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Summary. —— A method for constructing a unitary operator which trans-
forms the Hamiltonian of a Dirac electron in the presence of an electric
field into an even Hamiltonian is proposed and discussed. The trans-
formation function and the transformed Hamiltonian are expressed
through an operator ¢ whieh satisfies an operator equation; when the
electric field is absent (free particle) the Foldy-Wouthuysen transfor-
mation ig re-derived; when the electric field is present and the equatlion
for ¢ is solved in series of m~1 the Pauli, Darwin, Foldy, Wouthuysen
non relativistic Hamiltonian is re-obtained; but in addition a method
of solution is now possible which converges rapidly and is met restricted
to the non relativistic case; the expansion parameter in this method of
solution is (1/me?)(efifme)E for an uniform. electric field and Ze?/fic for
a Coulomb potential. Though the treatment in this paper considers in
detail only the case of an electrostatic potential, the imeclusion of any
other term in the Hamiltonian is easy and, in particular, a magnetic field
may he trivially included.

1. — Introduetion.

In a well known paper (1) Forny and WoUTHUYSEN have shown how
ig possible, for the case of o free particle, to obtain a representation of th
Dirac ITamiltonian which does not contain odd matrices. Subsequently CASE (*
has, among other things, shown that the F. W. transformation can be extende
to the case in which a time independent magnetic field is present; in the sen

(1) L. Forpy and 8. WoUuTHUYSEN: Phys. Fev., 78, 29 (1950).
) K. M. Case: Phys. Rev., 95, 1323 (1953).
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hat also in such ecase, an unitary transformation can be found which trans-
4 exactly the Dirac Hamiltonian into a Hamiltonian free from odd ma-
The fact that the Hamiltonian does not contain odd matrices implies that
o component wave functions are sufficient for the description of a Dirac
ticle and in particular makes it possible to discuss the transition from the
ivigtic to the non-relativistic case; this has been fully discussed by Forpy
J WOUTHUYSEN, who have shown, in addition, how some « paradoxes »
ng in the Dirac theory can be solved: for instance the fact that the velocity
free Dirac particle is always the velocity of light, or that, in the Dirac
ry, only the projection of the gpin in the direction of the momentum is a
tant of the motion for a free particle.

More recently ERIKSEN (*) has considered a more gerieral problem: is 1t
ible to find an unitary transformation leading to an even Hamiltonian
in eases more general than that of a free particle or of a particle in a
netic field? ERIKSEN has shown that this question may be answered in the
irmative; indeed he has been able to find an expression for the operator U
[ucing the transformation. While Eriksen’s treatment iy very appropriate
iseuss existence problems, il is not easy to find in general from the expres-
of U given by ERIKSEN the transformed Hamiltonian, in those cases where
initial Hamiltonian containg both odd and even terms in addition to fme?.
The purpose of the present paper is to congider again the same problem
it is to find in general an unitary transformation leading to an even Hamil-
rian) uging a method different from that followed by Enixsmn. We shall
ow that it is possible to give an expression for the transformed Hamiltonian,
terms of an operator &, which satigfies an operator equation; this operator
uation cannot, in gencral, be solved exactly, but approximation methods
1 be invented to obtain solutions in many cases of interest. 'We shall confine
¢ for simplicity, to an Hamiltonian containing only an electrostatic poten-
1; this case is already sufficiently general to illustrate the method; it is easy
onsider the presence in the Hamiltonian of other terms, and in particular
¢ addition of a magnetic fleld is trivial.

‘It should be remarked at this point that the problem of constructing an
itary transformation leading to an even Hamiltonian in the presence of an
lectric and magnetic field has been already treated by Forpy and WOUTHUYSEN
1 their original paper. The way followed by Forpy and WOUTHUYSEN COL-
isted in removing the odd parts of the Hamiltonian through a sequence of
nitary transformations, each of which eliminates the odd terms in the Hamil-
nian to one higher order in an expangion parameter which is chogen as m~1,

being the electron mass.

(*) E. ERIRSEN: Phys. Rev., 111, 1011 (1958).

40 - 11 Nuocvo Cimento.
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Tt will appear that in the particular cage in which the solution of ‘ﬁhek;a
rator equation mentioned above is constructed by successive approximati
in m~1 the results of Forpy and WOUTHUYSEN are reproduced; but in addit
we shall suggest an other method of solution which does not depend on
expansion in m—! and is not limited to the non-relativistic case.

