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1) Introduction

The interaction between two proton beams in sto=
rage rings has been studied, but as the Lioville's theorem
does not allow the achievement of beam densities higher
than the tranfer densities, it need not to be considered
a8 a strongly limiting factor.

In electron electron or electron positron stora-
ge rings, the strong damping due to radiation losses cau~
ses the beam to shrink %0 a cross section which can be as
smal; as 10~4 cmz, and accordingly current densities up to
103 & 104 A/om2 are achievable by conventional means.

Our resulte, which apply to the case of electron
electron or electron positron rings, show that if two beams
collide, the less intenge beam A will be stable in the pre-
sence of beam B up to some limiting effective density of
beam B and will then break up into a diffuse halo around
beam B.

The calculations separate therefore into an in-
vestigation of the point at which the beam A will beconme
unstable and break up, and an investigation as to the point
at which the diffuse halo will bocome stable.

The two calculations agree, and therefore lead %o
confidence that our description is correct. The calcula-
tions for the diffuse halo are made in the approximation
that the field due %o a ribbon of charge is constant, ex= _
cept close to the ribbon plane, and changes sign as this

plane is crossed.

(x) In leave of absence from Massachussets Institute of
Technologye
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We have alsb calculated whether arranging for
the two beams %o intersect at an angle in the vertical
Plane can change the allowed effective space charge den~
sity. The results give substantially the same limits as
those obtained for the head on callision of two beams.
While the calculations and effects are complicated and
tedious, the simple result is obtained that the effecti-—
ve charge density achievable with thp condition that the

two beams still interact is given bys
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for head on collision and by:
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for crossing beams, wherec:?

Ny is the number of charges in the morc intense beam Bj

k is the number of bunches per turnj

P 1is the number of interaction regions per turng

Wy, h and 1 are the radial, vertical and azimuthal dimen-
sions of the beams

§ is the angle of the direction of the bunch axis of
one of the beams with the median plane of the ring
(see fig. 1); if { is different for the two beams,
in equ. 2) the higher value of the two S1s must be
useds

Q@ 1is the number of betatron wavelengths around the
ring, for the vertical betatron modey

gQ iz the distance %o the closest proper resonance;

¥ is the relativistic factor ) 3
" * me
P = ﬂ-%— is the 'beat Ffactor" in the interaction region

( > is the amplitude factor)s

R is the mean radius of_ the machineyj

T, = 5 igs the classical eslectron radius.
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As Ef/R is proportional toc the mean magnetic
field along the ring, this result shows that the effew
ctive charge density is élmost a constant irregpective
of machine size or design, limited to values of:the or
der of 1012 particles/cmg, as compared to 1014 * 1016
particles/cm2 which could be quite easily achieved in
absence of the space charge limitation,

Our calculations for the space charge limited
density agree with the calculations done for the Sténford
electron electron storage ringT.

The notation used in the following is that of

Green and Couz?ant2 and the method of solution follows

their treatment.

- W.C. Barber et al.s An experiment on the limits of
guantum electrodynamics -~ Internal Report of Stan~—
ford University HEPL 170 (June 1959)

2 - G,K. Green and E.D. Courant: The proton synchrotron
Handbuch der Physik, Bd. XLIV, pag. 218=340



2) Head-on collision. Instability limit

We consider the motion of an clecectron or a positron
in beam A interacting hecad on with a more intense electron
beam B, Beam B has k bunches, a total number of eclecctrons Ny,
its length ig 1, width w, height h, and the distrihution of
charges is assumed to be uniform, ,

The impulse I given to an electron (or positron)
Passing through one oi the p interaction regionsg with verti
cal displacement z is:

4 7 NBOZ

w h k ¢

3) I =Z for gz]i n/2

As a result the region behaves likc g thin lens

with a transfer matrix Ty

I 0
4) Ty
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withe
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‘ B X whi

The unperturbed transfer matrix from one collision
region to the next, with the condition that the number of
periods of the magnetic sitructure be a multiple of the num-

ber of collision regions Py, iss

' I
6) T, =/]},cog—i)—- +

where p is the phase shift of the betaltron oscillations a-
round the ring.
The resulting transfer matrix is the product of 4)

and 6)s3 the phase shift between two collision regions beco=

mos $ _
B+ Qp Loy AD B
— =GOS — sen —
7 o8 P P 2 r
if is small and L is not cloge to a multiple

of m, we can rewrite the 7)¢

P o2
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If the next integral or half integral resonance
, C
is 0Q removed, we have for the allowed change in phase
shifts
9) Ap < 23 dQ
on

10) :p—Ai;;é—<2%5Q

™
and, with the 5), remembering that ﬂ;= F‘éf’

N ~_2k Q49 X
11 S - a2
) wh %Y 5 TF Te ( R )

The = or + sign in the 11) means that in the eleg
tron electron case the closest lower resonance nmust be ta-
ken into account ( 4Q must be negative), while in the posi-
tron electron case is the closest higher resonance which
must be considered.,

If ———— 1is very close to a multiple of = (which
isy, for instance, the case when p = 1), the approximation in
8) is wrong by a factor of 2: we can take it into account
redefining p as a parameter which depends on the number of
collision regions per turn, which ig always bigger than 2,
and is approximately equal to the number of collision re=

gions only when they are more than 2 per turn,



6o

3) Head on collision, Stable diffuse orbits.

