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Summary. — The infra-red corrections to be applied to the results expected
from an electron positron colliding beam experiment are determined
with the help of the Bloch-Nordsieck theorem. Experiments are charac-
terized by a resolution function g(k) of a four-dimensional timelike energy-
momentum vector, which represents the probability that a four-momentum
loss & escapes detection. The results are applicable to a class of experiments
in which the statistical error is matched to the error of the energy-
momentum: resolution. Various approximations which allow. a rapid
and accurate estimate of radiative corrections are discussed.

1. — Introduetion.

Any search for a possible breakdown of quantum eleetrodynamics leads
inevitably to the necessity of applying important radiative. corrections to the
measured vesults. This is due to the fact that renormaliZation. ¢S
the form of electrodynamics at low momentum (and energy) tmnsfe;c,em matter
of definition, so that any diserepancy with the existing theory has to be searched
for by either studying processes in which the transferred momentum is very
large or by making high-precision measurements on processes with a moder-
ately high momentum transfer. In either case radiative corrections are impor-
tant: in the first because high-energy charged particles are created and de-
stroyed—a process. which leads to large currents and therefore to the libera-
tion of a considerable portion of the energy in the form of relatively soft elec-
tromagnetic. radiation—in the second case beeause the high precision of the
experiment requires for its interpretation a high precision in the determination
of any correction.
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2 B THE INFRA-RED RADIATIVE CORRECTIONS ETG.- ~ . -~ [277]

It has long been recognized ((sompare'SOHWINGER'(l),' JavcH and ROHR-
LICH (?), YENNIE (*), LoMoN (), ERIksoN (%)) that straighiforward pertur- -
bation theory does not lend itself easily to dealing with the flood of soft pho-
tons which emerges from a high-energy collision between charged particles.
The reason for this is that the picture of an experimenter as of one counting
soft photons is not entirely realistic: existing perturbation theory works in a
representation in which the number of photons is diagonal and the emission
of any additional photons requires a further step in the perturbation procedure.
The experimenter on the other hand does not see single photons, but rather
an unbalance of energy and momentum between the incident and emergent
particles.

This unbalance is attributed to electromagnetie radiation whiech escapes
direct observation partly beeause in many experiments the detectors are sepa-
rated from the region in which the interaction takes place by some form -of
container in-which low-energy radiation disappears tracelessly, partly because
the ‘detector is not designed to regigter soft photons individually.

A reflection of the incompatibility between the pictures of an experiment
drawn by theory and reality is the fact that no two experiments on the same
subject, carried out with different apparatus, can be compared with one
another before the radiative corrections have been determinedk(a,nd determined
in a form which is applicable to both experiments). ‘

The main purpose of this paper is to supply the experimenter with tools
for applying the radiative corrections himself. We shall confine our considera-
‘tions to high-energy reactions of the type

(1) et-Fe- = A+ A

where A is the antiparticle of A and we assuine m, = 0, because of ihe interest
of these reactions in view of the experiments on electron-positron colliding
beams now in preparatien, but we think that the methed here discussed :is
more general than what the restriction to interactions .of the type (1) might
suggest. .
Perturbation theory defines a cross-section d%¢o(0, @) for reaction (1) (6 and ¢
are the polar angles of the A particle and we neglect here and in the following
some complications which may arise from the spin of the particles involved

() J. SCEWINGER: Phys. Rev., T6, 790 (1949).

(?) J. M. Javca and F. Rouruice: Helv. Phys. Acta, 27, 613 (1954); The Theory
of Photons and Hlectrons (Cambridge, 1955). ; .

(3) D. R. Yennie and H. Suvura: Phys. Rev., 105, 1378 (1957); D. R. YENNIE,
8. C. Fravurscur and H. Svvra: Ann. of Phys., 18, 379 (1961).

(#)-E. L."Lomox: Nucl. Phys., 1, 101 (1956); Phys. Rev., 118, 726 (1959).

(®) K. E. ErigsoN: Nuovo Cimento, 19, 1010 (1961).
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[278] E. ETIM, G. PANCHERI and B. TOUSCHEK 3

in the reaction). This cross-section cannot be directly compared with experi-
ment, since reaction (1) can never take place without the production of pho-
tons. Indeed if the cross-section for (1) were caleulated accurately it should
be zero.

What can actually be compared with an experiment is a cress-section
da(0, @, k) for reaction (1), in which the four-vector k represents the momentum
and the energy carried away in the form of electromagnetic radiation. Since
this radiation always removes energy from the reaction and since, though the
momenta of different photons may cancel one another, their energies may
not, it follows that k will be confined to the positive light cone k, = w > |k|.

Any individual experiment on reaction (1) can be characterized by a func-
tion o{(k) of the vector k. This function describes the probability that a four-
momentum logs % will remain unnoticed; one naturally has ¢(0) =1 and
0<p(k)<1. The cross-section d?g, (0, ¢) that is measured in an experiment
described by the resolution function g(k) can be expressed in terms of dég

: d¢a(0, g, k)
(2) A20,cn (0, ) = f k() — 2

As long as the four-momentum less is sufficiently small, d®¢ can be fac-
torized

(3) ’ dso (0, g, k) = A*P(k) 32,0, @),

where d*P(k) is the probability of a four-momentum lossin d4%, and d2c,(0, @)
differs from d2c,(0, ¢) determined from lowest-order perturbation theory by
an « ultra-violet » correction. (Compare Sect. 4).

The probability d*P(%) is determined by applying the methods of stabis-
tical mechanics to the predictions of the Bloeh-Nordsieck (¢) theorem. This
theorem states that as long the recoil effects of the emitted radiation en the
emitting particles can be ueglected the distribution of the number of photons
is Poissonian and that the average number of photons with given momentum
can be determined classically. A general formula for d4P(%) is given in Sect. 2.

The properties of the function d*P(k) are discussed in Sect. 5 and 6. In
Sect. T we discuss what we retain to be useful approximations to the angular
distribution of the momentum loss.

The separability assumed in eq. (3) requires that the function o(k) which
is characteristic of an experiment iy different from zero only for energy losses
which are very small compaved to the total energy available in the reaction.
This requirement leads to the definition of a « balanced » experiment in which

(®) F. Brocr and A. NORDSIECK: Phys. Rev., 52, 54 (1937).
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4 THE INFRA-RED RADIATIVE CORRECTIONS .ETC. [279]

the statistical error of the measurement is matched to the kinematical error
in the observation of a single event. In Sect. 8 we shall discuss the possibility
of a check of quantum electrodynamics by means of « balanced » experiments.
We do not believe that « balanced » experiments are the only ones which
provide such a check.

9. — d4P(k) derived from the Bloch-Nordsieck theorem.