2. — A group of transformations of the Dirac equation.

The problem described in the past section ig to find an unitary operator
which eliminates the odd parts of the Dirac Hamiltonian H in the plesencer.

;‘

of an external time independent electric field described by a potential energy V
With the usual meaning of the gimbols: !

(1) H =y p)+pfm+7V.
We want now to find an unitam; U (UT* =1) such that:
(2) UYHU = hy + fh,

where h; and k, are hermitian operators constructed through x, p and &, bu

not containing odd matrices. From the unitarity of U the equation (2) ma;
be rewritten: g

(3) HU = TU(h,+ fh) -

The most general operator U is now, as well known, a linear combination ¢
the 16 independent Dirac matrices and may be written as:

(4) U= A+ Bf + Cps -+ iDfys ,

where A4, B, €, D are operators not containing g or y, but depending o
x, p and o.
The equation (3) may be written explicitly, using (4) and (2):

——
JC
ha

(ys6-p -+ fm +V)(A + Bp -+ Cy; 4 iDfy;) = :
= A+ B+ O’}/s -+ Z.—Dﬁyé‘)(hl + ﬁhz)

For thig equation to be satisfied it is necessary and gufficient that the ope
rators which multiply respectively 1, £, ys;, PBys on the left and right han
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gide of (B) arc individually equal; we therefore obtain, setting o-p = £:

;w)' VA +mB-+02C = Ah -+ Bh,,
" mA £ VB —i2D — Bhy 4 Ah,,
?w) QA LV 4 imD = Ch,— iDh,,
gé) — QB+ mC +iVD —— Ohy < iDh, .

We now sum and subtract the equations (6) and (7); and we do the same with
- the equations (8) and (9); we introduce also the following combinations of

X=A—B Y=0C+iD R=V4im

X=4-+B Y = (¢—iD R=V—m

{L':hl——hz,
Y = hy | hy .

We obtain in this way the two independent sets of operator equations:

RX +02Y =Xy
(12) _ -

] QX+ RY =Yy
“'and

: RX+ 02V =Xz,
(13) -

: QX + RY = Yu.

In the two systems of equations (12) and (13), R, R, Q are known operators
and X, ¥, x and X, ?, y are unknown operators. If x and y can be deter-
‘mined, », and h, are then determined through (11). Similarly if X, ¥, X, ¥
-are determined, the operators 4, B, ¢, D are given by (10) and the expression
of U is then known.

It must be remarked at this point that we have not yet congidered the
restrictions on X, ¥, X, Y, arising from the unitarity condition. This will
‘be done later (Section 3); for the moment we concentrate on the equations (12)
and (13), independently from the unitarity condition.

Congider the system (13); for the two equations to be compatible it is ob-
viougly necessary that:

(14) X-YR'X 4+ QYY) = T (22X + RY)

n~
[
k=]
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an equality which expresses that the operator # obtained from the first equa~’
tion must be the same as that from the second. In obtaining the equation (1'4')'""
we have assumed that the inverses both of X and of Y exist; in the following.
it will be stipulated that this is the case.

We now introduce the operator

(15) G = Xf“ .

Multiplying both sides of the equation (14) by X from the left and by ¥—*
from the right we obtain the following operator equation for ¢

(16) GG+ R)=RG+ 2.

Tf & solution & of this equation can be found, # is then given by:
(17) r = Y124 +R)Y

and a relation between X and Y is established through:

(18) X =06Y.

In a completely similar way we have from the system (12):

(19) GG+ R) = RG+ 2
and
(20) y =T YRF+RNY,

where now
(21) X =GY.

Obviously the equations (17) and (20) show that # and y (and therefore &y
and h,) are not uniquely determined, even if the solufions & and G of the
equations (16) and (19) were unique. This freedom in », y, which is of course
expected, will be discussed in Section 4.

We end thig section by rewriting tlie equations (16) and (19) in a more
explicit form: using (10) we have:

(22) GOG -GV -V G4 2mG — 2 =10
and
23) GOA+-GV—VEG omG—02=0.

The invariance of the above equations with respect to the substitution
V —V -~ const. should be noted.

