. (17

Since dl = (1 — Kx) ds it follows that € must either be of the form e, - (1 + Kx),
in which case (17’) is satisfied up to terms of order x2, or must be zero where K
is different from zero, i.e., in the bending magnets. In the following we shall
assume this second condition to be satisfied.

Now in a storage ring the average particle energy is kept constant so that the rf
field must essentially balance the energy lost by radiation or other random effects.
Hence we assume that a particle moving on RT has such a phase, o, , relative to
the rf field that its energy loss is exactly compensated; namely,

fop) § 9(s) ds = § (w, — p¥) ds. (18)

Equation (18) can be used as the definition of the synchronous phase o, .
A particle not moving on RT will have a phase displacement relative to the
synchronous one given by

a(s) — gy = fs dl — fs ds = — fs Kx ds (19a)
or
o'(s) = —Kx. (19b)

Notice that o(s) as defined here is just the longitudinal distance between the particle
we are considering and the synchronous one; hence Eq. (19b) can be assumed as
the one describing the longitudinal motion.

In most practical cases the rf field is obtained by means of several rf cavities
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distributed at equal distances along the machine and having a very short length
compared to the cell of the magnetic lattice. It is then a good approximation to
write

v, & L

€€ _ Yo _

5 = Wb SinCker) El $ (s o ) M (20)

where L is the length of the rf, Ny is the number of rf cavities, cw, = 2wc/L is the
revolution frequency, kwyce is the frequency of the rf cavity (k must be an integer
number), and ¥, is the sum of the peak voltages of all the cavities.

We are now in a position to evaluate the order of magnitude of . In fact from
(18) it follows that the rf field must be of the same order of magnitude of R, ,
whose order of magnitude is given by w; .

It is then easy to verify that the condition *“a” mentioned at the beginning of this
paragraph is satisfied as long as one has

rotK < 1. 1)

For a machine in which the bending magnets have a field of the order of 10%
Gauss this means y 5 106.

Hence all of the electron circular accelerators considered up to now satisfy (21)
and, as a consequence, the condition “a”.

Although it would be very interesting to study the situation in which condition
“a” does not hold, we will not consider it in this paper.

4. As said in the previous section, to solve the equations of motion (14),
we use a perturbation technique based on the assumption that condition “a” is
satisfied. The procedure will be as follows:

(1) we solve (14) assuming ¢ = 0; in this case one has p = constant and the
equations determine the transverse motion to order ¢ == 0, ie., with no syn-
chrotron oscillations, dampings, and fluctuation terms;

(2) using the preceding solution and assuming i, 5= 0 (but i, == 3 = 0)
we determine the longitudinal motion and the variation of energy;

(3) to the solutions obtained in this way we add a small term, due to the
perturbation produced by i, and ¢, and then determine the complete solution
of (14) by a perturbation technique.

Let us consider now the first step. Introducing the vectors

x 0
A ’ " K
=171 W=,

z' 0
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and the matrix

0 1 0 0
—K*(1 —n 0 M H

AO(S) = (0 ) 0 0 1 s
M —H —K®n 0

Egs. (14) can be rewritten (when ¢ = 0, and p = constant),

F'(s) = Ay(s) (s) — pX(s) + Fod(s — 50). (22)

The vector ¥, embodies the initial condition for s = s, .
The solution of (22) is given by

3 = [ Nls, H=pR) + 53" — s0)} s’ @3)

provided that the matrix Ny(s, s") satisfies the following equations:

(9/0s) Ny(s, s') = Ao(s) No(s, 5');
(8/05") No(s, s") = —Nofs, s") Ao(s); (24)
Ny(s,s) = 1.

The solution (23) can also be written in a simpler form if we choose the particular
solution associated with the non homogenous term p to be periodic in s with the
machine periodicity L.