If the momentum transfer is large we can consider process (1) as taking
place in a very short time, which because of the uncertainty principle will
be of the order At ==1/2E. The incoming particles can be pictured to be an-
nihilated and the outgoing particles to be created in the interval Atf. Classi-
cally we can picture this process in exactly the same way as it was pictured
by Sommerfeld in his theory of the production of X-rays. The ineoming par-
ticles are slowed down to rest (or to nonexistence—in either case the final
product can no longer radiate) and the outgoing particles are accelerated to
their final veloeities in a time Af. This deceleration and acceleration produces
—classically— an electromagnetic field of which we can calculate the energy
from the Poynting vector formed from the field strengths. It is also possible to
obtain a Fourier analysis of the Poynting vector, which allows one to deter-
mine the energy dW radiated by process (1) into a frequency interval dow.
This energy will be given by

(4) AW= B(E, 0, »)dw .

As long as the slowing down and accelerating happens in a time interval which
is very short compared to 1/w, i.e. a8 long as o < 2E, we can assume f to
be independent of w, and that for the simple reason that in this case we can
represent the process of deceleration and acceleration by a J-function in
time, the Fourier transform of which is a constant. For sufficiently small fre-
quencies f will therefore only depend on the energy and the angle 0—it will
be independent of 6 if the A particle is neutral. The function S(H, 0) is cal-
culated in Appendix I, in which we also show that f is an invariant function
of the momenta. The fact that for low frequencies § does not depend on the
frequency characterizes the spectrum (4) as a « noise-spectrum ». The task of
determining radiative corrections therefore reduces to that of eliminating the
noise due to the disappearance and creation of charged particles.

From (4) one immediately concludes that the average mumber dn(w) of
photons in the frequency interval dw is given by

(5) dfi(w) == AW o = fdofo .
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[280] E. BETIM, G. PANCHERI and B. TOUSCHEK 5

(Here and in the following we put # =1.) The total average number of pho-
tons emitted in process (1) is seen to diverge at the lower limit w = 0. This
is the infra-red divergence, which, it is seen, can have physical significance only
if there existed an experiment which would enable us to count low-energy
photons in the limit w == 0. This is of course not possible: we will only be-
come aware of these photons if they draw some energy (or momentum, about
which we shall talk later) from process (1). An inspection of (4) shows that
this energy is always finite.

The correspondence principle only gives information about averages. In
order to have the details of the distribution of the number of photons one has
to apply the methods of second quantization to the electromagnetic field. As
long as the photons considered are sufficiently soft and as long as the cross-
sections show no violent dependence on energy and momentum transfer or
on the total energy (this is the case near a resonance) one can neglect the quantal
behaviour of the source particles. As we have already said in the Introduc-
tion, this is explained by the fact that the reaction (1) will in this case take
place in a space-time region of linear dimensions of the order of 1/2H, the
details of which cannot be resolved by photons the energy of which is small
compared to H.

The fundamental theorem concerning the quantum theory of the emis-
sion of soft photons from a classical source is due to BLocH and NORDSIECK(S).
They have shown that the distribution of the number of photons is a Poisson
distribution, <.e.

_,;:k

(6) P({m)) = T1 %—, exp [— ] .

Here n, is the number of photons which are emitted with momentum k (we
have assumed a discrete momentum spectrum for the photons, corresponding
to the quantization of the electromagnetic field in a finite conducting box),
7, is the average value of the number of photons with momentum k—it can
be determined by means of a procedure analogous to the step which leads from
eq. (4) to (B) (compare Appendix I). P({n,}) is the probability of proeess (1)
ending up with », photons with momentum k,, n, photons with mo-
mentum k,, ete.
From eq. (6) one can determine the probability d*P(k) of observing a four-
momentum loss k accompanying the reaction (1). This probability is given by

(7) @P) = 3 P({n,})0s (3 W —k) sk,
k'

where the sum » is carried out over all the values of all the n,. The
four-dimensional d-function selects the distributions {n,} with the right
energy-momentum loss k. %' in the argument of the J-function is given by
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6 THE INFRA-RED RADIATIVE CORRECTIONS ETC. {281]

k= (K, ky= |E'|). Bquation (7) shows that d*P(k)s= 0 only if & is inside or
on the future light cone. This fellows from the fact that all the n, >0 and
that %,>0.

The sum over the distributions {n} can be carried out by using the methods
of statistical mechanies. To this end one introduces a four-vector selector
variable %, so that J can be replaced by

(8) 64(; g — k) — (2m) fd“x exp [ (m, S g — k)]

One can in this way invert the order between forming the product in P({fnk})
(eq. (6)) and the summation over all the distributions. The sum over the
can be eagily carried and one obtains

(9) d*P(k) = (zn)'"4fd4w exp [— h(x) — i(k, »)] d*k ,
in which h({x) is defined as

(10) = (1 —exp[i(k, ©)])7,

k

In spite of (B) the expression. (10) has no infra-red divergence, since
1—expli(k, )] =0 for k=0. Without any further specification the integ-
ral (10) is indeterminate for k-—oo unless a suitable limit is defined. The
simplest definition of such a limit would be obtained by agreeing to extend
the product in eq. (6) only over soft photons %, << K < K, where K is a cut-off
energy which separates the soft photons, which are observed with difficulty
but for which the Bloch-Nordsieck theorem can be expected to hold, from
the hard photons, which can be individually counted. We shall use a different
approach here and put K =F. It will be seen in the following that the
choice of the cut-off has no influence whatsoever on the prediction of the
momentum and energy loss due to sufficiently soft photons. The choice X == F
need only be accompanied by the caution of not using the resultant form
of d*P for energy losses which are not small compared to E. The limit of
trustworthyness of this procedure has been discussed by Lomon (3) and Erim
and TouscHEX have shown (?) that for energies of up to about 1.5 GeV
and letting %, vary up to about 150 MeV this should not introduce an error
greater than 19%,.

A very important property of the integrand in eq. (9) follows from the
fact that by its definition d*P(k)=+0 only for k, =w >0. Defining the scalar

() E. Ermv and B. Touscmek: Laboratori Nazionali di Frascati, LNF-66/10
(1966).
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[282] E. ETIM, ¢. PANCHERI and B. TOUSCHEK 7

product (k, #) as (kx) —wt (I =x,) it follows that the function exp[— h(x, )]
must be analytical in the lower half of the complex ¢-plane. (In this case the
t-integration for k, <0 can be completed by a circular path of integration
(trom +oo over —ioco t0 —oo) and the analyticity of h{x,t) then ensures
that the integral is zero.)

3. — The energy dependence of d:P(k).

Integrating d*P(k) defined in eq. (9) over all momenta one obtaing a fune-
tion dP(w) which represents the probability of finding process (1) accompanied
by an energy loss in dw. Using eq. (9) and observing that

fd% oXp [— ik, x)] = (27)3 d,(x) ,

one gets in this way
+e0

(11) dP(w) == (2m)—1 dwfdt exp [— k{0, ) + iot] .