628
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g, - The condition of unitarity.

We now determine the restrictions on 4, B, ¢, D, or equivalently on
X, 7, X, Y implied by the unitarity condition. When the expression (4) for U
is inserted in the equation UTU =1, four bilinear equations in 4, B, ¢, D
result; these four equations, when 1eexplesged using (10) in ferms of X, ¥,
X, 7 are:

(24) X+X+ VY =1,
(25) X*X 4 VY =

(26) VX +XtY =0,
(27) VX | XY =0,

Recalling the equations (18) and (21) we obtain from the equation (26)

Yy 2 YTGY =0
that is

(28) G =—4a.

It follows that the operator ¢ is determined from the operator & by the uni-
tarity condition; it can be casily checked that the relation (28) is compatible
with the equation (22) and (23) which have to be satisfied by ¢ and (. In fact
the hermitian conjugate of the equation (23) i

(29) GG L V@ — GV —2mGT— 2 =0

which is just the equation satisfied by — @. In writing (29) use has been
made of the hermiticity of £2 and V.

Coming back to the equations (24) to (27) we note that since the equa-
tion (27) is simply the hermitian conjugate of the equation (26) it is already
satisfied Dy (28); we therefore have still to consider only the equations (24)
and (28). They give respectively:

(30) YHGGY + V7Y =
and

(31) YT GY 4 Tty =1
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which may be rewritten, using also the condition (28):

(32) T+ = (1+ GGt = (1+ G6H,
(33) YY+= (14 G+G)-1.

The equations (32) and (33) are conditions on Y and Y. We notice that
they may be in particular satisfied if we choose ¥ and Y to be hermitian
operators, respectively equal to (4):

(34) Y — (14 GGy,
(35) Y= (1-+GHa)rt.

To end this section we wish to check explicitly that the operators » and y
defined by (17) and (20) are hermitian as they must be. Tet us congider the
expression (17) of z; using (33) we may write it as:

(36) #=T"1+ FORE+R)Y =
= Y"0G + R+ G*GRG +GGR)Y =
=Y QG+ R+-G'QL-GFRGY =g+,

A sgimilar check can be made for y which can be written:

(37) y = Y*H(RG + R' 4+ GYRG + G+ Y = y+ .

4. — The arbitrariness in « and y for a given ¢.

The results of the Sections 2 and 3 show that, if an operator & which obeys
the equation (22) can be found, the operators z and ¥ or equivalently h, and A,
can be determined. In fact once a ¢ has been found the equations (34) and (35)
may be used to determine a particular choice of Y and Y in addition & is
simply equal to — G, so that all the operators which appear in the expres-
siong (17) and (20) for # and y are available,

The question which we now ask is: having found an operator & which satis-
fies the equation (22) which is the arbitrariness in h; and k,? It is easy to

(*) The choice of the — sign in eq. (34) has been made simply to re-obtain the
same result of ref. () for U in the case of a free particle, but has no particular
meaning; compare Sect. 4.

630
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angwer this question simply by looking at the expressions which give « and y;
it is convenient for this purpose to use the expressions (36) and (37). It is
then apparent that for a given G the arbitrariness which remains in » is simply
the arbitrariness in the choice of Y; the umitarity condition only fixes (com-
pare the equation (33)) the product YY¥* but not separately ¥ and ¥*; if
therefore Y is a particular operator satisfying the equation (33) (e.g. the ope-
rator (35)) the most general operator which still satisfies the equation (33) is:

(38) Y= YT,

where T is an arbitrary unitary operator; it follows from the equation (36)

that 2 is correspondingly transformed into:
(39) ' =TT .

Tor a given ¢ this is, therefore, the arbitrariness in #. A similar arbitra-
riness exigts for w; in fact if Y is a particular solution of the equation (32)
(e.g. the operator (34)) another solution is Y= ?8, where S is again an
unitary operator independent from 7. From the equation (37) it then follows
that:

(40) y'= 8tys .

