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A diffusion equation, describing the phase motion of
slectront in a synchrotron is derived and solved. It is shown

; ¢
thatnon linear corrections to the Christy T}OImula are amall,

1) Introduction,

The present paper deals with the loss of particles from
a synchrotron or a storage ring due to the guantum gffects of
synchrotron radiation, In particular we congider the loss of
pariicles caused by the stochastic excitation of synchrotron
ogclllations. -

hccording to the work of Christy thero is a strong ox
ponential dependence of the lifetime on the driving voltage
of the radio frequency, such that in some practical cases ©Xx

ponehts of %he order 10 or 20 may be expected; on the other

«
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hand - and we have to rely on description of Christy'ls un=—
published work —~ it appears that in the dorivation of the
final results ceritain eapproximations had to be made. It is
clear, tha®t in view of the largoness of the cxponent small
correcctions of this exponent may result in considerable cor
rectiong of the lifetime. Recontly Sands 2) hag comparcd
Christy's theory with experimoent. The agreement rcached is
very satisfactory, but the driving voltage had to be 'rgm
normalized! by 10%. This immediately raises the problems 1s
thig renormaligation to be eoxplained in terms of non linear
sorrections to the exponent? The answer to this gquestion gi
ven in the presont paper iss no. Indced the exponent colnci-
des exactly also in a non linear theory with the gxponent
calculated by Christy.

Section 1 of the present paper derives the synchrotron
equations in Hamiltonian form, $he influence of damping and
stochgstic perturbations being treated as external (non Ha=
miltonian) forces, In section 3 the Fokker Planck method is
applied in order to obitain a diffusion equaticn in the pha-
so space of the system. In sectlon 4 we introduce action and
angle variables., Those permit one to write the diffusion
cguation in a particularly simple form and to introduce a
canonical digtribution in phase space. Iun scction 5 we give
an mcceurate solufion of the Fokker Planck eguation., Instead
of solving the timedependent problem, we make the gyatem
stationary by introducing = sdurce density of particles
which compensates exactly for the loss of particles at the
gtability limit, The lifetime is then destermined as a fung
tion of thieg source density and given in the form of a
double integral.

In seciion 6 we digcuss these limiting cases fox
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which the 1ifetime can be caleulated in closed form., For big
exponents one Tinds that the lifetime ig independent of the
particular distribution of the sources in phasc space and 1is
given by the Christy formula multiplied by & correction fag
tor of the order of 0.8: this corrsction factor is expressed
in terms of the action integral at the stebility limit, For
noderately large cxponents the Christy formula is no longer
valid, In this case it is still possible To give an oxpres-—
sicn for the lifetime for a constant source distribution. A
closed expression is given in this case and the nonlinear
terme are treated as a perturbation, This gives a generali-
sation of the Christy formula, which is also valid for very
small exponents, but which is limited to counsbant source
densities. Finglly the cage of a J\— source iz treated.

Tn section 7 we give a brief resummeé of the factors
which influence the exponent.

Owing to the dispersion of the literature of the sub
Ject it meems very hard for the student to find his way
through the wondrous maze of cross references., We thercfore
apologize if we have not done full Jjustice to other workers
in the field. In view of %thig fact we do not want To consi-
der the present paper as a very original contribution, but
rather as a work of clarification. With this scope in mind
the sections 2, 7 and 8 have been introduced, though they
could have been disvensed with by a reference to the exi-

sting literature.



2) The Synchrotron Equations.