-0

Using (10) and (5), h(0, t) can be easily evaluated and one obtains
E
(12) R0, t) = ﬂf %—Zﬁ (1 — exp{— ikt]) .
Y]

We want to study the behaviour of dP(w) for y = E/w>1 and to trust
the result for y > 1. Introdueing in (11) the dimensionless variable 2 = wt
instead of ¢ we can write

dw

(13) AP(w) = — M(y)
)
with
(14) - M(y) = (Zn)*lfdm exp [— h +dx],
where because of (12)
(15) h= ﬁf %—L (1— exp [— ] .

Differentiating (14) with respect to y one gets

(16) M'(y)=— B My)ly + (2ny)‘1fdx exp [— b +ix(l—y)].
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8 THE INFRA-RED RADIATIVE CORRECTIONS ETC. [283]

The second term of the right-hand side is zero for y>>1, because of the
analyticity of h in the lower half i-plane. For y>1 one therefore remains
with the first term in (16)—a differential equation for M with the solution
M = consty~®, so that from (13) we may conclude that dP(w) = constde ™t
and we may conclude more specifically that

(17) NdP(w) =B ‘%’ (%)ﬁ for w< H.

W is a factor of normalization, which we will now discuss. It is easily seen that
the right-hand side is normalized in such a way that its integral extended over w
from 0 to E is unity. On the other hand it follows from eq. (11) that the
integral over dP extended from 0 to oo is unity. N is therefore defined as

@ B

(18) N = f dP(w) / f dP(w)

and it is seen that N>1. N can be evaluated exactly by following a pro-
cedure used by Lomon and described in detail by ERIKSON and which—for
completeness—we summarize in Appendix IL The result is

19) N =91 +p),

where y = ¢°=1.781 is Euler’s constant. For most practical applications of
the near future N is very near to unity. For small § one has approximately
N =1-4-n2p?/12. Putting N = 1 will therefore involve an error of less than 1 %-
The difference N —1 represents the probability that two or more photons of
energy < F combine to give an energy loss which is greater than K. This prob-
ability is quite small as the preceding consideration shows; that it should
be proportional to f2 can easily be understood from perturbation theory, which
requires that the probability for the emission of two photons be proportional
to the square of the fine-structure constant. (Compare Appendix I.) It must
however be kept in mind that the preceding consideration must not be inter-
preted physically: the Bloch-Nordsieck approximation is certainly no longer
valid for k = H/2, the minimum value for the energy of the bigger of the two
quanta, if the energy loss should be greater than E. The smallness of N —1
is only an indication—which will be borne out in Sect. 6—that the energy
loss is mainly determined by a single photon.

4. — The physieal interpretation of eq. (17) and its relation to perturbation theory.

The integration over the momenta, which leads to eq. (17), corresponds ty
an experiment in whieh the momentum resolution is zero and in which onle

‘6615



[284] E. ETIM, G. PANCHERI and B. TOUSCHEK 9

the energy can be measured with gome precision. Such an experiment can be
described in terms of a function o(k) (compare Sect. 1) which is unity for
ky = w < Aw and zero otherwise. In order that eqs. (17) and (3) be applicable
we assume Aw << E.

Using eqs. (2) and (3) and inserting dP from eq. (17) we get for the ex-
perimental cross-section

B
(20) d20‘exp = N1 (éﬁ@)’dzoﬂﬁl ’

where we have supressed the dependence on the polar angles of the A particles.
We observe that the choice of the cut-off K = F is indeed only a question
of normalization. Had K been chosen s« E we would have had to replace
d*c, by d?c, and d%c, would only have been defined by eq. (20). The
choice K = E is recommended by a comparison of (20) with perturbation

theory. Expanding this equation in powers of £ we obtain in first approxi-
mation

(20') d%o,,, ~ (1—flg (B/Aw)) %,

The lowest-order radiative correction obtained from perturbation theory can
always be written in the form

(1) a0,,, = (1—Blg (B/Aw) + 4) &0, ,

where d?g, is the cross-section obtained for process (1) in lowest nonvanishing
order. The term 4 may depend on the energy and on the angles 0 and @, but
is independent of the accuracy Aw of the experiment.

The term 1 represents what may be called the genuine (as opposed to the
infra-red) radiative correction. It is of purely theoretical concern and bears
no relation to the details of the experimental arrangement. It has been cal-
culated for some of the experiments proposed for ADONE (3). We quote from
LoNeHI a typical result for the interaction et--e~—ut-+p~. In this case
one hasg

20 (13 2wz 28
(22) 12—7;(73_ (lg2Ve+1g2yu)——é——3)
where
E B
= - a,nd — B .
Ve ™, Yu M,

(8) Compare R. GaTTO: Ergebnisse der ewakten Naturw., 39, 106 (1965); G. LoNGHI:
Proceedings of the Frascati Meeting on Storage Ring Haperiments (1966).
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10 THB INFRA-RED RADIATIVE CORRECIIONS ETC. [285]

A recent calculation by RossI gives a slightly different result. According to
this author 272/3 should be replaced by =2/6 (°). This is about 69, for an
energy of 1 GeV. Equation (22) bears out the general rule that the expansion
parameter of high-energy quantum electrodynamics is alg2y rather than e!

Tn order to obtain an approximate definition of d?s, of eq. (3) in terms
of d2c, of perturbation theory we only have to compare the two equally ap-
proximate equations (20') and (21). It is then immediately seen that the
best one can do in order to make these two equations fit is choosing

(23) d2o, = (1 -+ A)d2q, .

Inserting this into eq. (20) we get

B
(24) A2, = N1 (%33) (114 2) d2o,

which coincides exactly with the results previously obtained by BRIKSON.
The advantage of this formula—indeed its necessity—becomes clear if we
consider the specific example of an ¢optimal » experiment with Adone. The
best energy resolution obtainable is defined by the machine itself, which owing
to the fluctuations of the radiation losses gives an energy spread of about
0.5 MeV. This makes flgH/Aw = 0.6, which would eertainly make one doubt
the possibility of applying unmitigated perturbation theory. The optimal
measurement therefore reduces the cross-section by a factor 0.4 according to
perturbation theory. The reduction factor deduced from eq. (20) is 0.54 and
it is seen that the difference is quite considerable.

An important result of (20) is that it makes two experiments with different
energy resolution directly comparable: all the theoretical work goes into d2g,
and this is factored out in a comparison between two experiments.

5. — The separability of d+P(k).