Then we have 3

H(s) = Pp(s) — p&(s),

where
JA’ﬁ(S) = Ny(s, $5) Jo (25)
and
o) ={l = Nuls, s — D | Nifs, ) (6 ' 6)

The term Jg(s) describes the betatron oscillations and pé(s) the closed orbit,
proportional to the energy displacement.

The frequencies of the betatron oscillations (usually of the same order of magni-
tude as w,) are defined by the characteristic equation

det | No(so + L, s0) — Al | =0,

from which stability conditions can be investigated. This and other properties of
the matrix Ny(s, s') are briefly summarized in Appendix A.
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We consider now the second step assuming for the moment i, to be given by
P10 = f(0) O(s) — ws + pf,

and hence neglecting the fluctuation term and terms op or iyox, which, as we
shall see, give rise to-secular effects.
Then the first of Egs. (14) becomes

p' = f(o) B(s) — w, + pf5,
to which one must associate the Eq. (19b) defining o, namely,
¢ = —KXx.

According to the decomposition of the transverse motion as given by (25) and
(26), the equations for the energy variation and for the longitudinal motion can

be rewritten as )
p' = flo) 0(s) — w, + pff,

, @7
o' = K& p — Kyg, -
Since we are mainly interested in the small amplitude motion around the syn-
chronous particle we also linearize the function f (o):

f0) = flo) +-L| (o~ oy,

=0y

It must be noted however that f'(¢) contains the only relevant non linear terms:
these terms have their full importance at injection when the dampings have not yet
influenced appreciably the initial amplitudes.

Using the notation F = f(0)/00 |,-,, and introducing the vectors

—Foyf(s) + flog) Bs) — ws + pi
_Kyﬁx

pols) = i Igfl Fﬂés) ,

A | P A
77_}0'" T_'

b

the linearized equations obtained from (27) can be written as

() = po(s) A)(s) -+ #(s) + Ae3(s — 5o). (28)

Here again the vector 4, gives the initial conditions.
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The solution of (28) is
i) = | Mals, $)iiod(s — ) + #(s)} ds', (29)

where the matrix M(s, s") is defined in the same way as Ny(s, s').
Assuming @(s) to be given by the expression introduced in Section 3, namely,

it is easy to show by explicit integration of (28) with € << s << € 4+ L/Ng, that the
matrix M(L/Ng + e, €) is given, in the limit ¢ — 0, by

. . R
i (Eead=| L 2
Ng

where «, the momentum compaction, is given by

Y iv_R_feJrL/

Ng
T K(s) &:(s) ds.

The frequencies of the energy and phase oscillations are determined by the
characteristic equation

lim det | M(L/Ng + € €) — AT| = .

Due to the simple structure of M [Eq. (30)],
A = eiil"
with

cos,u=l—|—%lﬁf (31

Clearly the motion is stable only if F << 0. According to (20),
f(0) = (eV,/NgEs) sin kw0,

and we have

eVikw
02 cos kwyo,

F= NzEs
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and

lzzockeVo
2 NgEg

cos p =1+ cos kwyoy . (32)

As long as condition “a” (Section 3) is satisfied the second term on the right-hand
side of (32) is much smaller than one. Hence we have

L )2’

e G vt = o

where

Otke VO
3B cos kwyoyg .

p2 = —

Clearly v, measures the frequency of the longitudinal and energy oscillations in
units of the revolution frequency. Notice that

vy £ 1.

To summarize the results of this section we can say that, in the limits of the
approximations used, the particle performs fast betatron oscillations around the
closed orbit p¢, and phase and energy oscillations with frequency much smaller
than w, .

At last we want to add a remark concerning the particular solution of (28)
associated with the term #(s), namely,

8
f M(s, s) #(s") ds’.
From the structure of + it follows that, when v, < 1, this particular solution is

small and can be neglected.