The origin of the arbitrariness in # and y which we have just illustrated
(we shall call it « normal ») is clear: at the beginning of the Section 2 we did
ask to find an unitary operator U which transforms a given Hamiltonian into
a Hamiltonian free from odd operators, that is of the form h,+ph,; but we
have not put restrictions on the form of z, and h;. This implies that, once a
particular operator %, - Sk, hag been found, the possibility remains of obtaining
other even hamiltonians through unitary transformations produced by uni-
tary operators of the form L--fM, where L and M are arbitrary operators
constructed through %, p and ¢. It is apparent that the normal arbitrariness
illustrated above is just the arbitrarinegs which iz present in such unitary
tragsnformations; it is easy to find the connection between the operators I,
and M and 8 and 7 previously introduced; we do not need however to write
down the explicit formulas.

In addition to the normal arbitrariness in z and y there is another kind
of arbitrariness; this stems from the fact that in general different solutions
for the equation (22) for G can exist; it is not yet clear to us what is the
extent and the meaning of this arbitrariness; some remarks concerning this
point will be made in Section 8.

o
=
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5. - The operator equation for G.

We now discuss the equation (22) for &; we shall from now on use regpec- |
tively me? and #/me as units for energy and length. Tn these uuits the equa- -
tion for G is simply written: ‘

(22") GO -GV VG 120 -2=0,

where now all the quantities which appear in the equation are dimensionlegs.

@) Free particle. As a first example we consider the case of a {ree
particle (V= 0), simply to check that we obtain the same results as FoLpy
and WoUuTHUYSEN. The operator & for this cage will be called &,; we have:

(41) GG, + 2G,— 2 =0 .
Obviously @, is a function of the operator 2 only, so that £ and &, commute

and the solution of the equation (41) proceeds as if G, were a ¢ number.
We have two solutions:

— 1 V14 e (—1+V1 + p?) 1
492 GP = - 7 =R =0
42) ° 2 P 1+4/1Lp?
(43) G2 — Q(Tlix_/iirpi —_ ‘Q,
' | »’ Vpr4+1—1

where the properties 22 = pl-pl|-p?==p? and Q-'= Qp~2 have been used.
Recalling the expressions (17) and (20) for » and ¥y, noting that in this cage
Y-1 or Y-! may be freely transferred to the right, using for # and y our system
of units and taking the solution G\ we get

=1+ pt,

y:——-\/l—l—pz,

where the equation (28) has been nsed.
Tn the transformed hamiltonian one has accordingly:

hw=3@+y) =0, h=3}y—2)=—VIi+p:,

in agreement with the result of FoLpy and WOoUTHUYSEN.

6B32
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Had we chosen the solution ¢® we wonld have obtained:

=0, by = + V1 L p?,

which differs from the previous result only for having exchanged the positive
with the negative energy states.

Tt is also straightforward to deduce an expression for U, in this cage; the
general expression of U, in termg of &, will be given in Section 8 (formula (61)).
Specializing this expression to the present case, using the solution &% and
the formulas (34) and (35) of Section 8 we get:

1
I €] T
Putting
¢ g L
cos5 = Gq Vl——fj@)ﬁ’
and consequently tge@=— £ the expression (44) may be rewritten:
4 P } 4
U= 0055 + Pys sin 5= exp | By 5} ,

in agreement with ref. (2).

b) It does not seem possible to find a formal solution of the equation (227)
in an arbitrary field. It is possible to find a solution in the particular case of
an uniform electric field (compare the Section 9); or it is possible to try to
construet the solution by successive approximations in V {(we recall that V
is now adimensional, being equal to the potential energy, divided by mc?).
This will be done in the next Section.

8. — The perturbative solution of the operator equation for ¢.

The terms containing V in the equation (22') are usually small with regpect
to the others; in fact the quantity V in (22') appears usually multiplied by
a very small coefficient whene verything is made adimensional. For instance
in the case of an uniform electric field (putting r= (mc/fi)r)

(45) Voo Er=Er—-=—EF,

G33
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with B = (efi/me)(1/me®)E, a quantity which is exceedingly small (< 10-12)
even for the strongest macroscopic electric fields obtainable.
For the case of a Coulomb field:

Zetmel Zetl
4 | ——
(46) me: H T e 7'

which is reasonably small for small Z.

It appears therefore reasonable to try to get the solution of the equa-
tion (22') by perturbation theory, regarding V as small; this is what will be
done in this Seetion.