High-energy experiments generally resolve the momentum better than the
energy, sinece a momentum measurement can be carried out geometrically.
Indeed the energy resolution may be only marginal as in the case of two spark
chambers in coincidence. In this case all one knows about the energy is that
it was sufficient to let the A particles penetrate the wall of the reaction
chamber and the spark chamber. To apply radiative corrections to such a
situation one has to determine d*P as opposed to d'P. In this Section we will
show that the main features of d*P are already contained in d'P and precisely

(®) G. Rossi: Laboratori Nazionali di Frascati, LN¥-66/51 (1966).
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[286] E. ETIM, G. PANCHERI and B. TOUSCHEK 11

that d*P can be separated—for « < E—into an energy-dependent part, which
behaves like dP and a part which depends on the « velocity » u = k/w, which
can be attributed to the four-momentum carried away by the electromagnetic
radiation.

We shall show that one can write

w

doo (w)\?
(25) d¢P = N1 - (E) A(u) du
where A{u) is a normalized three-dimensional digtribution function
(26) fA(u) dPu=1, Aw)>0.

Since the four-momentum loss is confined to the positive light cone we have
of course 0<|u|<1.

To prove (25) we go back to eq. (9), which after the substitution §= wx,
&, =t becomes

(27) d*P(k) = (2m)— ‘-1—3 deu f d*E exp [— b it — i(u, E)] .

h—defined by eq. (10)—can by written as

(28) b= ﬂf d—; fdmf(n) (1— exp [—iA(r— (nE))]) .

The function f(r) represents the angular distribution of single photons. Its
detailed behaviour is given in Appendix I. f(n) is normalized: f d3nf(n) =1,
f(n)>0. (28) is obtained from (10) by putting

D T = ﬂf %J‘d“‘nf(n) -

By its definition f(n) contains a factor d( |[n]| —1) since n can be pictured as
the unit vector k/|k| representing the direction of propagation of a single photon.

If one now multiplies eq. (27) by o and differentiates with respect to w,
remembering that y = E/w one obtains

i o d*P(k) = (27)*dw d*u B
Sw

w

: f & f d*nf(n) (1— exp [~ iy(r — (nE))]) exp [— h + it — i(uf)] .
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12 THE INFRA-RED RADIATIVE CORRECTIONS ETC. [287]

As in eq. (16) only the first term in the integral gives a contribution £ 0 for
w < E and one therefore has—because of the normalization of f—

(29) —8%) wd*P(k) = pa*P(k) .

From this (25) immediately follows. For if one puts d*P(k) = p(w, u)dwd3x,
(29) can be rewritten as [0/(d1gw)]lg (wp(w, u)) = f, so that p(w, u) must be
of the form w™***A(u). This apart from the normalization is exactly what is
expressed in eq. (25). The normalization is chosen in such a way that fd4P
extended over all energies and momenta is equal to 1.

A comparison of the expression (27) with (25) gives as a definition of 4

(30) BN-1A(u) = (2m)%yP f A& exp [— o+ i7— i(uE)] .

The separability in the form (25) tells us that the right-hand side must be
independent of y as long as y>1. Hquation (30) is therefore certainly valid
in the limit y->oco. In this limit the A-integration in (28) can be explicitly
carried out. Putting h =k —flgy, we have

(31) = B| @nfn) log (y(v— (nE)) +if= .
2

The logarithm under the integral is defined to be positive for large positive
values of its argument. The analyticity of ¢ and with it of 7 in the negative
imaginary half of the t-plane, requires that the logarithm be defined in the
complex plane of its argument cut from 0 to --ico. Equation (30) can now
be replaced by

(32) A(n) = NB(2m)= J'das exp [— b+ it — i(uk)] .

This equation expresses a functional relationship between the velocity distri-
bution A(u) and the classical angular distribution f(rn). We have not sue-
ceeded to evaluate the integral (32) in a closed form, but we shall show in the
next two Sections that it is possible to obtain satisfactory approximations
for this function.

6. — The properties of the velocity distribution.

~ We shall first show that to order f we can approximate A(u) by f(u). This
apart from the identity of the angular distributions of the classical radiation
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[288] E. BETIM, G. PANCHERI.and B. TOUSCHEK 13

and the 4-momentum loss also implies that in good approximation most of
the energy is always carried away by a single photon. For f(u)== 0 only if
|u| =1, which means |k} =, and this is always true for a single photon.
If more than one photon were involved we would in general have |k| <o
unless all these photons were emitted in the same direction. To show

(33) Au) = f(u) + 0(F),

we start from eq. (32) and substitute v for 7-— (ug). (32) then becomes

A= NB~(2m) f d4g exp [— & +i7].
h is defined by

(34) b= ﬂfdanf(n) lg ('yi(r — (n— u, E))) .

Differentiating A(uw) with respect to u; one gets

oA (u)

S =~ N f A*gE, f dn'f(n) (r— (n' — u, €))" exp [— h +i7] .

If one now reverses the substitution for v and replaces &, exp[—i(ug)] by
i(0/0u;) exp [—i(uE)] one obtains an alternative for eq. (32), namely

(33) Alu)=— iN(2n)—4fd4§fd3n’f(n’) (v— (n'E)) " exp[— b iv— i(uE)].

Thig expression can be easily evaluated in the limit §—>0. For in that limit
we can neglect  in the exponent. The integration over v has to be carried
out in such a way that the integrand can be considered analytic in the lower
half of the 7-plane. The path of integration must therefore avoid the pole
at 7= (n'€) by passing underneath. The 7-integration can now be carried
out by closing the path of integration in the upper half of the plane, the pole
giving the contribution 2zid(v—(n'E)). Integrating over € one then gets an-
other d-funetion: (2m)*0(n’ —u). Since h is of the order § and N (compare
eq. (19)) of the form 14-0(f?) this immediately gives eq. (33).

Tt is important to note that though (33) only holds O(f) the normalization
of A holds to order fz, i.e. fdﬁuA(u) =1-+0(8?). In most practical applica-
tions (defined by the particularities of the function o(k)) it turns out that the
error introduced in the radiative corrections only depends on the error in the
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normalization of A. This fortunate circumstance will be discussed in the
following Section.

The most obvious violation of our expectations presented by (33) is that
it makes |u|=1. However, this error is of course also of O(f). This can be
shown more explicitly. Indeed

1
(36) {u?y = T:l_”B P

where the average is taken over all the directions and (36) is valid for w << H.

To demonstrate (36) we go back to eq. (9), which we use to determine k? in
the average over d®k and for a given energy loss w. One has

<k2>fd4xfd3k exp[— kb — ik, 2)] =
=fd4wfd3kk2 exp[— h— ik, x)] = —fd%fd% exp [— h] Aexp[— ik, #)] ,

where A is the Laplace operator in xz-space. Now, since for processes of the
type (1) one obviously has n, =n_, it follows that h is an even function of x,
s0 that grad h(0,%) = 0. One therefore gets after an integration by parts and
carrying out the integration over dk

<k2>fdt exp [— (0, 1) + 1wt] :fth ?(0, t) exp [ — (0, t) + twit] .
Now ginece—because of (10) and (12)—
A0, 1) =3 Tink* exp [— ikot] = ﬁfdlﬂ exp [— 44t],
one finds

<Ak2>fdt exp [— k{0, t) + jowt] = ﬁfdl Zfd.t exp [— 7(0, t) + i(w— A)t] .