5. Let us write down (14) using the complete expression for ¢ as given in
Section 3, in particular [see Egs. (15)-(17), (17')],

P = 0y(8) Flo — o) + floo) Bo(s) + pi — W,
— p{flog) Do(s) + pi — @i + wi}
—w, 32 (Kn——II{(—z)x—}—%z ——-%Z’ — Kx{ — pfKx + g4, (33)
x" 4+ K1 —n)x — Mz — Hz' = —Kp — wy(x’ — Hz)
+ A =Pl +ap+ 8,
2"+ Kz — Mx + Hx' = —w(z' + HX) + (1 —p)pF + afp + g,
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where the notation 9(s) (1 — Kx) = @,(s) has been used to simplify the notations
[note that K = 0 whenever @(s) £ 0 according to the statement in Section 3].
To (33) we add the other equation, defining o [see (19b)]

o = —Kx.
On the basis of the results of the previous section we look for a solution of (33)
of the form

P =Da 1 Dp

Al (34)
§ =95 — &(psa + o),

pg being a quantity of order w; and oscillating with the betatron frequency, and £
being still defined by (26).

Actually an examination of the first of Eqs. (33) shows that these fast oscillating
terms derive from the fluctuation term g, , and from the coupling with J5, and
that this coupling occurs through terms proportional to w, or p;. Hence when we
substitute (34) in the first of Egs. (33), we can single out the fast and the slow oscil-
lating parts of p and, neglecting all terms like pg f'(0,) or pgw, , we obtain the two
equations

, H? 2M H
Dg = —Wg 32 (Kn - _K—) Yo, + X Ve 2 T Ve Ky51§ — pi Kyg,,  (35)

P = Iu(s) Flo = o0) + (00 9o(s) + o — wy = pux {(00) 9(s)

2
ot —af = KEGE — w) — 2w, [(Kn — ) £, o)

+%f3—‘%{§4]€‘|‘g31-

Note that w, ~ K2 so that division by K causes no trouble.

Equation (36) differs from the corresponding Eq. (27) of section 4 only because
of the addition of the fluctuation term and of the term proportional to p,, . The
coeflicient of this term, which is the one responsible for the damping of the energy
and phase oscillations, is small, being of order w, , and periodic with the machine
periodicity, so that it can be substituted by its average value D, :

1 L k % %
D, = 4 [ W) 065) + pi + w, — af — Ko — w)

) ot M)l

— 2w, [{an — ~

Notice that in the process of average the term w(H/K) £, , which can be written
as the derivative of a periodic function, drops out.
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Hence Eq. (36), together with the other equation ¢ = —Kx, can again be
written in the form (28), namely
() = p(s) (s) + # -+ Hodls — o) + I (38)
with
. _D 8 F @O(S)
ORI (39)
and
#s) = —F0(s) 0 + f(0g) Do) + p1 — s
—Ky, + Kép (40)
Iy =%

Next we come back to Eq. (33) to examine the behavior of betatron oscillations.
When substituting (34) in the last two of Egs. (33) we make use of the following
considerations:

(1) a part of the terms proportional to py; + pg drops out because of the
definition of the vector ¢;

(2) for the remaining term containing p,, or its derivatives we assume, since
we are now interested in fast oscillations,

Psi = const,  py = gq;

(3) we neglect all terms proportional to w,* or to wp*;
(4) we neglect small closed orbit terms like p* or p*py; ;

(5) we neglect all terms like wxg , Wozg , WeXg , WsZg , When they are summed
to one of the main focusing term like for instance in the sum Mxz + wxg .

