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It is shown that charge independence or charge symmetry give rise to the following relations connecting
the strengths of y-transitions between corresponding states in mirror nuclei: (a) the strengths of corve-
sponding L1 transitions are always equal; (b) the strengths of corresponding M1 transitions should not
differ in general by more than a factor 1.5; (c) for transitions with | AT'| =1 the strengths of corresponding

The effects of the Coulomb and exchange corrections to the above rules are examined. The experimental

1. RELATIONS DUE TC CHARGE SYMMETRY
AND CHARGE INDEPENDENCE

HE invariance with respect to charge symmetry
has, for selfconjugate nuclei, rather important
“consequences in connection with the strengths of
“transitions; the E1 selection rule has been known for
a long time and has been subjected to many experi-
‘mental tests; recently we have shown! that an M1
‘inhibition rule should also be true; such a rule has
“already found useful application.??® In particular the
- two rules are very powerful for determining the isotopic
spin and the other characteristics of many nuclear levels
_in selfconjugate nuclei.?
- The purpose of the present note is to point out that
-charge symmetry and charge independence also have
“consequences for transitions in mirror nuclei, and more
-generally in nuclei belonging to the same isotopic spin
“multiplet. The relations which we shall discuss may be
.considered the natural generalizationof the rules holding
for selfconjugate nuclei (7'5=0). In this section we
shall consider an hypothetical situation in which the
Coulomb and exchange interactions are absent; in
Sec, 2 we shall discuss the modifications which are
Jmplied by these neglected interactions; in Sec. 3 we
shall compare our results with the experimental data.
The matrix element for an electromagnetic transition
between the levels @ and & (with isotopic spin, respec-
ively, T, and T%) in a nucleus with mass number 4
nd with some value of T3 =(N—2)/2] may be

CMay(Ty) = (aTu| i (Ho D+ H D7y D) 0T y)r,, (1)
1

.'}\*here we have exhibited the fact that the interaction
s the sum of a part proportional to 73 and a part
'#-h-"_'-'—-—-—

}: G. MOI‘DurgO, Phys. Rev. 110, 721 (1958); this paper contains
b ?I‘Eferenc&. to work on the £1 rule; for a complete survey of
He £1 nyle compare also W. K. MacDonald. Isotopic spin selection
e (to be published in Nuclear Spectroscopy, edited by F.
.'_.jf_;,“be}'g's‘_&love). I thank Dr. MacDonald for a preprint.

o K. Warburton, Phys. Rev. 113, 595 (1959). I thank Dr
4 vurton for having sent this paper before publication. .

934) M. Temmer and N. P. Heydenburg, Phys. Rev. 111, 1303

independent of 3¢ ; the index T’ specifies the value of
Ty for the nucleus in question.

We are now interested in the relation between the
values of 9ay(T'5) corresponding to the same levels and
the same 4 but different values of Ty. The relation in
question is provided by the Wigner-Eckart! formulas;
for discussing the selfconjugate nuclei, use was made
only of a particular case of such formulas; here we make
a more complete use of them.

Writing, with an obvious notation,

Mas(Ts)= Mo(T'3)+ M (T5),

where we have explicitly separated the two parts of the
matrix element indicated in (1), we note the following
properties of 90(75) and 91 (T) :

(a) Mo(Ts) is different from zero only if AT=T,— T
=0; it is independent of T’s:

Mo(T's) =M. (2)

(b) 91 (T5) is different from zero only if AT=0 or if
AT = =1,
In the first case (AT=0):

Ny (T3) =N T 3)

In the second case (AT=+x1):
NG (Ts)=(TP—T3)0N, (T.=T,+1). (4)

In the above formulas (2), (3), (4), 9, and M, are
quantities independent of 7, though, of course, de-
pending on the levels in question.

In the case of conjugate nuclei (nuclei with opposite
sign of T, in particular mirror nuclei) we can therefore
make the following statements:

(1) The matrix elements for transitions with |AT| =1
of any multipolarity are the same.

(2) The matrix elements for transitions with A7=0
in two conjugate nuclei are, respectively, NMo+91y| T3]
and My—N7, | T!. It follows that:

(2a) the matrix elements in question are equal

* Compare, e.g.. E. Wigner, Gruppenilicorie (Edward Brothers,
Inc., Ann Arbor, 1944).
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(aside from a sign) for E1 transitions; there in fact
NMio=0 (conservation of the total momentum);

(2b) the matrix elements in question are nearly equal
(aside from a sign) for A1 transitions: there in fact,
|90} <K |9M1], as it has been shown in reference 1.