Because of the analyticity properties of k, the A-integration needs to be ex-
tended only from 0 to w. From eq. (17) we know that the integral over ¢ on
the left-hand side is proportional to ™, the integral on the right-hand side
is therefore proportional to (w— A)f* so that

(37) ESabt = f f 22— AP

Integrating the right-hand side one immediately obtains (k2) = w?(1+5)~* and
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[290] E. BETIM, G. PANCHERI and B. TOUSCHEK 15

this is exactly the result (36). As long as § is small this result signifies that
the bulk of the energy loss'is always due to a single photon. Multiphoton pro-
cesses are responsible only for a fraction § of the total energy loss.

One can summarily take account of (36) by improving eq. (33) by putting

(38) A(w) = (1 + B f(u(l + B)?) .

This expression for A(m) preserves the normalization and gives the right
average {u®).

7. — Determination of the infra-red eorrection faetor.

We have shown in Sect. 3 that the energy dependence of the infra-red cor-
rection can be determined accurately. For the momentum distribution we
have so far only derived approximations. In this Section we show-—discus-
sing some typical examples—that the approximations discussed in the previous
Section are amply accurate for their application to the next generation of
experiments with electron positron storage rings.

We shall introduce a resolution funetion (k) of the special form

(39) o(k) = exp [— 0*[2A0? — a,. b, k,[2Ap?] .

Here Aw is the energy resolution of the experiment and we shall call Ap the
maximum momentum resolution. a,, is a numerical 3 X3 matrix normalized
in such a way that its biggest eigenvalue is unity.

We introduce the infra-red correction factor € to be

(40) Olol = f QP(E) o()

and we note that it follows from the considerations of Sect. 3 that ¢ =1 if
both Aw and Ap are infinite.

The considerations of Sect. 2 and 4 show that a knowledge of C allows one
to compare two experiments carried out on the same. reaction but with dif-
ferent apparatus. Two experiments giving respectively - d’cl) and d’c are
in agreement with one another if within the experimental error in the deter-
mination of d?c one has
(41) A2 10(1) = d%6'® |C(2) .

exp exp

Using the Vsepa,ration theorem (25) for d4P(k) and putting = = w/v/2Ap
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16 THE INFRA-RED RADIATIVE CORRECTIONS ETC. [291]

and y =Ap/Aw, eq. (40) can be transformed to give

(42) C=pN— (\/2EAp)ﬁf (10_00 af exp[— mzyz]fdmA(u) exp [— a,,u, u,2?] .
The lower limit of the z-integration is 0; the upper limit is E/4/2Ap. If the
experimental arrangement is such that the z-integration converges rapidly the
upper limit can be replaced by oo.

A first indication of the insensitivity of the radiative correction factor C
to the details of the velocity distribution is obtained in the following way.
Consider the correction factor U(b, Ap) formed from a family of velocity distri-
butions b4 (bu). An inspection of eq. (42) then shows that

C(b, Ap) = C(1b, Ap).

If the momentum resolution is weak and the energy resolution is strong we
approach the limit dealt with in Sect. 3: (41) will only depend on the nor-
malization of A and its dependence on Ap will be negligible. If, on the other
hand, the momentum resolution is good and the energy resolution is weak, ¢
will be proportional to Ap?. According to eqs. (36) and (38) we should choose
b = (1+p)}, so that in the case of good momentum resolution we should expect
0(38)/0(33) = (1+B)P™. ((38) is calculated with the distribution (38) and cor-
respondingly C(33) with the distribution (33). It is therefore seen that the more
realistic formula (38) gives a correction which is approximately 14 (2/2) times
bigger than that given by the approximation (33). For practically all experi-
ments the error is less than 0.59%,.

As a further evidence of the insensitivity of € to the details of the distri-
bution 4 we consider the following special case. We put the line of collision
of electrons and positrons in the z-direction and assume that the A and A par-
ticles are observed by means of two spark chambers placed at ¥ = +a and
looking at A particles which emerge at about 90° to the direction of the inei-
dent beam. We assume that there is no energy resolution (i.e. y =0 in
eq. (42)) and that the momentum resolution is given by Ap,=oco, Ap,=Ap,=
= Ap < BE. We shall neglect the photons emitted in the creation of the A par-
ticles and only deal with those emitted in the annihilation of positrons and
electrons. In this case the integral (42) can be evaluated O(8?) and one gets
for C

A g
(43) 0(33) = N1 (%ﬂ’) I (1 +g) (1 +1/1377) + 0(8?) .
MIf, on the other hand, one chooses for A(u) the very rough approximation

(44) A(u) =§(8(u—p) + 0(u +p)),
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one gets

e (V2AP\E B
(45) C44) =N (T) 1’(1 +§).

The difference between (43) and (43) is seen to be less than 0.259%!

Another approximation for the function f(m), which we discuss in Ap-
pendix I and which takes account of the fact that some photons may be emit-
ted far off the backward and forward directions, is

(46) fn) == b(6(n—

w3

1—9b
)+ 0(n ) + - 8(Inl— 1),

where a realistic choice of b is

4o
(47) b:l,—;/é.

For B =pf,=0.072 (corresponding to E = 1000 MeV) one gets b = 0.87. In
this case the integral (42) can be evaluated exactly and one gets

) V2Ap\# _
(48) 0(46) = N1 (WWEi?) F(l +~§) (1-+@—0X)

with

(48"Y X= A Jl{“ p2)* )
1—g I'(l—p)

1t is seen from this formula that even if b were let to vary between 0 and 1—i.e.
from a completely isotropic distribution to a distribution which is completely
peaked in the forward and backward directions the variation introduced in C
would only be X =p(1—1g2) = 0.3064 i.c. 2.2%. If we insert the realistic
value (47) for b we get (1 —b)X = (do/w)(1—1g2), which is independent of f
as the correction to the correction ofm in eq. (43). Taking as a base the simplest
approximation (44) we therefore find

(49) 0(33) =1.0023C(44),  C(46) = 1.0028 ((44) .

Approximation (46) is therefore seen to be good to 5 parts in 10000.
All the approximate correction factors C(33), C(44) and C(46) should be
multiplied by (1—}-/3)/3’2 =1.005 if one wants to take account of eq. (36).

6624



18 THE INFRA-RED RADIATIVE CORRECTIONS ETC. [293]

The preceding considerations show that one can take congiderable liber-
ties in approximating the function A4(u) as long as one does not violate its nor-
malization. It will be a long time before storage ring experiments with their
notoriously slow accumulation of data will permit experiments in which the
- statistical error in the determination of a cross-section is less than 19, and
for these it will be still quite sufficient to use approximations for A(u) of the
type (44).