We write:

(47) G =G G+ Gt ...,

where the lower index characterizes the order in V; and we proceed to deter-
mine the succeeding operators of the series by substituting the expansion (47)
in the equation (22') and equating to zero terms of any given order in V.
In this way we obtain, of course, for &, the equation (41); for &, we have:

(4:8) GIQ(}O + GOQG]. _i_ 2G1 — VGO — GoV .
For G, we obtain:

(4:9) GE‘QGO + G();QG?‘ + 2G2 - -FTGl_'— GIV_" GIQG1 .

For the successive termg we have similar equations where in each case terms
of any order are determined from the knowledge of terms of lower order.

We now choose for 7, the solution " given by (42) and we confine here
to the determination of ¢,. Trom (48), using a representation in which g,
and p are diagonal we have:

(50) <prﬂul lGl ‘p”ﬂ”;\) = Gy
J'<pl } v Ipff')rpli(.»\/l 4 p//z 4 1‘) -3 __pz(,v/l ¥ p/z e 1)m1<‘p/ i V ’pu>1
| V14+p®+ V14 pr J

It iy posgible to write G as follows:

o

Sy %) G.P - .2
(b1) 3, de GXP[S\/l"]Lp] T’r, m exp [8\/1"%’@ ]ﬁ

—w

where the brackets in the integrand indicate the commutator.

634
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It is important to recognize that, on account of the smallness of V pointed
out at the beginning of this section, the term &, is sufficient for all practical
_ purposes, at least in the case of macroscopic fields. Of course the conver-
gence of the whole procedure has to be examined; some remarks on this peint
will be made in Section 9.

Tt is also important to stress that the expansion diseussed in this Section
is mof a non-relativigtic approximation; it is simply an expansion in termsg
of a well defined parameter; in other words the formula (51), in particular, is
completely general as far as the velocity of our electron is concerned.

We can now exhibit the connection between our procedure and the non-
relativistic expansion in m~* diseussed by Forpy and WoUTHUYSEN which we
have mentioned in the introduction; this is very simple.

The non-relativistic limit of Pauli, Darwin, Foldy and Wouthuysen is simply
obtained from our formulas by expanding G in series of m~! and limiting
ourselves to the terms of order m~—2.

We recall that our p stays for p/m and our V is V/m; it is then straight-
forward to show that to take into account all the terms up to the order m-2
it iy sufficient to confine ourselves to @, and @,; in other words @, is already
of order m~* and it does mnot contribute to terms of order m—2 in the expres-
siong of A, and #&,. ,

To be more definite we note below the relevant termsg in the expansion
in m~' of the various quantities which are necessary for the determination of
by and h, including terms of order m—2. In order to exhibit the mass expli-
citely we shall write the formulas below in conventional units. We have:

10 1
) Wy - T
(52) G —ZMIO(V,),

0

(b3) 0, zfexp [25]ds (V”Qm@) + 0 (-%—) = — iﬁ@g (o E)--0 ( 1 )

2mez  2me mi

— 0

(el = — grad V],
(54) Gy =0 (—l—) .

m‘l

The expressions (17) and (20) of # and ¥ may nbw be written:
. V .

(55) 9= mT 1 (E—P [GY L G 4+ — - 1) Y,
m m

(56) b= m Y1 (0'/”_57 [— G+ 6]+ % _1) f-a
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where use has been made of the relation G*=— @ and of the antihermiticity
of &. It appears from (55), (56) that Y-1, ¥, ¥~ and Y have to be cal-
culated including terms of order m—3. S

We simply give here the expression of V:

~ 1 1
57 e —
o0 V1+ GHE T V1 @R+ GG — Gy6,
A i ﬁ ~
———1——:0)'%@—2"}— o (EAp) .

To obtain Y—! simply change the sign of all the ferms in ¥ except the first:
— Y differs from Y for a change in gign in the terms of order m—* and — Y-t
differs in the same way from ¥-i,

Though we have written down the Y’s correct to the order m—3, the termg
of order w~* disappear in the calculation of # and y because div E and
o' (EAp) both commute with 7. Hence we obtain:

2 p2 7:7?;6 ' '. Z »__p2
w—m(1+ )( - (cp)(cE)+m+1)(1 SW)

8m2/ \2m?2  4m?
L PR p*  ifie (o-p)(c-E)  V e

Y = e R — | 1 —— .

y=m (l T 87n2> ( 2m?  4m? m? T om 1 Sm?
We then get eagily:

eh ?Z
iy = (EAp) + 7V,
(68) pe
2 o )

which is the same result of Foldy and Wouthuysen, for a pure electric field.

