COMITATO NAZIONALE PER L'ENERGIA NUCLEARE Laboratori Nazionali di Frascati

LNF-68/6 28.2.1968

M. Grilli, P. Picozza, C. Schaerf, R. Scrimaglio, F. Soso, P. Spillantini e R. Visentin: FOTODISINTEGRAZIONE IN DUE CORPI DELL'HE4 NELL'INTERVALLO DI ENERGIA: $500 \le E_{\gamma} \le 750$ MeV.

Servizio Documentazione dei Laboratori Nazionali di Frascati del CNEN Casella Postale 70 - Frascati (Roma) Laboratori Nazionali di Frascati del CNEN Servizio Documentazione

LNF-68/6

Nota interna: n. 391 28 Febbraio 1968

M. Grilli, P. Picozza, C. Schaerf, R. Scrimaglio, F. Soso, P. Spillantini e R. Visentin: "FOTODISINTEGRAZIONE IN DUE CORPLEL-L'HE⁴ NELL'INTERVALLO DI ENERGIA: $500 \le E_{\gamma} \le 750$ MeV".

E' stata eseguita presso l'elettrosincrotrone di Frascati una mi sura della sezione d'urto differenziale a $\theta_{\rm CM}$ = 60° ed 500 $\leq E_{\gamma} \leq$ 750 MeV della reazione

(1)
$$\gamma + He^4 \rightarrow He^3 + n$$

Nel corso dell'esperimento si sono ottenute, anche, informazioni sulla produzione di deutoni da He⁴ per γ di energia minore di 500 MeV e di energia 500 $\leq E_{\gamma} \leq 750$ MeV.

La misura della reazione (1) nella zona d'energia $500 \leq E_{\gamma} \leq$ $\leq 750 \text{ MeV}$ è stata suggerita da alcuni precedenti dati^(1, 2) sperimentali interpretabili con la esistenza di un eventuale stato eccitato della particella \ll in corrispondenza di $E_{\gamma} \simeq 600 \text{ MeV}$.

Nel § 1 riportiamo brevemente il metodo di misura e nel § 2 le conclusioni che si possono trarre.

1. – La misura è stata effettuata usando una targhetta di elio liquido a cella cilindrica verticale (diametro = $6 \text{ cm}^{(3)}$).

Le condizioni cinematiche di lavoro corrispondevano alla produzione di He³ a $\theta_{CM} = 60^{\circ}$, nell'intervallo $500 \leq E_{\gamma} \leq 750$ MeV e si ottenevano fissando l'angolo nel laboratorio dell'He³ ed il suo momento mediante un canale magnetico (v. Fig. 1).

FIG. 1 - Schema del dispositivo sperimentale.

La discriminazione tra le varie particelle prodotte veniva opera ta misurando l'ampiezza d'impulso nel contatore S_4 (v. Fig. 1) ed il tem po di volo tra S_1 ed S_4 . Più precisamente, si correlavano HS_4 (ampiezza del segnale di S_4) e t (tempo di volo tra S_1 ed S_4), mediante un 1024 cana li Laben, comandato da $S_1S_2S_3S_4\overline{S}_5$.

Lo schema a blocchi della elettronica è riportato in Fig. 2.

L'anticoincidenza di S₅ operava una separazione tra $(d + He^3)$ e (pioni + protoni + elettroni) con una efficienza misurata del (99.8^{+0.2})%. -0.8

Una prima selezione fra le varie particelle prodotte era data dai tagli sulle ampiezze dei singoli contatori del telescopio e dal fatto che la coincidenza $S_1S_2S_3S_4$ era in tempo per particelle di velocità eguale a quella attesa per un He³.

Una situazione tipica delle condizioni di misura è mostrata in Tabella I, ove si riportano i valori attesi per le quantità dE/dx, HS_4 [la saturazione del plastico è calcolata sulla base della formula(2)]t (tem po di volo fra $S_1 e S_4$), R (range), corrispondenti a protoni, deutoni e pioni con impulso di 580 MeV/c, e ad He³ di 2 x 580 MeV/c.