The phase cscillations in a synchroiron ars governed
(1)

by the equation

i L]

(1) (\{TI + g‘gL‘P 4,_‘(22;(511'11»-}’= - gin &fC&;) = £ (%)

Here g} ig (minus) the reduced phase of the synchrotron
ogcillations: VD: ~ k(W - wWe)t, «) is the actual frequency
of rovolution of the clectron, g the synchronous fre-
quency, k = 1; 2, ecesosss 18 the 'harmonic index!' of the
radio freguency, which is assumed to vary in Time as

- 1

V sin k wWe % . Qs is the damping factor of the synchrotron

oscillations, defined Dby
(2) @ = (4 -ol) 7 /B (secs™ 1)

is the 8o called momentum compaction Factor (in a weak
focusgsing machine oh = 1/1 = an , where 0 < n < 1 is minus
the logarithmic derivative of the field on the equilibrium
nrbits generally (X = P dr/r dp, where dr 1is the change of
cquilibrium radius and dp the change of momenium). Pg 18
the average power radiated by the synchronous electron of
energy Eg. The damping term in (1) ig due to the fact that
the power radiated depends on the radius, whichk in turn

varies with & change of phase. For P, one has

T C 7
2 0 s -
(3) Py == 5 ( 5 )4 — (eV secs D)
3 R m c
where T = 2.8 10-13 ams is the classical electron radius

and m is ite mase. B is the equilibrium radius of the esleg
t¥on orbitsy R = c/uu5 for a machine without straight seg

tions,. jlo ig the 'limiting freguency! of the synchrotron



oscillations, It is defined by

Z eV
(4) 1. $2 =2 7k oL
3 ES
in which ts = QW/QJS is the period of revolution of the

gynchronous eclectron. The synchronocug phase %s ig defined
by
Pt

.y L s s
(5) sin FS = %

T% is the phase with which the synchronous oleciron passes
the gap of tho RF: the synchronous electron has ite average
energy loss covered by the energy picked up in pagsging the
EaDe
k3
Pinally & (%) is a driving force duec to the stochastic
nature of the radiation losses, One has

J Py

ts E,

(6) é(t)-:Enko{

in which 5 Py is the fluchtustion of the radiated power,
Tor the following it is convenient to put equation (1)
into Hamiltonian form. Putting N = \f - f; one can write

for the Hamiltonian

1 Z

(1) H = -5-)(+v(\/’)

in which ~Xﬂ figures as momentum variable and / as coor=

dinate. The 'poiential energy' V (W) is defined as
2 { 2 >U . ) .
(8) V() = J2,(2 cos f@ sin® & - szn&g(99- sin & )

and normalizmed in such a way that V(0) = O. The Hamiltonian

takes care only of the conservabtive part of the phase oscilla
e 2



tiongs damping and the stochastic term are considered exter=
nal forces, I+t is then easy to verify that instead of the

equations (1) one can write

’ JxE
Wo= Iy
(9) , : .
y J H .
\X - H&;(f, ”,‘BOS\X‘FE‘("E)

t

It is well known that, if yﬂ becomes larger than 7w - y&
the phase oscillations become unsgtadle. For this value of y
~ which corresponds to YW =g - 2}% , V{¥) nas a maxinum
and the restoring force -~ <9V]&y» therefore vanisheg, It
follows that the stable region of H ig defined Dby the ine-

guality
(10) 0SB« H
and that 1T = vin - 2}%). Using (8) one finds
- 2 ) 2
(11) 0 ={2.(2 cos 705 (7 - 2}%) sin }‘1’ ) =_Qof(%)

in whiech the last cquation dcfines f()?), The useful range

of }% is 0% }% % n/2. For 9% =&<< 1 (high RF voltage)
- 2

one has H =_Qo(2~~n£n) and in the limiting cage of a gmall

— 2
RT voltages >@ =n/2 =& H = -%—J?O gz.