The results of this Section may be summarized as follows: we have made
an expansion of ¢ in terms of the adimensional quantity V/m, a quantity which
is usually very small. In this expansion, of which (42) and (51) give the zero
and first order terms, no non-relativistic approximation is made; when each
term of the expansion is further expanded in series of m~?, the non-relativistic
Foldy-Wouthuysen expangion ig reobtained.

7. — The evaluation of ¢, for an uniform electric field.

The sense in which our series expangion ig a generalization of the Foldy-
Wouthuysen one may be fully appreciated if the example of an uniform electric
field is considered. In such case ¢, may be easily determined exactly and
hy, hy, may therefore be given exactly to the first order in .

636,
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We have:

» _ i EeW1 1Vt pY) — (E-p)ep)
(59) Gh=— g T T E - :
- L+ p2) (L4 VI 4 po)*

where V has been again written, like in (45), as:
V=-—FETF.
The calculation of A, and h, gives:

(60,) = V42 i

2 VIt pr(l4+Vitp)

(60,) : hy = — mA/ 1 n pE.

The formulas are correct to the first order in the expansion parameter &
and to all orders in m~"; from the formulas (60), the non-relativigtic limit for
the pregent case is obtained gimply neglecting p? with respect to the unity
in the second term on the right hand gide of (60,).

8. — Comparison with the results of Eriksen (°).

These results of the past Sections show that, if a ¢ exists, the transformed
hamiltonian is even; therefore for the transformed hamiltonian k,+ fh,, § is
a constant of the motion. This implies that UFU™ is a constant of the motion
for the initial hamiltonian H. Since the eigenvalues of f and USUT must be
the same, that is 41, ERIKSEN has observed that it should be possible to
identify UAU* with an operator commuting with H and having only the two
eigenvalues = 1; he has called this operator A and hag remarked that a pos-
sible explicit expression for A may be: H/(H2)L

ERIESEN then proceeds to determine U in terms of 4 from the equation
UBU*=2 to which he adds the further restriction US == U* which is seen
to be compatible with the previous one. Ag we have gaid in the introduction
ERIKSEN has found an expression for U in terms of A; thig expression is useful
for discusging existence problems; our method is perhaps more appropriate
to determine the transformed hamiltonian explicitly, as we did already men-
tion in the introduction. Obviously however a relation exists between the two
procedures; we shall briefly show below which is the connection.

(3) Our U* is Lriksen’s 7.

637
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From our formulag it is casy to obtain an expression for U; it is
(61) U=£[(6 + )0 —BY + (— & +y)(1+ B)Y].

The connection between our & and Eriksen’s 2 (°) can be established con-
structing UFU™ and identifying this quantity with 1. Explicitly:

1 1 1 1
4 + — - I.. B S
©2) =i i ea T (1 1+660 1+ G+G)

1 1 1 1
—_— + s S e+ . _
s (G R G+G) s (G e T GF’G) A

Bquation (62) shows that Eriksen’s 4 can be expressed through our G; how-
ever Hriksen’s condition Uf = fTU* does not correspond to our particular
hermitian choice of ¥ and 7, but corresponds instead to the choice: GY = Y+G+
Y@ =6G7Y*, Y=—Y"; these equations and the equations (32'), (33) can be
satisfied with ¥ = G-1(GG7F/(1 4 GG™)2,

It should be noticed that the equation (62) is important for establishing
the existence of a G once the existence of a A is established; in fact if we
write A as A+ A+ A+ fysA4 G can be explicitly expressed in terms of
)Llp ;Lz’ As: ;“4: by:

G o= (— A+ A1 — A, —A,) "',

This observation implies that the result of EriksEN showing the existence of
an U entails necessarily the existence of a G, solution of the equation (22').

9. — Some final problems.

This Section containg a few comments on some questions which arise na-
turally from the previous treatment; they are: a) how many solutions of the
operator equation (22) for ¢ do exigt? &) Which is the 1elation between the
class of transformed (even) hamiltonians obtained using a particular solution
and the class obtained using another solution? ¢) Does the sum of the per-
turbative geries of Section 6 in V/m give a solution of the equation for ¢ and
which is the connection between this perturbative expansion and the general
solution?