To illustrate our results we now discuss the radiative corrections for the
reaction

(50) et4-e” —>pt+4p-,

in which the muons are observed at 6 =90°. At a sufficiently high energy
of both electrons and muons there will be little interference between the radia-
tion emitted by either type of particle. We can then separate the function
f(n) into f(n) = f(n)-f,(n). Correspondingly we shall have

(51) B =8+ By,

the values of whieh are listed in the Table L.

TaBrLe 1.
B (Ble\7) : ZL : ﬂu ‘ ﬁ
! i - : |
: ; 3 1
250 : 0.059 0.010 0.069 %
500 0.065 0.016 0.081
750 ; 0.069 0.020 0.089 ]
1000 0.072 0.023 0.095 i
1250 0.074 0.025 0.099
1500 0.076 0.026 0.102
1750 0.077 0.028 0.105
2000 0.078 0.029 ; 0.107 !
; - »
2250 ! 0.079 0.030 0.109
2500 0.080 0.031 i 0.111
2750 0.081 0.032 0.113

3000 0.082 . 0.033 0.115

To evaluate the radiative corrections for this process we put, in correspon-
dence to eq. (44) and taking acecount of the normalization of A and of (51),

(62) 2A(u) = B,(0(w—P) + 0(u+ D)) + f,(d(u—17) + 5w + 7)),
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where # is the unit vector in the direction of flight of the negative muon. This
approximation should be good for E.R. muons.

We assume in agreement with the properties of an experimental arrange-
ment actually proposed for use with Adone that

(83) Ap < Aw < E,

the energy resolution of this experiment being based on the existence of ab-
sorbers in the path of the muon and therefore being less accurate than the
observation of transverse momentum afforded by a spark chamber.

A remarkable feature of this type of experiment is that the momentum
resolution in the spark chambers does not give any information about the
radiation lost in the creation of the muons. With regard to the second term
in (52) we ean therefore apply the rules of Sect. 3, valid for the case of pure
energy resolution. For the first term we apply (45), so that

(54) pNC = F(l +5) [ﬁe (‘%ﬁf)ﬁ + B (@ﬁ “’ﬂ ,
where
(88) Ap' = Ap(1 + Ap*/Aw?)?.

If the first part of the inequality (33) is satisfied one has of course Ap’' = Ap.
One can improve eq. (54) by taking account of (36). This requires that the
first term in (34) be multiplied by (1-+p)#2. As an extreme example we con-
sider a very accurate experiment in which Ap/F =0.001 and Aw/E =0.01.
The momentum resolution corresponds to assuming that it is possible to deter-
mine the angle of the muons to within 1 mrad. In this extreme case one gets
for the radiative correction factor the value ON = 0.54. We have assumed
B =0.095 which (compare Table I) corresponds to an energy of 1000 MeV.
Equation (34) can also be applied to the case in which the two spark cham-
bers are used to look at events with, say, 45° <0 < 135° and —43° < ¢ < 45°.
(The centres of the spark chambers are assumed to have 0 =90° and ¢ = 0°
and 180° respectively.) Formula (54) then still holds if Ap’ is replaced by
Ap'[|sinf cosp| and Aw by Aw/lsiné cos¢p|. The latter corresponds to assum-
ing that the energy of the muons is measured by counting the gaps traversed
by these particles. If the experiment is extended to angles of up to 45° it fol-
lows that over the whole range of the experiment C should vary from C(90°)

to O(45°) = €(90°) 272 = (0(90°) X 1.0336.
Tt must be remembered that d2g, /O defines (compare eq. (20)) d’o,

—which we can term the infra-red corrected cross-section. In order to com-

2
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pare this cross-section with d%c, obtained from lowest-order perturbation the-
ory we still have to apply the ultra-violet correction. To this end we have
to add a muon contribution to (22). (There are no mixed electron muon terms,
owing to the Cabibbo-Putsolu theorem (*°).) For an energy of 1000 MeV one
has A =0.068.

8. — Estimate of errors and definition of the balanced experiment.

Equation (3) is valid in the limit % =0, but is of course supposed to be
applied to finite values of k. In this Section we want to estimate the error
introduced by the application of eq. (3) to an actual experiment with a finite
energy resolution Aw. Such an estimate can be obtained by comparing eq. (4)
with the formula for bremsstrahlung. Throughout the previous calculations
we have assumed that dW =Fdw and that § is a constant. If Aw/F=£ 0 we
can apply the Bethe-Heitler formula which will give dW =fdw(1 — (Aw/E)+
+2(Aw/E)?). If we therefore extend the validity of (3) to finite Aw this can
be considered as equivalent to over-estimating . We can take account of this
by introducing an average B, viz. § = B(1—(Aw/2E)) =f—Af. We estimate
that the error introduced in the extrapolation of eq. (3) is of the magnitude of
the error caused by over-estimating f, so that the relative error in applying
eq. (3) should be of the order )

0% A

(56) Tory P 28

lg (E/Aw) .

This error is tolerably small: about 19, for Aw/E =0.1 and §=0.1.

Bquation (56) shows that in order to be able to apply the formalism which
has been developed in this paper to an experiment, the resolution of this ex-
periment has to be good. The formalism thus requires that the statistical
accuracy of an experiment be matched by the accuraey of its resolution. We
shall call such an experiment «balanced ». In particular we require for a
balanced experiment that

A
(57) e~ Bz lg (BjAw)

where ¢ is the relative statistical error of the measurement.
It is very likely—compare eq. (22)—that the expansion paramecter of d?c,

(1) A. Pursoru: Rome Thesis (1961).
L)
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in terms of e? is §, so that one will have
(b8) d?o, = d2%go(1 + LB + AP+ ...),

where the 4, are numbers of the order of magnitude of unity.

In order to check electrodynamics to the n-th order we therefore have to
make the statistical error ¢ < f*. The matched energy resolution is then given
by eq. (7). .

The advantage of a matched experiment is that its results can be very
easily compared with the theory, since the experimental corrections can be
separated from the theoretical ones.

It must be clear that balanced experiments form a class—and not the only
one—of experiments which can be used as a check of quantum electrodynamics.
As an example of an unbalanced experiment one could consider the process
et4e~ —ut+p~+1I integrated over all angles and without limitations imposed
on the photon-spectrum I'. Such an « open » experiment can be considered a
perfect check of quantum electrodynamics, provided that the beam moni-
toring can be trusted to the statistical accuracy. In experiments whose signif-
icance is independent of the monitoring some angular dependence has to be
observed. In this ease the angular distribution has to be determined with
some aceuraey, so that even if it were not for radiative corrections the angular
resolution would have in some way to be matched to the statistical error. The
majority of experiments so far proposed for Adone are balanced experiments
for this reason.