The above inequality, due to an almost complete
cancellation of the protonic, neutronic, and orbital
magnetic moments, has the following meaning': though
individual deviations are possible, the average absolute
value of 91, is expected to be 10~ times smaller than
that of 9,Ts. It follows that the ratio between the
squares of the matrix elements for two corresponding
(pure) M1 transitions should not deviate from unity, in
the average, by more than 50%,.

The above statements will be called, when necessary,
rule (1), rule (2a), rule (2b).

It is appropriate at this point to remark that the
interest of the above rules lies in the fact that they are
model independent, being based only on the charge
independence or charge symmetry; they may therefore
be used as a tool in identifying states in conjugate
nuclei.

We should also add [with reference to the rule (2b)]
that in principle it is quite conceivable that || <[ |
(or vice versa) in transitions different from £1 or M1;
our only point is that it is difficult to prove this without
making use of particular models, that is through argu-
ments having the same degree of generality as those em-
ployed in the case of E1 and M1 transitions; perhaps
in the case of ML transitions (L>1), Mo can be small
due to a partial cancellation of the protonic and neu-
tronic magnetic moments;® but for the EL transitions
(L>1) we have not found any similar argument.

It is reasonable, finally, to ask which ones of the above
results depend simply on charge symmetry and which
need charge independence. It is evident that all the
results referring to AT=0 transitions can equally well
be proved using only charge symmetry; on the other
hand, charge independence is necessary to prove the
equality of the matrix elements in conjugate nuclei for
transitions with |AT|=1.

5 E, K. Warburton, Phys. Rev. Letters 1, 68 (1938).

6 The rules (1), (2a), (2b) may be easily proved as follows

without using the isotopic spin formalism: in the nucleus Z,V the
matrix element M(Z,N) for the transition ¢ — b may be written:

z 4

{a(Z,N)| Zirw,+ Ziv:|b(Z,N))

1 z+
where the first Z coordinates are those of the protons, the last &V
thase of the neutrons and w4, v; are the operators inducing the
transition. The above expression may be identically rewritten
as the difference of two terms, say A and B where

4
A={(ZN)| Z (utu)|b(Z,N))

1=1

and

4 z
B={a(Z,N)] = w+Z:u|b(Z.N)).
i=Z1 1

Now, if the charge symmetry holds, the wave functions of the

MORPURGDO

2. COULOMB INTERACTION

We shall now briefly consider the role of the Couldm
interactions.” Our object is to give an estimate of g,
average effect of the Coulomb interactions on the eec.
tromagnetic matrix elements. At the end we shall maki
some remarks concerning the individual deviatioy
from the mentioned estimate of the average effect, -

We write E

M a5(Ts)=Mes(Ts)+Kan(Ts),

where N,5(7Ts) is the matrix element of the electr
magnetic interaction between two levels in the charge.
independent approximation, and 9M45(Ts) the corre.
sponding matrix element when account is taken of the
Coulomb interaction; Eq. (5) defines the Coulomb cor.
rection K,3(T's) which we propose to calculate.
To show the necessity of such a calculation it is im:
portant to remark that on changing 73 into —T;
K.5(T5) does not simply transform as 0W.s(77) ; if this
were the case, the Coulomb corrections would never
affect the rules of the past section, quite independently
of their magnitude. The fact that K (Ts) does not.
transform in general as Ma;(7'5), when T3 is changed
into —T's, is physically clear and may be seen most
simply on writing the first-order term in a perturbation.
expansion of K': -

Can(T3) Map(Ts)

Ea_ E!i

Kop(Ty)=2'
; mzan{TS)Cﬂb(Tﬂ)

n Eb_En

where Can(T3) is the matrix element of the Coulom
interaction between the states @ and n of the nucleus T
and the other symbols are obvious. It may be easil
seen, writing the Coulomb interaction in the isotopi
spin formalism, that Coy(Ts) is the sum of two part
which transform with different signs when 7’3 is changed”
into — 7.