We are not able, ab present, to answer these quenstions: we confine to

(®) When speaking of a 1 from now on we do not imply that this must be the
same as Eriksen’s particular choice.
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illustrate them on the simple example of the uniform electrie field where the
operator equation for & reduces to a differential equation; we have already
examined the case of the uniform field in the first perturbative approximation
in Section 7.

Tt is easy to gee that, since for an uniform field

GV VG =—iE-grad, ¢

the equation (22') becomes a differential equation.
If we write:
__o(esf — p)

¢ #—1 7

where € is a unit vector in the direction of B and &7, # are some functions of
Duyr Pus Doy it i3 easy to see that o and & satisty a pair of coupled differential
equations. If we further introduce the function Z of p,, p,, p, through:

_ P12 @ p-1—Z*
“ope—z W Il

where p*= p2-+p>-1-p?, the problem reduces to find a function Z which satis-
fles the following ordinary differential equation:

dz
dp,

(63) Z— B2 1 LR =0,

Here the direction of € hag been assumed to be that of the # axis. The equa-
tion (63) is a Riccati equation with complex coefficients. It is therefore clear
not only that a solution exists, but also that a manifold of them exist depending
on an arbitrary complex constant .

The questions which have been raised at the beginning of this Section
reduce therefore in the present case to: 1) which relation exists between the
transformed hamiltonian corresponding to different choices of the above men-
tioned complex constant? 2) It is possible to find two solutions of the equa-
tion (63) corresponding to two values of ¢, which are analytical in Z near
B =0 and may be constructed by the perturbative approach? Notice thab
also here, as in general, there are two different perturbative series, one starting
with Z,=+/pz+1 the other with Z, =—+/pz+1.

Now, in the present case, it would be clearly possible, nsing known results
in the theory of differential equations, to give a detailed answer to the above
questions 1) and 2). Since, however, the example of the uniform field was
discussed here only with the purpose of making more concrete the general
questions introduced at the beginning of this section, we shall stop our ana-

=g
o
=1
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lysis here, adding only two remarks: the first is that, both in general and in
the particular case of the uniform fleld, the simplest answer to our questions
would be that the perturbation solutions converge at least asymptoticaily and
at least for a certain range of values of the expansion parameter to a solution
of the equation for &, while all the other solutions have some kind of irregu-
larity which makes them not usable for the counstruction of the transformed
hamiltonian; that this is true has been, however, not proved. The second
remark is that, in the case of the uniform field at least an asymptotic conver-
gence of the perturbative series exists almost certainly as one may conjecture
from general theorems (7) on non-linear differential equations belonging to a
class very near to that of equation (63).

(") W. Wasov: Asymplotic properties of non-linear analytic differential equalions.
Proc. of the Varenna Course 1954 Sponsored by C.I.M.E. I thank prof. Contr of the
department of Mathematics for having indicated this reference to me.

RIABSUNTO

Viene proposto e discusto un metodo di costruzicne di un operatore unitario che
trasforma ’Hamiltoniana di Dirac in presenza di un campo elettrico in wn’Hamilto-
niana priva di matrici dispari. La funzione di trasformazione e I'Hamiltoniana tra-
sformata sono espresse medianfe un operatore ¢ che soddisfa nn’equazione operato-
riale; quando il campo elettrico & assente (particella libera) si ricava di nuovo la tra-
sformazione di Foldy-Wouthuysen; quando il campo elettrico & presente o equa-
zione per & & risolta in serie di m~? si riottiene I’ Hamiltoniana non relativistica di Pauli,
Darwin, Foldy, Wouthuysen; ma in aggiunta un nuovo metodo di soluzione & possibile
che converge rapidamente e non & limitato al caso non relativistico; il parametro di
gviluppo i n questo metodo & (1/me®)(efi/me) i per un campo elettrico uniforme e Ze*/fic
per un potensziale coulombiano. Sebbene in questo lavoro i consideri soltanto il caso
di un potenziale elettrostatico & facile includere un qualsiasi altro termine nell’Hamil-
toniana ed in particolare introduzione di un campo magnetico non presenta aleuna

difficolta.
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