3) The Diffusion Eguation,

The motion of the representative point of an electron
represented by a closed loop in the 'phasce~diagram' in the

Jﬁyfu plane is ~ according to egquation (9) -~ disturbed by
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two effects: the danping, which will tend to make the rTepre
sentative point revolve in ever decreasing loops and the
stochagtic driving force, which will have the opposite ef-
foct, To degcribe the play of these non conservabtive forces,
we introduce a density W{ X, ¥;t)s; W(J(5§5;t)dxld¥/ is
the probability of finding a representative point in dfni%
at time t. We want to cstablish the transport eguation for
We To this end we choose a small time interval T {so thai
@IU@LX can be congiderod a constant) and observe: all the

particles which at time 7T have UY in dXﬂ and V’ in d%

aust =t time + = 0 have had
Wiy o 2y =22 re g T -£C) + X
toox ! oy L Ts

and must have been contained in an interval
! /
a)f al - ay ey (1 s KT+ 0(T)

provided that &£ (%) is a given function. If < (t) (which
is proportional %o the difference between the average and
the actual enecrgy loss in the timo inferval t) is a sto-
chastic gquantity, we still can define =a probability
P{E(t))a& () of finding &£(t) in the interval as (%)
after the time t has elapsed and it is clear that we nust

have

—

(12} \fP(x)dx = 1 ‘YP(x)xdx = 0 Sé(x)xgdx = x°

the latter becausc the average fluctuation of energy must
he morcs. This immediately gives the following transport

egquation

(13) W, WD) = [eS(T) B (£(T) ) =
v OH ‘ a1 .
W SE T QT - E(D), P s 90 £ D)



From thig a diffusion equation can be obtained by applying
the Fokker — Planck method, i. ¢. by cxpanding the right
hand side in powers of the increments. Neglecting terms of

third order this gives

JW DE Ju  JHi I | W
SR I A R (A
" o 97w
v = £4(%) iy

The first two Serms are due to the phase nmotion of fthe un-
perturbed system, the second term is due to damping and the
third ies duc to the diffusion caused by the quantum effccts

of the synchrotron radiation.

4) The Diffusion Equation in Action and Angle Variables,

Tho action integral J(H) is defined by

(15) T(E) = 3’5)(’ aly

oxtended over a full pericd 1/+ (H) of the unperturbed
motion of the systoms H ig a function of J slone and not
dependent on the angle variable w = v(H)S + wg. If

E = H(J) is given ) ocan be obtained by

. an
(16) v = a7 -

Since J and w are canonical variables the volume element
in phase space is d4dJ dw. We now assume thet the density
function docs not depend on w and that therefore the prao-

bability of finding the system with J in dJ is given by



W(I)daJT. Using

JH

3 et

d _dE 41 3 X & 1
¥ v

5
JY JX JE 237 EE R Y

el
=

QL

and inserting into equation (14) one gets

2 2 .
S dw 1 I3 Yo a1 w7 9
= Q. (W + v 9“5“)+—2—2(J‘3)(§)—§‘3"55~5+7"“3—)

o

=,

va

How, the changes caused in the function W(J,%) by the sto-
chastic and damping herms are slow changes 1in the sense that
they will become appreciable conly after & timeinterval,which
ig long compared to the period of the phase motlon. It 1is
therefore legltimate To replace V)('Z'by its time average.

Because of (15) ono has

(17) //UY at v//J”»&dt =07

so that the diffusion equation for the action variable J

becomes

oW 3 ... E 9 I IW
(18) rralie Ps (5= () t ST W ST )

ﬁL,

ig defined by

and the definition is chosen in such a way that 3 becomes
identical with the exponment in Christy's formula for the lim
fetime of the beam in the synchrotron. cr will be determi-

ned ir sgection .



5) Soluticn of the Diffuslion Fguation.