ArrENDIX 1

The destruction of the incident particles and the creation of the final par-
ticles define a four-current 4,(x). This four-current in turn will give rise to
the emission of radiation, the vector potential of which satisfies the equation

(A1) 04, (@) = — 4mj,(z) .
This equation has to be solved assuming that tlim A,(z)= 0 corresponding to
the fact that we assume that at the beginning of the reaction there is no

radiation present.
Tntroducing the Fourier amplitudes A4,(k) and j,(k), given by

Ay () :fd4kAv(k) exp [i(kx)],  f() :fd% J»(k) exp [i(ka)],
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one has as a solution of (A.1) A4,(k)= 4=, (k)/k? In the integration ever d*k
the poles at k?=— 0 have to be circumnavigated in such a way that 4,(z) van-
ishes for negative infinite times. For positive infinite times we will then have
only a positive energy contribution, precisely

(A.2) As(@) = (276)2ifd3k7'v(k, w) exp [i(kx)]/w

where w= |k|. If one introduces a finite volume V of normalization (A.2)
can be replaced by

(A.2') Aa) = (2mpi 3 7” ) exp [itha)] .

In (A.2) as well as in (A.2’') one has (kx)= (kx)— wt. To determine the
number of photons emitted in process (1) we compare (A.2’) with the expression

%
(A.3) Aomb(g) = kz (Z)%) eX(k)ag® (k) exp [i(kx)] 4 h.e.,

in which eX(k) is a three-dimensional polarization vector, o=1, 2 and
(ex(k), k) =0. a3*(k) is the amplitude of the outgoing field—its destruction
operator in 2nd quantization. The average number of photons with polar-
ization « and momentum k is given by

(A.4) (k) = a3 (k)|*;

comparing (A.3) with (A.2") one therefore finds that
5 7 e T B — V9 ] ( ’JJZ
(A.5) > alk) = W(k) = (2m)° 2 -

where j, is the component of j perpendicular to k. In continuous notation
and in correspondence to eq. (5) of the text we can define d®w(k) as the
average number of photons in the momentum interval d3k. It follows imme-
diately from (A.5) that

(A.6) d* k) = (9m)s — ]JJ~ (k, )|?

(we have put #=1 in this expression).
In order to determine the coefficient § defined in eqgs. (4) and (5) we con-
sider the case of a particle which is. born at time ¢=0 and accelerated in. a

negligibly small time to the final velocity ». In this case we have j(z)=0
for t<< 0 and

(A7) Jz) = evd(x— vt) for t>0.

The d-function indicates that we deal with a point particle. To simulate the
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experimental situation in which light emitted by the particle long after its
creation cannot be observed, we imagine (A.7) to be multiplied by a convergence
factor exp [— et] (with ¢> 0) and we evaluate j(k) in the limit & — 0. This
gives

@

(2m)4j (k) = evfdtfd%é(x — vt) exp [— i(kx) + twl — &t]

(]

and therefore

is — e
(A.8) (20)* j(ky ) = — e (o) — o)

The destruction of a particle gives a similar contribution to the current.
The convergence factor has to be chosen as exp[--&f] and the integration
has to be extended from — oo to 0 instead of from 0 to -co. As a result
the expression for (A.8) changes sign. It follows that the expression for j
corresponding to the creation and annihilation of » particles with velocities v;
can be given as

(A.9) (27)4j(k, ) = — ile] é—((k—ifavfwj y

where the signature ¢, is positive for the creation of a positive or the destrue-
tion of a negative particle, it is negative for the creation of a negative and
the destruction of a positive particle.

The denominators in (A.8) and (A.9) indicate a strong forward peaking
for extreme relativistic particles. Indeed ore can write for the denominator
w(1— v cos ) {where 0 is the angle between the direction of flight of the emitting
particle and the direction of flight of the photon). Ifw is close to 1 most of the
radiation will be expected to go into an angle of order 1/y (y= E/m). This
forward peaking is opposed by the transversality of the radiation, which via
jo (compare (A.5)) introduces a factor sin?f into the angular distribution
function. We shall now discuss this behaviour of the angular distribution
for a special case. .

The great majority of experiments proposed for et +e~ colliding beams
deals with the destruction and' creation of pairs of particles with opposite
velocities. In many cases the energies of all the particles are extreme rela-
tivistic. We therefore consider first the current and the photon numbers
created in the destruction (or creation) of a parficle and an antiparticle in
the centre-of-mass system. According to the rule given after (A.9) the sig-
natures of the current contributions are opposite, but since also the velocities
of the pair are opposed to one another the contributions of the two particles
will add. Choosing 0Z as the direction of flight of the negative particle and
remembering that == |k| we get for the current

— 24ev

(A.10) (27) 47 = (I —v2cos20).

w
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Inserting this into eq. (A.6) one gets

) 4ov? dw 8in2 0
(k) = —_ dcosOdy.
(A.11) d*n(k) (om) @ (1= vt cos 0)? cos fde

Comparing this equation with eq. (5) of this paper one immediately arrives
at the following definition of §

1
e 1—a2

-1

as o result of the integration over all the directions of the photon. The integral
can be exactly evaluated and gives

1 1
(A.13) g = %(5 (1 +v%) 1g I“i“L_Z — 2) ,

which gives
4ot 1
1 = —fl — =] e.r.
(A.14) B JZ(g2y z)er
in the extreme relativistic limit and

8u
A5 = — p% N.T,
(A.15) 8 3, 0o

in the nonrelativistic limit. Table IT covers the range of (A.13) in which nei-
ther approximation (A.14) nor (A.15) are valid.

Tasre II.

| i
y ! 10008 ' y 10008

| |
1.1 1.14 w 1.6 5.34
1.2 2.17 | 1.7 ‘ 6.02
@ 1.3 3.09 : 1.8 6.62
| 1.4 3.94 | 1.9 : 7.15
1.5 4.67 : 2.0 ﬂ 7.70

Tt is important to note that if the interference term is left out in the com-
putation of (A.6), i.e. if (j.--j-)* is approximated by 75 +jZ; eq. (A.14)
is only slightly changed. One obtains in this case lg2y—1 instead of
lg2y— §. The neglect of the interference term for e.r. particles therefore
involves an error of Af= — 2ofm-=0.465 %—the interference is constructive
gince the currents of electron and positron add. In Sect. 7 we have neglected
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the interference between the radiation emitted by the muons and the radiation
emitted by the electrons. The inclusion of this interference term can now be
estimated to give a contribution smaller than 0.5% to f, since for muons
emitted at 90° there should be no interference at all.