Le misure di tempo di volo sono state eseguite con un convertito re tempo-ampiezza⁽⁴⁾, per il quale è stata misurata una risoluzione tem porale $\Delta t = \pm 1$ ns con protoni di p = 600 MeV/c e $\Delta p/p = \pm 2\%$. La dispersione dei tempi di volo calcolata in base alla accettanza in momento del canale magnetico, è stata confermata dai risultati relativi al pic-

DR DISCRIMINATORE RAPIDO

T_G TRIGGER

GTL GATE LINEARE

C.T.A. CONVERTITORE TEMPO AMPIEZZA

FIG. 2 - Schema a blocchi dell'elettronica.

co dei deutoni (Fig. 3) e da quelli relativi ai protoni usati per la calibr<u>a</u> zione.

Le ampiezze attese in ${\rm S}_4$ per i segnali dell'He^3 e dei deutoni sono state calcolate in base alla ben nota relazione

(2)
$$\frac{dL}{dx} \ll \frac{\frac{dE}{dx}}{1+b\frac{dE}{dx}}$$

 $con b = 10^{-2} (g/MeV x cm^2).$

Nel corso della misura si è fatta una calibrazione in ampiezza di S₄ con deutoni di diverso momento. Tale misura ha messo in evidenza la saturazione del plastico di S₄ (NE102; 5 mm di spessore) già per $(\Delta E/dx) \simeq 15 \text{ MeV/gr/cm}^2$ (vedi Tab. II), diversamente da quanto atteso. E' stato pertanto possibile separare unicamente particelle al minimo e protoni, da (d + He³).

TABELLA I

Particella	π	Р	He ³	d
dE/dx (MeV x cm ² /g)	2	4.7	40.7	16.7
HS ₄ (unità arbitrarie)	1	2.3	14.6	7.2
t (ns)	0	7.5	13.5	20
R (g/cm ² , Cu)	280	27.5	5.57	5.35

1. 5

dE/dx (MeV/gr/cm ²)	12	17	31
$(dE/dx)/(dE/dx)_{min}$	6	8.5	15.5
$HS_4/(HS_4)_{min}$	6.1+0.1	7.2 ± 0.2	7.8 ± 0.2

(x) - Gli errori riportati su HS_4 indicano la precisione con cui è stato determinato il valore medio. La semilarghezza della distribuzione di HS_4 , nel range di linearità del contatore S_4 , valeva + 15%.

La separazione tra deutoni ed He³ è stata basata, quindi, sulla sola misura del tempo di volo.

Alcune tipiche distribuzioni in t misurate a p = 600 e 635 MeV/c sono riportate in Fig. 3a, 3b.

Si nota in questi grafici un picco pronunciato per i deutoni; mentre quello dei protoni risulta depresso a causa delle discriminazioni introdotte.

4.

FIG. 3 - Alcuni esempi di distribuzione degli eventi in funzione del ritardo fra i contatori S_1 ed S_4 . Sono indicate le posizioni attese per i protoni, deutoni ed He³.

In Fig. 3 sono inoltre riportate le posizioni attese per i deutoni, protoni ed eventuali He³. Nei calcoli che seguono sono stati assunti come He³ gli eventi contenuti entro \pm 1.5 ns (\pm 2.5 canali Laben) intorno al valore atteso, per il ritardo di queste particelle.

Con gli stessi criteri descritti sopra sono stati misurati i fondi da cella vuota ed i contributi a cella piena dovuti a gamma con $E_{\gamma} < 500$ MeV (misura con $E_{\gamma max} = 500$ MeV).