As a result, with the help of (35), we obtain the following equations:
xg + K*(1 — n) xy — Mzy — Hz,
+ xp{w [l + 2Kné, — K& + PTK&} = I

25 + K®nzg — Mxg -+ Hxp 1)
H? H M
ol -2 e - g a2 RE] = T

where

I'=gs+ ga(2¢, — HE) + gubs,

42
Iy =gp+ ga(2€4 + HE) + gaés - “2)
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Since those coefficients of x; and z; which are proportional to w, are small with
respect to the main focusing forces, and are periodic with the machine periodicity,
they can be substituted to a very good approximation with their average values
which will be called Dy, , Dy, :

L
D = [ 0,0+ 2nKE, — KE) + oKty do,

1 L H? 2M “3)
Dy, =ffo §Ws (1 - 2'7{51) +—1'<“§3§ ds.
We again used the fact that the average value of w(H/K) £, is zero.
Egs. (41) can now be written in vector form, namely,
Fp— AGs) Jp = ' + $3(s — s0), (“44
where
0
A [‘1
I'= 0 (45)
I
and
0 0 0 0
- 0 —Dy 0 0
0 0 0 — Dy,

We look now for solutions of (44) and (38) by the same procedure used in
Section 4.

Defining a matrix N(s, s) by means of Eqs. (24), but with 4, substituted by 4,
the solution of (44) is

Fe(8) = NC(s, s0) Jo(s0) + f_ N(s, 5') I\¢s") ds'. @47
The solution of (38) can also be written as
A(s) = M(s, 50) o + [ M(s, )#(s) + Fy(s)} ', (48)

with M(s, s') still defined by Eqs. (24) with 4y(s) substituted by p(s).
As remarked at the end of Section 4, the term fiw M(s, s") 7(s") ds’ can be
neglected.
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In this case, (48) becomes
7(s) = M(s, ) o+ [ Ms, s) Ty(s") ds', (432)

which has exactly the same structure as (46).

. 6. The solution of Egs. (14) given by (47), (48) represents, in the case
I'= 0, 'y = 0, damped oscillations with the damping constants determined by
the coefficients Dy, , Dy , D, , which satisfy the relationship

1 L
Dy + Dy + D, = [ (4w, — a}) ds.
R

This formula is well known apart from the term af.

While the damping constant for the synchrotron oscillations is simply given by
(see Appendix 1):

1/ Ts = _% D,
the damping constants for the betatron oscillation are complicated functions of

Dy, , D,, (see Appendix 1). Only in the case when the radial and vertical motion
are uncoupled we simply have

1 1 1 (f .
=g lu= —ffo w1 & 2nK¢, — KE)) + piKE, ds,
1 1 1 &

= —3De= g [ wes

Let us now consider the case in which the fluctuation terms I"and I', are different
from zero.

In particular, examination of solutions at regime, that is many damping constants
later than injection, is relevant to the problem of the beam size.

Then we are no longer interested in the instantaneous values of the random
vectors Jg or 4, but rather in the correlation functions {ys,(s) ¥p:(s")>, {n:(s) 705,
where the averages now refer to the distribution of the random variables appearing
in the fluctuation terms.

In particular we want to determine the quantities ¢ Vei(8) yai(s)> and <{n,(s) 7:5),
which we shall write for brevity as

{ Yar Yars e
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In fact, once one has determined these quantities, the distributions of the energy
and of J are given by

1 4

Py(ys1VpaYpa¥ps) = o {det m,;}*1/% exp g“ Y mrtyﬁryﬁtg: (49)

Tst==1
O ——— o (50)

o Qul{n ) 2?7

where the quantities m,, are related to < yg, ys;> by
. £ M rt

<J’,sry5t> = 5 detmn oy (51)

and
Y mpM,, = det M.
T

Both m,; and < yg, y;> are symmetric in r and £.
The folding of P, and P, according to (34) and neglecting p, gives the distribution
of the absolute positions and velocities.
Writing
j} == JA’B _ 7]157

one has
A +w A <
PG) = [ dmpson) P + mib).

The explicit result is

P(j)) = % (det H’rs)llz C€Xp g_’ Z :ursyrysé: (52)
where
1 ~1
Mops = Wlpg — gz mrtmsvftgﬂ (‘m‘ + z mtvftfu) } (53)

Use has been made of the symmetry property m,, = m,, , which also holds true
for the new coeflicients u,, = p, .