The diffusion sguation {19) has 1o be esolved subject to

the boundary conditions

Q.-
=1
-y

3

~
oy

(20) lim JW = lim il , = 0 3 W(J) = ©
I—s0 Fs0 VY

the first two of which express that there are no sources of
particles at J = 0, the last that there is an 'absgorbing
wallt! at J = ?. This absorbing wall corresponds to tThe Tact
that once the 1imidt of stability is reached the particles
diffuse rapidly to J = 20,

There are two distinoct ways of attempiing to solve an
eguation of diffusion in the presence of an abgorbing wall,.
The one congists in fixing an initial distribution and in
trying to determine the time dovelopment of this distribu=-
tion, A simplified version of this method consists in impo-
sing an exzvonential timedevelopment and in determining the
exponen’ as s solution of %he eigenvaluec eguation imposed by
the boundary conditions. In the second method the procedure
ig the following: Bquation (18) does not admit stationary
solutions since particles arc continuaglly lost at the Dboun-
dary J = J. We can, however enforce a stationary behaviour
by adding a source-densiity in such a way that the losses at
the boundary are exactly compensgated at each instant of ti-
me. The relation between +the geccond method and the simpli-
fied firast is the followingt the latter is obtained by cho-
oging the sgource distribution proporitional to W(J) - the
golution of the stationary squation.

We shall here adaopt +the sccond method: firstly because

it admits an exact solution of the diffusion eguation,; se=-
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condly, because it is more goncral than fthe simplified nmethod
one and thirdly because the physical situation most closely
degeribed by this method is onc cncountored in storagoe rings,
which recently have gained so much interest.

We assume that per unit of timeo ﬁO(J) electrons with
action less than J§ are injected into the stable part of the

»
phase diagram. The ftotal number injected is ﬁ0(§) = Eo' We
interpret W(J)&J as the number of particles in dJ. W(J) will
in general be a functional of W(J), but we shall be able to
show that this funcitional is degenerate in most cases of
practical importance and that W(J) depends only on Eo“ With
T

(21) ] =\J ar w(J)

o
the total number of circulating particles; we can then defi-

ne & lifetine
1]
(22) T = §/¥,

which in general will again be a functional of ﬁo(J), bub
will only depend on ¥ in most practical cascs.

Aftor the introduction of the source density ﬁé(J)dJ
(where the ! indicates differentiation with respecd to J)

we can put AW/ D3t = 0 and obtain from eguation (18)
. - il J o ? ¢
(23) 0 = 8¢ (JW « 5 (:?VYT) Yo W
We can integrate this squation from O to J and obtain by

uging the boundary conditions {(20)

T 3
= (21¥¢f) )+ N

(24) 0 = g (JW 4 5

Observing that from equation (16) it follows that



f
(25) Jvar =3
&

we find that the exact solubion of (24) which satisfies the

boundary conditions (20) is given by

~ I = To(d)

L : N

e 5. SR (g s RO
g H o

from which with the help of (22) we deduce for the lifeti-

ne 'L @

- ] {T o 1\? J
(27) - . fru /éur Ju/g  9ar o Yu/m :;fij-

The finner integral?! has an increment §)dJ, which suggests
4o introduce H as a new variable of intcgration. Putting
x = H/H one then obtains instead of (27):
o I ¢ i (J) ”
) -—-}c-.g‘ y ' z g
(28) = oM pe dx @ *ELQEL j e d = dx
Ssv(0)J Voo F, 7

Q

An evsluation of these integrale will be carried out in the

next secition.

6) Discussion of Timiting Cases for which the Lifetimg can
be evaluated in Clecsed Form,

Tn most practical designs one has §“>> 1, In this ca-
se the actual form cf ﬁ(J) hecomes irrelevant for T as
long as W(J) is restricfed to a class of functions, which
vary only little in an interval AT corresponding to an in-
terval 4E = 5/d . An inspection of equation (28) shows that
in this caso only the vieinity of the upper 1limif contribu—
tep to the inner intcgral. In this recglon Wwe can roplace

L4

NO(J)/J by T/7. Since in the outer integral the maximum
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contribution comes from Lthe vicinity of the lower limit, we
can replace the lower Iimit of the lower integral Dby O. In

this case we obbain from (28)
o Od E

Fed V(o) 7
and this diffors from the Chrigty formula only by the factor

SELIUAR 5(¥fs) n ) = SEe \oosy
o) it - v (0,5) (%) Vo) = 5 Y eosts

Thia factor can be determined in closgsed form for the Ilimiting

T , . T
casos \fg= ¢ and ¥£==75 and is thon respectlvely'ji and

(29)

