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As is well known, muons and electrons appear to have
identical couplings. Their masses are however different.
Such a situation seceme rather peculiar and has ;ecently re
ceived much attention(1). Ta this note we shall: (1) defi
ne a formdal operation of much~electron symmetry; (2) show
how the total Lagrangian, excluding weak couplings, can
be written in a form exhibiting such a symmetry, if elec—
tromagnetic coupling is minimaly (3) gshow that it is im-
possible to satipgfy such a symmebry when universal weak in
teractions are included, if only one_neutrino existss (4)
gshow that it i3 possible %o have such‘a symmetry in a two-
-neutrine theorys (5) point out the close connection of
muon-~electron symmetry to a principle forbiding ths tran—
sformation of muons into eslectrons.

The present invegtigation is related to some recent
paperscz)(3)(4> dealing with the &limiunation of particu-—
lar muon clectron couplings. Of the above points, (2) is
already contained in reference (3). We shall also make u-

se of the general theorem of reference (4).



We first define a Tormal operation of muon electron
symanetry. We introduce a two-dimensicnal e-p) space, which
we call L-space {(lepton spacc). The ec=-p symmetry, or I-
~gymmetry, is performed by an unitary operator &ﬁ , such

that

Tt L
5/ '@f&f = é; ;y

where & is a vector in IL-space desoribing the electron
and muon fields and gy is & Pauli matrix in the usual no-
tation. In the representatiocn in which the componenis of
U arc ¢ and p the operation (1) just amounts to the sub
gtitution e &= pn,

A general renormalizable Lagranglan, excluding weak

{2 3
interactiong, can be written as\J’(4’
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where &G/ igs the free photon Lagrangian, 5&5 ig the strong
w
Lagrangian that we assume does not contain e or p, and A,
B,C0;D are Hermitian mairices in L—spacecE). The requirementd
of invariance under IL-symmetry implies that A,B,C,D all
commute with oq.
A theorem; whose proof can be found in reference (4),

gtates the existence of a non-sgingular matrix T in spin-

~gpace and L-space, such that by transforming according to

Y= Ty (3)

the Lagrangian takesg it usual form in which the electron
and muon componsn® of @VJ are not coupled(é). Thusg there

exist infinite cheices of A,B,C,D that make the TLagrangilan



3

(2) manifegtly I~symmetric. A particular choice is given
in refercnce {3).
We now add weak intoractions te the Lagrangian. We

agssume that e and p ars coupled identically in the (1 +

+ Ve ) projectionll). The matrix T is now restricted from
the condition of giving a symmetric desgoription also in
termg of Wwfa Writing T = aR + &S, where & =—%—(1 + X )
and 7 =*%‘(1 ~'%§ } and R, S5 act in L - space, such a con

dition restricts the form of R, E must be of the form

R =1+ ve, +W (6o =icy) (4)

with u, v, w complex numbers(g). One now sees directly
that such a form of R is inconsistent with the assumption
that A,B,C,D in Bq (2) commute with oy. From (2) and (3)

one sees that R and 8 must satisfy

RI4s8)R = 1, SHu-8)s=A; sTerD)R=m  (5)

1 L N 2
where M =-——(me + m ) +—§-(ma - mu) Gys to obiain, after

2 )
transformation, the ordinary lLagrangian for muon and '‘elegc
tronse It follows from (5) that R has to satisfy the equa

tions(9)
+* . ‘ % - "'f/ & Z Z

R4+3)R=1 [ R74-8)(c?+27)R = M (6)

The first of Bqes (6) implice w = O in (4)(10). But
then it is impossible to satisfy the second of Eqs (4)
gsince the left-hand = side commutes with 0 4 while M2 does
not,

A different situation occurs if one assumes the el

stence of two neutrincs both lefthandel , one, §¥ )
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coupled to the eleciron, the ofther, 1%; , coupled %o the
muon(11). A simplest transformation to obtain the desired
symmetry consists in introducing new Tields e'!, p', ig, EL’

according %o

s . 7 :
£ = E/Ef/”'/&}) 4{{,: *[/:_Z_— /t’i/—/k/)
s __‘“—/L / 2 _ __“_ /n/#- '!f
Lo m O L E )
The total Lagrangian assumes the symmetric Torm

$ = ~THd ) B K em  m JlE) )] -

=V YOV, - UL YO = GEN V) #(EN 4V ) #

€
A/%i%’ ﬁgefij/i&;Egg,acﬁ.% “.,,i7 -+

+ (other terms not invelving leptons) (7)
1
N Here m =-—{(m + m ), G ig the weak coupling con=
' + 2 e = I

e

stant and the conitribution to the weak current frem baryon
and meson terms has not boen written down explicitly. The
Lagrangian (7) ia written for the usual feormulation of the
A -7 theory(T). 0f course, L-symmetry here involves also
an exchange of ¢ with Yh

FPinally we come to the last of the four points men
tioned in the introduction., According to general principles
we expect that a selection rule be connected to the possi-
bility of L-symmotry. One sees that & in (1) can be ta=
ken to satisfy y%ff: 1y and &ﬂz = 1, and thercfore it

igs Hermitian, with eigenvalues + 1. If L-gymmotry 1s sati~
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sfied, states with elgenvalue + 1 cannot transform into stz
tes with eigenvalue = 1, What is the physical mearning of
this conservation law? From (1) and (3) one notices that

&ﬁ can also be represented by a matrix T"‘g; T ac=
ting on yff. Such a matrix is: a) tracelese, b) its squa
re is unity, ©) it nust commute with M, because of the in
variance of L, Therefore 1t can only be % Iy It is now g
vident that the conservation law is one that forbids a muon
to ftransform into an electron and viceversa (unless other
particles such as “Q& and i%A s bearing gquantum numbex‘bp,
are also emitted or absorbed). We may call this law the
"law of muonic number conservation®. Such a law is no% sa~
tigfied in the one-neutrino theory and this simple obser-
vation may actually be taken as an independent proof of
our statement (3) that we derived above by direct algebraic
verification, This remark also illustrates the role of mi
nimal e.m. coupling in our statement (2}, since, by non-mi

nimal coupling, p-e transitions could well occur.
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C)/c)}.//a"% Ju = (k- e An) |
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..../ ",‘ - rl

ve = LTW
Tf P! is the tobtal energy - momentum vector construc-—
ted pfro'm ’%“/, the operator P'P' has eigenvalues ~m%,
which correspond %o ithe electr%n and the muon, Hdowever
Ppr, whore P is constructed from W, must have the

. : . B =Y
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