Local symmetry axes (somewhat like normal coordinates) can be introduced by
diagonalization of the matrix | u,, |; this can provide some information in connec-
tion with the observation of synchrotron light (see Appendix 2).
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7. In this section we want to evaluate explicitely the quantities < yg, Vg,
{nmy. To do this we first notice that the quantity I',(s), defined by (40) can be
written as

cw

3

ﬁp(s)zzz

(s — 8,) (54)
and that, since the C are random variables (describing the random process ),
one has the important property

<Fp,'r‘(s) Fp,t(s/)> = S(S - S/) Kﬁ(S), ryt = ls 29 (55)

where

Y Cs)> 0
Ko(s) = |7 . (56)

0 0

This matrix will provide the relevant input data for the actual computation of

-
Then we follew the same procedure for the betatron oscillations. Notice first
that the term 1'(s), defined by (42) (45), can be written as

I'(s) = Y, Y. {a9%,(s) 8(s — 5,) + B9 (s) 8'(s — 5}
Jj o
and the insertion of this term in (47) is formally equivalent to the insertion of

Is) = 3 3 {491 (s) — BPf(s) + A(s) BOf()} 8(s — ). (57

Then one also has, in the case of betatron oscillations like (55) for the phase motion,
the following structure of the correlation functions of the random perturbing terms:

I¥(s) TH(s)Y = 8(s — s7) K (s), rt=1,.4; (58)
K(s) will indicate the 4 X 4 matrix having elements K,(s).

Let us now consider Eq. (47) which can also be rewritten in a form which makes
explicit use of the periodicity of the magnetic structure, i.e.,

F(s) = NGs, s — D) als — L) + | :_L NGs, ) I*(s") ds'. (59)

We shall abbreviate in the following N(s, s — L) by N(s).
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It proves convenient to diagonalize N(s); this can be accomplished by means
of a matrix U(s) such that (see Appendix 1)

A(s) = U(s) N(s) UY(s)

is diagonal.
The transformed vector is

g(s) = U(s) Fg(s)-
Also, due to the periodicity of U(s),

(s — L) = U(s) yg(s — L)
so that

&)= A ds — L)+ [ Us) NGs, s PH(s") ds” (592)
s—L
Next introduce the correlation functions

Q’rs(sl P S2) = <(JT(S1) Qs(sz»a
Grs(sl ’ Sz) = <6.7¢(S1) Fs(52)>;

Q and G will indicate in the following the corresponding 4 x 4 matrices.
Assuming that the machine is stable, a random-stationariety character ® of
Q can be recognized in the following property:

O(sy 5 83) = Q(sy + nL, s, + nL),

where » is any integer.

Then recalling the property (58), an equation for G is easily derived from (59a)
in the form

G(s,s") = 4(s) G(s — L, s") + U(s) N(s, ") K(s") O(s, s").
Here 0(s, s") is a function (not a matrix) such that

0(s, s’y =1 when s — L <5 <3,
=0 otherwise.

It follows that, as required by causality,

G(s,5) =0 when s >,
= U(s) N(s, s") K(s) when §s— L <s <y,
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and this is all what we need together with the random-stationariety of Q to get
the following equation for Q(s) = Q(s, 5):

Q(s) = 4(s) Q(s) 4(s) + R(s), (60)
where

R(s) = UG | i_L N(s, 8°) K(s) N(s, s") ds' U(s).

Here UT is the transpose of U, etc; use has been made of the obvious property
K(s) = K*(s).
Introducing the diagonal matrix (see Appendix 1)
T(s, s") = U(s) N(s,s") U(s")
and the matrix

Z(s, s") = U(s") K(s") UL(s"),

R(s) can also be written as

R(s) = fs . T(s, s Z(s) T (s, s) ds’. (61)

S~

The solution of (60) is
0(s) = 2 [4©)F REAGT.