-?g s it can be shown that 5%/18 < 9 < ﬁ/4. It is seen that
the correction to the Christy formula deriving from an acocu-
rate consideration of the 'non lincar'! region of the phase
diagram is quite trivial,

The Christy formula as well as its modificétion (29) is
only valid, if 35> 1. To get a closed sxpression the vali-
dity of which does not depend on this assumption, we have to
introduce some sgimplificaticns,.

The Ffirst cornsigts in assuming that
=3

.

(31) ¥o(7) = §, 0/7
i.e. That the density of fhe injected electrons in action
space is a constant. This will = in general =~ give shorter
lifotimes {by a factor 2 if there is no damping) than for
example 2 pointsource placed at J = 0. The lifetimes will
even be shoriter than that obtained for the ‘naturél‘ injec

&

tion in which E;(J) = const W(J). In a sense we can consider
the lifeotimes so obtained as a lower limit, since 1% is

hard to imagine an injection method in which the number of



injected electrons increascs on approaching the limit of
stabllity,
The second simplification results from using for the

enorgy dependence of the fregquency Vv {g) the expression
(32) V(E) = V(o) (1 = 5/HS

with
(33) ¢ =1 = H/TV(0)

The justification for this approximation is the followings
we know of V) (H) that 1t must tend fo mero if H appreaches
the stability limit H. Thaie is due to the fact that in prin
ciple a particle may rest for ever in a position of unsta-
ble equilibrium, An analysis of the action integral also

shows, that for x = (H - H)/E—ﬂa 0 v  must behave as

A
=] L B = tn
v 5T 1lom = L, cons

This is due to the fact that nesr the stahility limit the

{
kinetic energy tends to zero as (ﬁﬁ - }u) (Yo=m - 2}% )

. 1/2 .
and not as in the stabhle case as (&3 - V/) . Remenmbering

that
1 !
log £ = lim — (1 - x )
X ~—>0
we sec that unlese the oxponent X ig too big the log

can be approximated by a power law.
With these simplifying asgumptions we can evaluate the
integrals in (28) in closed form provided that we expand in

e

powers in ? o« If this oxpansion is broken off with the



linear term we geot

(34) T = ; 15“ {(1 _5)(@8_ 1) + § (23 (3) - lozyd )~ 5}

where

o

™1

(35) El(é‘) - lobxg =

g

-

A

it

and

Y = o® = 1.781

The function Ey(d) is tabulated in Jahnke . and Hmde: 'Tahles
of HWuncticns!.
The cxpreesion {(34) should be valid for arbitrary S .

For small é one has

Cy

+

El(s) - 1n&‘3 = -%—L

and therefore

S -5,

(36) lim T =
: . . . . SAE
An inspection of the diffusion egquation shows that — =
3s

is the time needed for the diffusion process to establish a
change AH of energy (in the linear region). Theleading term
in (36) can therefore be interpreted as half the time necesg
gsary for ithe diffusion to lcad from O fto E - the term pro-
portional to § represecnting the correction for the nonli
nearity of the problem, The factor 2 can also be esasily un-—
derstood since owing to our assumption concerning the distrl
bution of the injected elccirons thelr average encrgy will
be E/2.