2. - I risultati che si deducono dalle misure su descritte sono:

a) Procedendo nel modo indicato si ha che il contributo di He³ da gamma con 550 $\leq E_{\gamma} \leq 650$ MeV, risulta^(x):

n = (numero eventi He³ per 6.10⁹ q.e.) = (0.6 ± 1.6)

Un limite superiore corrispondente a 2 deviazioni standard (cioè n = 3.8; 97,7% di confidenza) per la sezione d'urto differenziale è

$$\left(\frac{d\mathfrak{S}}{d\Omega^{\mathbf{x}}}\right)_{\theta \in \mathbf{M}} = 60^{\circ} = 3 \times 10^{-32} \frac{\mathrm{cm}^2}{\mathrm{sterad}}$$

Questo risultato sembra escludere almeno per il canale in esame un contributo risonante. Naturalmente trattandosi di canali diversi il risultato non può considerarsi rilevante agli effetti di una decisione sulla attendibilità delle indicazioni ottenute negli altri esperimenti(1, 2).

b) Dalla contemporanea misura dei deutoni, prodotti a θ_L = 40° e p_d = 540 ÷ 730 MeV/c, si ricavano le seguenti informazioni:

- 1) l'andamento del conteggio dei deutoni (a parità di quanti equivalenti) in funzioni di p_d (momento dei deutoni) e per $E_{\gamma M}$ = 750 MeV e 500 MeV, rispettivamente, è quello riportato in Fig. 4a. Il rapporto fra i due suddetti contributi è riportato in Fig. 4b, in funzione di p_d .
- 2) Integrando i suddetti contributi sulla banda di p_d accettata si ottiene (E_S = Energia del γ alla soglia)

 $\frac{\text{contributo dovuto a } \gamma \text{ con } E_{\text{S}} < E_{\gamma} < 500 \text{ MeV}}{\text{contributo dovuto a } \gamma \text{ con } 500 < E_{\gamma} < 750 \text{ MeV}} = 0.92 \pm 0.23$

⁽x) - Il 50% dell'errore indicato deriva dalla precisione con cui si è misurato il contributo per $E_{\gamma} \leq 500$ MeV.

FIG. 4 - Andamento, in funzione del momento del deutone (p_d), del conteggio dei deutoni prodotti a $\theta_L = 40^\circ e \operatorname{con} E_{\gamma MAX}$, rispettivamente, eguale a 750 e 500 MeV (Fig. 4a). In Fig. 4b) è riportato, in funzione di p_d , il rapporto fra i due suddetti contributi.

FIG.5 - Andamento, in funzione di p_d , delle sezioni d'urto differenziali (in E_{γ} , p_d e per unità di angolo solido) per la produzione di deutoni da He⁴ ad un angolo (nel Lab) $\theta_L = 40^{\circ}$.

3) Dai conteggi su riportati sono state calcolate le sezioni d'urto differenziali $(d f/dE_{\gamma}dp_{d}d\Omega)_{LAB}$ riportate in Fig. 5. Nel calcolo di que ste sezioni d'urto per dp_d e d Ω sono stati presi i valori corrispondenti al canale magnetico usato. Nel caso della curva 2 in Fig. 5 l'in tervallo efficace in E_{γ} è stato calcolato prendendo come E_{γ} di soglia (E_S) quella corrispondente al processo di fotodisintegrazione in due corpi (He⁴ -> 2d).

BIBLIOGRAFIA -

- E. Allton, S. Ferroni, V.G. Gracco, B. Merkel and C. Schaerf, Nuovo Cimento 46, 407 (1966).
- (2) P.E. Argan, A. Piazza e G. Susinno, Misure preliminari sulla reazione $\gamma + \text{He}^4 \rightarrow p + \text{H}^3$ per $\text{E}_{\gamma} \leq 1000$ MeV. Comunicazione privata.
- (3) V. Montelatici, Nuclear Instr. and Methods 29, 121 (1964).
- (4) C. Dardini, G. Iaci, M. Lo Savio, R. Visentin, Nuclear Instr. and Methods <u>47</u>, 233 (1967).