Congider the motion of an clectron (or positron)
in beam A executing on orbit which does not intersect be~
am B, We shall approximate the impulse per unit length I
given to the electrpn (ox positron) in traversing the in=

teraction region as:

4 7 Wy o? . ‘
12) I= & — 1;i for 1zl2 h/2

The resulting equation for the vertical motion is:
2
4%z , 4 m Ng re 7
1 — 4 ki{g)z = % L{s
3) P () X kw1l \z) (=)

8 is the distance along the equilibrium orbit, k(s) repre-
sents the focussing properties of the machine, L(s) is equal
to 1 over the p regions of interaction and to O outside ,
and tho length of interaction regions is 1/2,

This egquation may be transformed in the standard

fashion in termsg of the variabless

N = i5“1/2 Z
14) ) II j=1
R
intos
dgﬁ 2 + 42 A 3/2 4w re 7 '
[P, A A = @(—- it L

where L(VY¥ ) is equal to one over the p interaction regions
and to zero outside,.

Because of the non=linearity, the 15) may have pe-
riodic solutions (closed orbits) with periods 2ng in ¥ ,

where q is an integer.
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Let us Fourier expand the perturbation term over

q turns:

P Xkwhl n) B a )
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where Yi are the coordinates of the p interaction regionssg
N1
IKER
regions.

gives the sign of the perturbation in the interaction

The expansien 16) is approximate, and is valid in

the assumption that

Accordingly it is limited to a certain harmonic term of or=-
der S35 it can be seen a posgteriori that thisg approximation
is usuvally quits good.

The hehaviour of the periodic solutions of 15) is

dominated by the terms of 16) for which
18) . 2
g

Teking only this term we haves

, r ; ‘
P~ cosg " ( »ﬁ" Spl) N3

T

T L w/f Wl

‘

The solution, when <n> = 0, is consistent Lor:
. Q > r/q for electron electron interaction
Q < r/q for positron electron interaction.

We find again that in the electron electron case
the relevant resonance is the closest lower one, while in

the positron electron case isg the closest higher once.
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The numerical value of the sum in 19) for the

L )/ A - . A N
Jtﬂ interaction region depends on p and on the closed ox

bits let us introduce its maximum value which is given bys

e W o <
M R e (f - ) e

and substitutings:
22) ) =/?“1/25

23) %—=Q+JQ

equ. 19), for the jth interacticn region, gives
ﬂN T
SHR e b
2 s = me——————
ST B o

The condition both for the validity of the poten—
tial used and for all the orbits of beam A to lie outside
beam B iss

>
25) z4 2 h

which finally gives the density limitations

wh + D o T, R

The =~ sign is for clectron electron ( 5Q must be
negative for the solution- 4o be consistont) and the + sign
is for positron eclectron.

N ’SQ should be the distance from the closest reso=-
nance of every orders in fact it can be easily seen that
for q % 4 the treatment given here begins to failj dQ,
for higher values of g, decreases, but at the same time
the value of the sum given by the 21) decreages. Within
the limits of this approximation we think that the 26) can
be taken as a thumb rule for resonances up to third or fo-

urth orderi the higher order resonances, except in special

casesg, should not give a worse limit.
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4) Crossing beanms

Let us consider a crossing beoam ring; in the intg
raction region the equilibrium orbits EA and Zy of the %wo
beams, congidered separatcly, cross at an angle 2o{ in a
vertical planes this crossing angle is assumed to be given
by suitable perturbations in the guide field of harmonic
order higher than the Q of the two beams, 80 that a change
of about one unit in Q leaves oA substantially unchanged .

Pig. 1 represents a possible situation when the
density in both A and B beams is high enough to effect the
other one. The bunch axes are tilted by angles &A and gB
with respect to the direction of EA and §B’ but the veloci~
ties of the particles are always directed like EA and EB‘

Defining the vertical displacement Z, with respect
to the orbit EA’ a p rticle of beam A, in traversing the in

teraction region, receives an impulse I given bye

o7y T = * (emlige? g1 4mlpe” ZA?(
7) o { wke 1 " Twke 1dp )
. d ,
for =x < ,A < 1 =~ x
OB

and >

2nNge? I, Z, 7

28) I =X , £or —r— < =X OT —— > l=x
WkC ‘ZAﬁ éB ('FB

where: x is the distance of the particle from the leading

cdge of the bunchjp

Jé = X+ C}B .is the angle of the axis of beam B
with the median plane of the ring.