It 5‘>> 1 one can use the scmiconvergent cxpansion of
the Ei ~ Ffunction. This gives

d

~_ o . i3 i }
(37) A oy {(1 $) - < +J_2+.u.
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Herc the first term in the curly brackets gives the Christy
formula and it is scen that the remaining terms representing
the contribution of ithe nonlincarity of the restoring Tforce
are quite negligible. Equation (37) will be a good approxi—
mation as long as non exponentidl fTerms can be neglected: 1%
should be good within 5% as long =as &> 3,

(36) a8 well as (37) showy, that the corrections due %o
the approach of the limit of stability are proportional to a
small parameter § and not very important. It is therefore
logical fo negloot the f - contribution altogether and %o

write for 77 ¢

(35) Z‘=E1—J— I PR

s formula which should be right within 10% in the whole rTan-
ge 0% { < . Tt should be noted again that in the case of
gmall J‘ this equation desocribes & particular mode of injeg
" tion, in which the injected particles are placed with egqual

probability into the whole stable region of phase space. For
large values of 4 thne validity of (35) is independent of

this raestriction,.

To get an opinion about the influence of the digtribu—

tion W (J) we can integrate (28), assuming a J - function

gource at the origin

¢ »
(38) N (J) = N, = const

and negleoting the correotions due to the linearity of the
problem: these corrections should be smaller for a (y
source than if the aseumption (31) is made, since the nonll
nearities will act only at the limit of the stable region,

which in the present case contributes less. Putting there-—



Joow _
20 ()
we can again integrate (27) exactly and ged
(38) o= 54 8(3) - logyd
O
Unging the semiconvergent series Tfor Ei(g) in the case of
A x> 1 we agalin get the Chrisgty formula. In the limi® of

small d s however (38) gives

(39) T = 1h §‘<< 1

and thig bears out the comment to the approximation (36).

5 ()

7Y Detormination of the Exponent

-

The exponent §  is defined by the eguation (19). From

equation (&) it follows that

(1) E(T) - emet L

s By
where Q‘E ig the fluctuation of the energy radiated in the
time interval 0 S %+ % T . How, assume that in $this intor-—
val n(k}dk photons of eonergy k were radiagted and that the

average cnergy losgs ig given by n(k}dk. Then obviously

(41) jkz(k)dk - PLT

gnd further

-~

(42) ST = Sdk k (n(x) = n(k) )

The act of emisgsion of a given photon in the interval dk



- 18 -

is 8 completely shatistical event and it was shown by Bloch

(s )

of ¥ guanta in a situation where in the average N guanta

and Nordsicek that the probability P(N) of the emisgsion

are emitted is given by the Poisson distribution

) b
N i =~

From thig it follows immediately that

(44) (n(x) = n(k)) (n(k')y - u(xr)) = Sl = x1) alk)

where +the har indicates the average value. It follows That

SE“ one has

for
(45) $8° = <k> PT

where <k> is = because of (41) = defined a8

fal

(46) s = J dlz 14: 'ﬂ( ) /gﬂ.k’ i l’l 1{)

Inscrting from (45) into eguation (12) and using (4), (5) and

(11) we obtain

(47) L

n_k;q k>

It ronains to dotermite <k», The spectrum n(k) has been cal
culated by vavlous %uthorﬂ(5) 'ﬁzn(ﬁtu)onQJ repregents the
energy radiated Fnto the frequency interval dw in the uni®
of time. Its qg%ermination ig a purely classicasl problem and

the results is

Lee Vs )

(48) n(k)ak oA dy J 573 (x)
v}

whore K. (x) is defined as
w(T_p (=) - I, (x))

gin ¥ ®

(49) K, (%)
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and Iﬁ(z) = oxp(—i\)w/2)IJ(iz) and J,is a Bessel fung

tion (Comparc MMagnus Oberheidinger, p. 28). y is defined

by ¥ = k/ko and k., is given by
3 T 3 o 3 3
= o —— — \'“' Y T — 4

Tho inteopgrations required by (46) can be easily carried out

(Magnus Oberheitinger, p. 48) and one gets

[
_.___J__5...._.._. %

8) Remark on Straight Sectionsg,

Finally, we want to remark about straight sections
that their effect can be casily calculated by remembering
that cleoctrong radiate only whon in magnebtic secbtorss mo=-
reover the rotational froguencies (and the RF one) have %o
be computed on the whole closed path including field—frec

secticnga~
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