This series can be summed by virtue of the fact that 4 is diagonal so that

1
Ors = —— 7 Ros-

It also easily follows that the quantities we need are given by

U Uy
ooy = X T foqs Rev 62)
BrJBs TZ;’ 1 — Ar’As' r

This formula provides the formal solution of the problem. Its structure is better
understood by writting

R(s) = U(s) 2(s) UT(s)
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and introducing the 4-indices simbol

Ut U U Uy,

Mrtsv = Z 1 — ArAs’

rs’

Then < yg, yg,» can be expressed as the product of a factor depending on machine
structure only (M) and a factor depending on radiation (%):

<yﬁryﬁs> = Z Mfrtsv'@tfu .
1.0

In particular, resonant filtering of the radiation noise is exhibited in the
denominators 1 — 4,4, appearing in the definition of M,,,, ; analysis of such
denominators for a given machine structure is generally important in itself.

In fact, for a stable machine, one can write

4y 5 = exp[(—etivy) L]; 4,4 = exp[(—ey*ivy) L],
with € ,L < 1 and v, , real, so that the main terms of (62) are given by
1 .

Vprypsy = 3.l {ULUGR, + UZULR,}

. (63)
5oL UnUaRy + UUgR,).

The evaluation of {7,m,> can, of course, be performed in the same way as for
{ Ygr yar>- Calling M(s, s — (L/Nz)) the transfer matrix over one period defined
by the f cavities, and £2(s) the diagonal matrix obtained by a similarity transforma-
tion generated by V{(s),

$2(s) = V(s) M(s, s — L/Ng) V-Y(s),
writing £2, , = exp[(—e,%iv,vy) L/Ng], we have

1 N,
ey = 5 AVAVERY + VAVERL) (64)

where

R*(s) = V(s) f i_L/N M(s, s7) K2(s") M™(s, s") ds'V{(s). (65)
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8. While (64) can be easily put in the usual, and more practical, form

e =2 TR0 s a

s—LINR j
1 LaF 1 L«
i TIim (66)
_ 1 Lo _ Lo
2 Ng NgpF

the computation of the transverse beam size by means of (63) is quite cumbersone
and requires the use of a computer.

This task has been performed succesfully for the case of the (2 x 1.5)-BeV
ring Adone, by M. Bassetti and M. Buonanni (unpublished), where useful numerical
data on the beam size was indeed obtained.

However, in the case when the vertical and radial motion are uncoupled, (63)
also can be reduced to a very simple form. We think it useful to show how can be
done for instance for the case of the radial betatron motion. Of course the same
procedure can be used to obtain (66) or the vertical dimension.

Using the notations of Ref. (7), the matrix N(s, s') can be written in the one-
dimensional case as

N(s, s")
[ g((;l)) ]1/2 {cos ¢ + «fs") sen i} [8(s) B(s")I/% sen o
| [os") = o(s)] cos i — [1 + afs) As)] sen b [B(sHH
s S CO[B(S) B(sHI2 al [B(S) ] {cos i — afs) sen

The matrix U(s) is given by

=515 Yl

I— o
and with the help of (67) one can write the matrix 7(s, s") as

et 0
0 e-td

T(s, s") = g g((j,)) ”

The next step is to write explicitely the matrix K(s). To this end we assume that,
in expression (42), the term g, can be neglected, as is usually possible, to a good
approximation, and that g, is defined as in (54).
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Then using (57), (58) one has

KO =3eon | f G (©9)
Using (67), (69) we get for the off-diagonal elements of the matrix Z(s, s)
Zao(s) = Zn(s) = H{(1 + o¥(s5)) &%(s)
+ 2B(s) os) £u(s) €xls) + B(s) €29} X <c*(s)). (70)

We have now all the elements necessary to evaluate R;, and hence < yg, yp,> as
defined by (63). The result is

o> =57 [ X et [ i)
+20(5) (5 £6") + B) £ "Dy, an
Here D, (s) is the r, ¢ element of
B —al)
D(s) = ) l—%{;@ :

This result agrees with the well known formulas in the literature (2).