There are however glamorous exceptions to the rule that the interference
term can be neglected: one of them iy the backward electron-positron scat-
tering. In this process we have full constructive interference between the cur-
rents of all the four particles involved in the process so that 5= 4f., which
with the values listed in Table I gives f=:0.33 at 3000 MeV'!

Equation (A.11) allows one to determine the angular distribution func-
tion f(n) introduced in eq. (28). Indeed it follows from (A.11) and (A.12)
that we ean put

o 8in?0

That this function is properly normalized follows from (A.12).

The wvalue of the funection for cosf==0 is o/pn?. The choice of the
constant b defined in eq. (46) was made on the basis (1 — b)/4w= «/Bfn?. This
choice is of course only meaningful if it gives 1— b< 1, d.e. if § is sufficiently
large. Indeed, a discussion of f(n) shows a completely different behaviour
for v:<< 4 and for »2>%. For v2< } the function f has two minima at
cos =+ 1 and a maximum at cosf=0. For

2 <<} the maximum at cos0=0 becomes a ! C
minimum and two new maxima are born at '

. B 20 -
(A.17) 8in? 6, = (y2— 1)1, yi>2.
With increasing energy these maxima form the @1'5
backward and forward peaks placed at sin 0, ~ “i
~ - 1/y. The value of f at the maximum is 710}
given by

« " 051
Al n = .
(A.18) f 4fm? p2— 1
0 ] 1

~1 0 1
At high energies f, therefore increases as y% cos @ o
The typical behaviour of f(r) is shown in Fig. 1. — The angular distrib-
Fig. 1 for y=3. ution f(n) for y=3.

We finally show that g is a relativistically
invariant funetion of the momenta of the charged particles.

From (5), (A.6) and (A.9) it follows that one can write

| _x fansls @i9s P
(A.19) ﬂ“(zn)z‘fdn%l;(piﬁ)—pm )

The summation over the polarization vector ¢ can be replaced by a summa-
tion over a four-vector ¢,. In place of the unitvector # one can introduce a
four-vector n = (i, n,) and one can replace d* by 2d*nf(n)d(n*)é(ng—1)n,
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where @{n)=1 ingide and on the positive light cone, and zero otherwise. This
therefore gives

20 p= o [amsmamom—1n 3 | T B0

(p.n)

.

We now define f(w) by replacing 5(n,-— 1) by d{m,— w). A scale transfor-
mation shows that f= f{w). The only not obviously covariant element in
(A.20) is nyd(n,—1). Now, under the Lorentz fransformation

ng = p{ne + 1, co8 6)

we have ngd(ng— 1) = ny0(n,— w) with o= (1 + v cos0)~*y~*. It therefore fol-
lows that § is an invariant.

ArpeNDIX IT

In this Appendix we discuss the evaluation of some typical integrals of
infra-red electrodynamics. We first determine N defined in eq. (17) of the
fext. The simplest way of doing this is by the nse of the separation theorem
irom which we had derived eq. (30) as a definition of A(w). Equation (30)
ts valid for any y>1 and must therefore also be valid for y —oco. In-
tegrating (30) over d%u and remembering that A(u) is normalized one gets

(A.21) 1= %yﬁfdr exp [— &0, 7) - ir].

Putting k/w=« in eq. (12) one gets for A(0, 7)
Ya
(A.22) (0, 7) = ﬁf ?” (1— exp [— izz])
)

and, since we can evaluate (A.19) in the limit y — co, we only need the
asymptotic behaviour of k. In this way one obtains

(A.23) w0, 1) = plgpyr+ i

Since h must be analytic in the lower half on the complex 7-plane (compare
Sect. 2) we think of the log as defined in a complex 7-plane which is cut along
the positive imaginary axis. Inserting (A.21) into (A.19) one gets

[e<3

(A.24) 1=— —ﬁf drt# exp [7}1— ) —g— n] .
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The path of integration can now be deformed into a loop which starts from
+ico, follows the left bank of the cut to 0 and rises along the right bank
to -+ doo. Tt follows that we can write for the integral

. + o )
f = f dv exp [iz] ((z7F), — (776),) exp [— i ;%n] ,
— 0 0
where the subscripts # and I indicate respectively the right and left bank of
the eut along the positive imaginary axis. One has

7, = |t| exp [zj—:] and 7, = |7| exp [— 3%1] .

Using the definition

Ie) = f dt exp [— ]t
[1}

of the I-function as well as the identity I'(e) I'(1— 2)==m/sin7z one obtains
eq. (19) from: (A.22).

RIASSUNTO

Le correzioni infrarosse da applicare ai risultati di un’esperienza con fasei inerociati
di elettroni e positroni sono determinate tramite il teorema di Bloch-Nordsieck. Un
esperimento viene caratterizzato da una funzione. o(k) di un. quadrivettore energia-
impulso di tipo tempo, che rappresenta la probabilitd che la perdita di un quadrimpulso &
sfugga alla rivelazione. I risultati si possono applicare a wun tipo di esperimenti per i
guali Perrore statistico & opportunamente properzionato a quello relativo alla risolu-
zione in energia e impulso. Sono discusse diverse approssimazioni che permettono una
stima rapida ed accurata delle correzioni radiative.

indpaxpacHpie pagHanioHHbIe NONPABKH IR SKCHEPHMEHTOB
HA BCTPEYHBIX (3JCKTPOHHBIX ¥ NO3ZUTPOHHEBIX) HyYKaX.

Pesrome (¥). — C momomtpio Teopemsl brokxa-Hopacuka onpenensaroTca madpaxKpacHble
[OMPABKH A1 PE3Y/IbTATOB, OXKUAACMBIX OT IKCIEPHMEHTOB Ha BCTPEIHBIX SICKTPOHHEIX
¥ TMO3MTPOHHBIX TyYKax. DKCHCPHMEHTHI XAPaKTEPU3YIOTCA (QyHKIueld pasperenns (%),
(ysKIueit OT YETHIPEXMEPHOTO BPEMEENIOAOOHOrO BEKTOPA IHEPIHH-HMILYLCa, KOTOPAd
IPECTABIACT BEPOSTHOCTH TOTO, YTO MOTEPH YeTHIPEX-HMITyTIbCa k me perucTpupyroTCH.
TTosy4eHHBIE PE3YALTATHL MOTYT OBITh IPHMECHHMA! K KIACCYy SKCHEPHMEHTOB, B KOTOPBIX
CTATHCTHYECKAs. OMIMOKA COOTBETCTBYET OIMMOKe OIS DPa3peIlCHMs SHEPIHE-UMITYIIBECA.
O6CyKIaroTes PasIMMHEE TPAOIIIKCHIS, KOTOPHIE IIO3BONAIOT HaTh OBICTPYIO M AKKY-
paTHYIO OLEHKY PaiuallHOHHBIX, IOMPaBOK,

(*) IIepegeoero peaaiét;ueﬂ. - }
¢ 5

i
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