If the density of beam A is very small, then
5 ~ 0 and JB ¥, as the tilt angle & is due to the

@ B

effect of boam A; the beam A will change 1ts Q (decreasing
it in the electron electron case, increasing it in the po-
sitron electron case), and the direction of the bunch axis
will be tilted by an angle »§h with respect to the §A dire

ction, because of the interaction with beanm B and according

to its offeciive charge densiity.
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Interaction region in a crossing
beam ring
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The sign of the tilt angle depends on the closest
integral resonance: in the eleetron electron case QA will
be negative (see fig. 1 for the definition ] ’ of
the sign of the angles) if the closest integral resonance
is lower than the Q, and positive if the closest integral
resonance is higher than the @3 the opposite is true for the
positron electron case.

a is the number of betatron wavelengths per fturn
due to both the main field focussing and the lens_effect of
the interaction region,

The density of beam B which gives rise to the in-
stability limit for crossing beams comes out to be the sa-
me a8 the one calculated for colliding becams, provided we
subgtiﬁute the height of the beam with the equivalent height
léés

29)

Ny - 2k Q 9Q (EL)
R

Isgw = * T3 EF r,

‘ All the considerations made for 11) are valid for
eque 29).
With a method similar to the one used in section 3
we can find the tilt angle QA for the case of one intera-
ction region per turn, in the elecectron electron case, for a

weak focussing rings we get:

R N T ¢ 1
) A 4 5wl k) 2 . ﬁzﬁ

As an cx8mple, with @ Z 0.8, the lens effect of
the interaction region tends to drive Q close to 0.5, which
ig the closest lower half integral resonancej combining egu.
29) with equ. 30), at the spaco charge limit (Q = 0,5), we
get for 8&:

31) Qk Yo .é}i

2



12,

In this case then, when the densgity of beam B is
high enough to drive beam_ A into the half integral resonan
cey the tilt angle is negative and is given by 31).

As the tilt angle depends on E, it is not easy to
write down a general formula. However it can be calculated
by introducing the impulsc given by 27) in the equations
of motion and solving it for each particular case.

What can be said is that if the crossing regions
arc more than one por turn they can be arranged to make 6
small.

The tilt angle 91 changes the length L of the in
teraction region along the dircction ZB’ from the initial

value Lg,for & - Oe

A
h
32) L, = CIvE
to
h 1 9
| I A
33) L st T

If we drop the assumption NA << N, and we consi-
der beams roughly cqual in density, then if the effective
densities are closc to the limit given by 29) the eguili=-
brium will be unstable; it secems then that tho crossing an
gle 2 must be controlled Lo kecep it big enough to avoid
thesgse ungtable situations.

At the beginning of the present section we made
the assumption that o remains constant when Q changes of
the order of one unity if the crossing angle is obtained
with perturbations of low harmonic order, close to Q, the

treatment must be modifiod, as o will also depend on Q.
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casejy every beam beam inlteraction effect ha® been calcula-
ted with the approximation that the impulse given by beam B
on the distance from the axis of beam B._ This_ approximation
is correct when the disténge in a vertical plénp from the
axis_is smaller than the radial width of the beam, which is
not always the case for a crossing beam ring.

We nevertheless used this approximation, which pro
bably gives a pessimistic value for the space charge limited
density, as it permits us more readily to evaluate the ef=-

fects.



14,

5) Results

The space charge limit sets in at a charge density
given by 11), 26) and 29). With the densities given by the=-
se relations there sghould not be any collision between beams
A and Bs it seems therefore more correct to take as a space
charge limited density, allowing for the interaction between
the two beams, a value at least a factor of two lower, we
get then the values given in section 1.

The interaction rates per)interaction region, ﬁ,

are given, for colliding beams, by:

34) no= W I nts/sec
= .LA wh & 9 eve e

and, for crossing beams, by

. Ng ¢
35) n = NAf;TzP = events/sec

where £ is the revolution frequency, and ¢ is the cross se~=
ction in cmz.
Introducing the spaceo charge limited densities for

beam B with the numerical valuess

ada ¥ 0.1 (weak focussing)

¥/R % 2 on™!
F A
we finds
o 30
4 10
36) n = —~¥§5~——~ I, © events/sec

where I, is the current, in Ampere, of the weaker beam A
and p the number of the interaction regions per turn.

This result seems to set an effective upper limit
for the cross sections that can be investigated with colli=

ding or crossing beam rings.



In the case of colliding beams, wherc the cross seg
tion of the beams 1s determined by the radiation effects, o=
ne should provide some means to increase this cross section
if he wants to usc for IA a value bigger than the one which
is given by the space charge limited density times the unper
turbed crosg section of the beam(which igs of the order of
1 mA for a 750 MeV weak focussing ring).

M No problems, arisc in crossing becam rings, as 1in
this case the effective beam cross section can be varied

changing the crossing anglc.