It is therefore necessary to give an estimate of Ka
to be at least sure, that, apart from special cases, whic

states a, b of the mirror nucleus ,Z are obtained from the wavé
functions of the nucleus Z, & simply calling protons the partic
with 7=Z-+1 -+ A and neutrons the particles with i=1 -+ 2
therefore the matrix element B is, apart from a phase factor, th
matrix element for the transition @ — b in the nucleus N,Z. Thi
proves the rules if the matrix element 4 vanishes or [case (2b,
nearly vanishes. Tt is clear that this always happens for Eland ¥
transitions because then the operator 2,4 (i;+u:) vams-hes i
nearly vanishes; moreover this also happens for any multipole .
the functions @ and b belong to different representations o 1-_‘_‘".
aroup of the neutron-proton permutations because the operat!
14 (u+v;) is completely symmetrical; this last assertio? !
equivalent to saying that a and b have a different value of 1!
has a meaning only if the forces are charge independent. 5

“ The problem here is rather difierent from the corrcfapoﬂdﬂi
one for self-conjugate nuclei treated by L Radicati [Proc. £
Soc. (London) £66, 139 (1953)] and W. MacDonald [Phys: I\_?“
100, 51 (1955)7; there, for instance, only a mixing with states ™ b
different T is important; this is not the case here.

Fot




. will be illustrated later, the Coulomb corrections to the
rules of the past section are not too large.

'We might try to give such estimate starting from the
expression (6) and making use of wave functions for
the nuclear states obtained from some model, for
* jnstance the shell model. However once we accept, as
" we shall do, the use of a shell model for constructing
the wave functions, the following approach is much

more reasonable.

- Suppose that we choose oscillator wave functions as
ur basis functions. This means that in our model the
quclear interaction between pairs of nucleons has been
ubstituted with an average oscillator nuclear potential.
t seems then also appropriate for our purposes, to
ubstitute the sum of the Coulomb interaction between
pairs of protons, by an average Coulomb potential in
which each proton moves. This will be done in what
follows.

" Accordingly the Hamiltonian of our model is written

A A zZ
2P D b3 Vo(ry), (7)
1 1 1

where, for simplicity, we have distinguished between
proton and neutron instead of using the isotopic spin
formalism; the last term, summed over all protons
(i=1 .- Z) represents the average Coulomb potential
in which each one of them moves; the first two terms
represent the (charge-independent) Hamiltonian (3C;)
which one has in the absence of Coulomb forces.

. The Coulomb potential ¥, may be calculated as
ollows: consider for each state of JC;, the charge
density p(#) in that state. The Coulomb potential

Ve(r) is then
Velr)= e‘f

Here we shall make several approximations: (1) we
shall first neglect the dependence of V, from the nuclear

p(r")dx’

=]

p(r)=Ze/$xR8, r<R (8)
1<) (?') = OJ r> ‘R‘

In (8) the radius R is chosen so that the root mean
quare radius corresponding to the distribution (8) is
qual to the root mean square radius corresponding to
“the correct expression of p(7). (3) The potential which
18 calculated from (8) is, as well known,

Ze #2

V.-(r)=—-—(3— o AR (9)
2R R
Ze®

Velr)=—, #>R. (10)

¥

CORRESPONDING STATES IN MIRROR NUCLE]

1077

We assume that the expression (9) is valid for all ¢,
this is an approximation similar to that of taking
an oscillator nuclear potential for all # and not only
for 7<R.

It should be noticed that the approximations (1) and
(3) can only increase the Coulomb effects; with respect
to the approximation (2) it is a known fact that the
shape of a distribution is not very important in loyw-.
energy phenomena.,

Inserting (9) in (7) and leaving out a constant the
Hamiltonian may be written

1 4 z 4
H=— Zi Pé2+% Zi k:r‘3+% Zi’ kl}z, (11)
2M 1 1 Z+1
where
Ze?
Be=p—l (12)
8

The only difference between protons and neutrons
appears therefore in this model as a difference in the
elastic constants.

In order to appreciate the value of this difference we
must give a value for %; this can be done by fitting
the root mean square radius a of the nucleus,

Experimentally it is®

o= (%) é?'ﬂA é)
with #¢ around 1.35X10~%cm for the light nuclei,

though not exactly constant. On the other hand, ¢ is

related to & by?
h* )*
Mr/’

where x is a factor which varies only slightly with the
mass number; it has the values 1.25, 1.3, 1.71, re-
spectively, for He, O, and Ca. We approximate the
above A dependence writing x as 4Y7; one may check
that in this way the above numbers are approximately
reproduced. It follows [a= (2)iR] that

2.8447?
N—-——.—_

= MRS

a=y

(13)

The ratio |k'—%|/k already gives an idea of the im-
portance of the Coulomb corrections; this ratio is

|¥—k| 2z

B 604t

e

(15)

For instance we have (228X 10~ for Z= 10, =210
for Z=20.