APPENDIX 1

We collect here for completeness the relevant properties of the matrix N(s, s)
as defined by (23) and (24).
The first property we mention is

N(s", 8) N(s, s") = N(s", s"). (A.1)

This property is completely equivalent to the set of properties (24) since, when
s" =5, (A.1) gives N(s, s) = 1 and when s” = s + ds the equations of motion give

N(s + ds,s) = 1 4+ A(s) ds.

The second property concerns the diagonalizability of the matrix N(s, s’). First
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notice that N(s, s") can be reduced to it’s Jordan canonical form; then, from the
continuity of N(s, s') and the fact that N(s, s) = 1, it follows that N(s, s") is diago-
nalizable.

The third property concerns the independence of the eigenvalues of N(s) on s;
this is easily shown by using property (A.1) as follows:

det(N(s) — AI) = det{N(s, s") [N(s") — M] NY(s, )} = det(N(s") — AI)

for every s, s'.
The fourth property is perhaps less evident; the matrix

T(s, s") = U(s) N(s, s") U(s") (A.2)
is diagonal. Here U(s) is the transformation matrix such that, by definition,
A(s) = U(s) N(s + L, 8) U(s) = U(s) N(s) U(s)

is diagonal.
To prove the property (A.2) let us introduce the orthonormal eigenvectors
é,(s) and the eigenvalues A; (independent of s) of the matrix N(s):

N(s) és) = Aé(s); (A3)
then put
N(s, s") é(s") =Y, al?(s, 5') €,(s). A4
Now
N(s + L, s") é(s") = N(s + L,s" + L) N(s') é(s") = N(s, ) A:é(s"),

so that multiplying (A.4) by N(s + L, s) we get

N(s, sY A E(s") = ali)(s, s') N,&,(s). (A.5)
Next, multiplication of (A.4) by X; and substraction of (A.5) gives
Y a(s, ') ()N — A3 = 0. (A.6)

We will assume nondegenerate eigenvalues for a properly operating machine; thus
the linear independence of the eigenvalues requires

ad(s, s') = a,(s,5") 8, -
It follows that
ex™(8) N(s, ') e(s) = a(s,5") s » (A7)
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where e, (s) indicates the Hermitian conjugate (one-row vector ) of e,(s). But (A.7)
is equivalent to (A.2) since the matrix U(s) is build up by using the eigenvectors
according to the well known technique for diagonalization.

Eventually, we note that the damping constants will be obtained from the secular
equation for N(s) and that only the eigensolution will have a simple exponential
decay. Moreover, the homogeneous equation " = A(s) y will in general have a
Wronskian proportional to

exp 3—— f [Trace A(s)] ds;.

APPENDIX 2

The distribution in positions as deduced from (52) by integrating over the angles
can be expressed in an equivalent form in which local symmetry axes appear. To
this end, let us introduce locally rotated axes &, £ by the transformation

%= xcosf -+ zsin 0, Z = —xsin 8 + z cos 6.

By choosing
tg20 = o) Pz — H3)
and then putting

-1 Bz
Mga = 2 (Moz + pe) + sin20°

= 1 _ _ P
,u'zz - 2 (:u‘wm {" ,u'zz) Sin 20 bl

the distribution transforms into
P(x, %) = 77_1(ﬂxwﬂzz)1/2 eXp — (ﬁwmﬁz + ).
Thus, looking at the beam section (e.g., by the light), an elliptic spot appears

having symmetry axes along the direction & and 2. Also, the inverse effective area
S in the luminosity (for two crossing overlapping beams) is given by

L [ pys sasds— Lz g owe )
< = [ P&, 9) d& df = 5 (Fuolt® = 5 P(O, 0).

1/S is thus half the maximum transverse density.

RECEIVED: June 28, 1967
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