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1e—- INTRODUCTION

(1)

Feynmann and Gell-Mann introduced the hypo-
thesis of conserved current to explain the absence

of renormalization effects in the TV rart of the /gdecay.
In their scheme the weak vector current is identifieli’
with the (+) component of the isotopic spin current Jé+)»
One of the suggested tests of the theory is an accurate

measurement of the decay rate for the leptonic decay of

the piong
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In fact, neglecting electromagnetic corrections, the cor~

responding matrix element is given by
p e % o o) (%) -
GH(E ) [74 557 (7 1177/ (2)

and we. have a simple connection between the relevant
matrix element of the vector curreni and the electroma-

gnetic form factor of the pion an

CTNT V) = (702 7 ) A d6?) (3)



where 4% = (5“;5” Lﬂ is the momentum transfer to the
lepton poir, In the actual process (1) this momenbum
transfer is very small, so that one ’can safely put Fn=1.
In this work we propose to evaluate the radiative corregc
tions (%o order“eZ) to process (1), This would be impor-
tant for a compariéon of an accurate experimental result
and the prediction of the Feynmann an Gell-Mann Theory.
Since it is diffioult to introduse the pion
form factor in a gange~invariant way for vertices with
virtual pion lines, we will use a local Lagrangian and
a Feynmann cutoff in the calculation of radiative corw
rections. The results will not depend critically on this
cutoff, since the divergentce will be Ffound to be only

logarithmic.

2e~ FORMULATION

In the following we shall use +the notations
and the conventions of the textbook of Bogoliubov and
Shirkov (2). Let Py Py p3, p4 be the momenta and

e o]

m, m, m3, m4 = 0 the masses of the 3 3 € 3 T 5 Ve
We oput also:

oy por )
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7 A B

A1l the calculations will be performed in the center
of mass system,

The TLagrangian responsible. for the process is:

VGG i Gy ) he )

Following the principle of the minimal elec—
tromagnetic interaction, the Lagrangian that takes into
account the electromygnetic interactions as well, is

obtained from the complete Lagrangian without thoms
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by the substitutions
J/( Yix) — /(/(, - c.'c?/f’:{ {)(/‘,) i (x) (1)

where A{x) and gﬁ(x) are respectively the field operators
of the photon and of the generic charged particle that ap=
pears in the process (1).

In this way we obtains for the comlete interaction La-

grangian Ls
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The last term is a new direct interaction between the

e

five particles =7, =%° , e7, v and } .

3. - PEYNMANN DIAGRAINS,

Using the Lagrangian (8) we have seven diagrams cor~

responding to the process (1) up to the order gz e? (figs1)o
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Begides them we have also to consider three diagrams

(fig. 2) relative to the same process with bremsstrahlung:
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They give %to the transition probability a contri-
bution of the order gz ea, depending on the experimental

situazion (see par. 5).

4 = TRANSITION PROBABILITIES (Virtual photons).

We puts
/@:/77})715‘” / (/, / */’3”%4)/“ (10)

and we have:
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where the R!s refer to the various diagrams of fig, 1. Cal

Y

ling dP1 ths corresponding differential transition proba-

bility, summed over the final spins, we haves
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where to the order 5262 we have:
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41 = Calculation of Py
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4.2 = Calculation of (F4 + Fr +
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This integral shows ultraviolet and infrared diver~

gencess consequently it has been evaluated introducing a
) and a fictitions photon mass

Feynmann cutoff ( - Px AZ
» The same will be made, where necessary, for the o-

ther diagrams.
By standard methods one obtains:
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, Ak
Lﬁléﬁand /2 have been defined and evaluated from Beh-
rends, Finkelstein and Sirlin(B) (formulae (7a) and fol-

lowi ng) .
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Substituting the expressions for the jls, we obtain:

Z ro,
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Pinally the conbtribution of (F1 + F5 + F6) to the transiw

tion probability isc
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and the fractional correction
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4.3 = Calculation of Fy, F3 and Fy.

These diagrams describe self~energy effects; after
mass and wave function renormalisation the diagram F4 does
not give any contributiony; while the diagrams F2 and F3 gL

ve the following fractional corrections %o the itransition
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5« =~ TRANSITION PROBABILITIES (real photons).

As is well known, when treating approximations to the

2 2 one must consider the corrections due to real

order g
photons of energy inferior to a maximum value & depending
upon the experimental resolution, as well as the correc-
tions due to virtual photons. In our case we héve agssumed

E << my, We put:

(TG s-T)\ 7 )= dUp - pepn o=k ) & (25)
Where K is the momentum of the emitted photon, and G = F7 +
+ Fg + F9 (sce fig. 2).

Calling sz the corresponding differential transi-
tion probability, summed over the final spins and polariza-

tions, and integrated over X with }E) £ s one obtainss

i
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Because & << mp, we can neglect the diagram F9,

M
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. . . . 2
wich gives corrections proportional to & and & § for the

correction relative to (Fr + F one obtains by standard
) T 8

methods:
r8 s <
Lz =4 //J/ (f(/”/ﬁ /73/)(’)?2 5@9 (27)
where J(7’8), that is congequently the fractional correc—

tion due to the bremsstrahlung, is given bys
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6« = TOTAL CORRECTION AND APPROXIMATIONS,

The total percentual correction is given bys

NV ~£27 s 7 —-/3
J::C/ J_d-’ 4(}{/)"_0( (2%) (29)

)

where the d 's are given from (23), (24) and (28).

it must be d does not contain A

’w/"f,i;;f:)
In the very good approximation mp << mq, d and
{7,5)
""" nay be writton as followsgs
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Te =~ INTEGRAL TRANSITION PROBABILITY.

We call P, and P the integral transition probabili~
r 5
ties to the order g2 eg, and c@ =(P - POJ/Po the correspon-—
ding fractional correction.

By &finitions
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Performing the integrations considering also the pion's
recoil, and neglecting only terms like mg in comparison

with m%, one obtainss
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Finally one obtains numerically:

o
h

7705 sea™’ (35)

t

JP (202}‘+0,0&5‘&%§+ 0,00} @A% (36)

8, - DISCUSSION.

The value (35) has been obtained using the follo-

wing numerical values:

“” = (139,59 & 0,05) v (4)

3 - (135,00 & 0,05) mev (4) (37)
2 ; : : | \ o

gmproton~ (1,204 + 04001) ., 10 5 (5)

From the errors on my, m3 and g follows an error
of 1,6% on P, essentially determinated by the incertitu-—
de on the masses; hence this error is about one half of
the correction (36),

In (36) the cutoff for short wavelenghts is not
cancelled; however, the result depends only logaritmical-
ly on this cutoff,

~ Assuming for example £ = 1/20 my and A = 10 m, we
finds

%p > 0,032 (38)
Finally for the lifetime 7 we get:

7 = 0,904 (1 + 0,032) (1 + 0,016) sec = (0,933 + 0,015)sec.(39)
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