This shows that, in general, in the Z region in which
we are interested, the Coulomb corrections to the

! R. Hofstadter, Amnual Review of Nucear Science {Annual
Reviews, Inc., Stanford, 1957), Vol. 7, p. 31i1.

® Compare reference (8) and also E. Feenberg, Shell Theorv of the
Nuclews (Princeton University Prese, Princeton, 18353).
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matrix elements are expected to be relatively small;
we now try to get an estimate of such corrections.

This is most easily done comparing directly the
matrix elements 9M.»(T5) calculated putting k=% in
(11) [that is disregarding the difference (12) between
k' and k] with the corresponding matrix elements
M4 p(Ts) calculated taking this difference into account;
in other words, in the notation of (3), we directly
calculate the quantity 9M.s/Mas instead of calculat-
ing Kgp.

It is easy to show! that in our model, an estimate of
the ratio 94 /M, may be obtained without specifying
the particular states between which the transition takes
place ; such estimate only depends on the multipolarity
of the transition; the results are reported below for the
various multipolarities,

We may generally decompose M4p and s into a
proton part [suffix (p)] and a neutron part [suffix (n)]
as follows:

Map=Map®+NMap™; Map= Mo +DMap™.
Tt is then possible to show that generally

E}']IAB(PJ = Kmab(ﬂ,

16
STC_IIB(“}=%{[&(“" ( )

where the coefficient X in (16) depends on the multi-

polarity L.
For magnetic transitions \ is generally given by

A= (k/’k"} (=)= (1._}.. E)—(I-—] )1"4_ (1?)

In particular no Coulomb corrections affect the i1
matrix elements in this model.
For electric transitions ) is given by

A= (B[R M= (14-£)74, (18)

In particular, for L>1 the neutron contribution to
an EL transition may be generally neglected in com-
parison with the proton contribution, so that (18)
gives the ratio between 945(EL) and 9May(EL). The
same argument does not apply to the £1 transitions
because there it is essential to consider the neutron
contribution which arises from the conservation of the
total momentum.

In any case the formulas (16), (17), and (18) provide
us with a general estimate of the Coulomb corrections
to the matrix elements; as anticipated such corrections
{urn out to be rather small in the Z region of interest.

To complete the discussion of the Coulomb correc-

10 To show this we compare the wave function corresponding to
some given nuclear state when one takes into account or disregards
the Coulomb interaction. We call these (normalized) wave func-
tions, respectively, ®4 and ®,; both &4 and &, are in general con-
structed through products of Hermite and spin functions; the only
difference between the two is that in one case (@) the “unit
of length” for the protons is (#*/kAM}! in the other (®y4) it
is (#2/k'M)%; in other words the normalized @, is obtained from
the normalized &4 simply replacing everywhere (#2/F'M)} with
(#/kM)}; from these properties the simple proportionality relations
(16) follow easily.
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tions it is, however, essential at this point to note thy!
so far we have only discussed the corrections to thg-
matrix elements ; in order to obtain the transition widﬂls;
one has to multiply the square of the matrix element’
by some power of the energy difference of the ty
levels between which the transition takes place; this
energy difference, which in general is different in the
two conjugate nuclei which we are comparing, is in any
case a known experimental quantity. We may therefore -
summarize the situation as follows: consider the widths
for two corresponding transitions in conjugate nuclej -
and divide them by the appropriate power of the energy
difference; the two squares of the matrix elements sg -
obtained should satisfy the rules of Sec. 1 with a

precision expressed by the factor (14§~ for an EL

transition and (14 &)~/ for an ML transition.

It is important here to stress that, obviously, the
above estimates represent only the average behavior,
It is quite possible that the matrix element for some
particular transition in the hypothetical absence of the
Coulomb interactions is small (say, of the order §)
with respect to the average matrix element for the
same kind of transition ; this can be due to a particularly
bad overlap of the two wave functions. In such case
the relations of Sec. 1 between the widths of the transi-
tion for the nucleus in question and for tke conjugate
nucleus may be lost, the transitions being dominated by
the Coulomb interactions. The existence of the special
cases mentioned above may be described using (35) and
(6) : if M,y is small, Koy, given by (6), can become very
important or even dominating. It should be remarked, -
however, that the intensity of the transition in these
special cases should be smaller, by a factor say £, than
the intensity of a normal transition of the same multi-
polarity ; only for such weak transitions large deviations .
from the rules of Sec. 1 should possibly be found. _

To complete this section we have still to consider the i
possible effects due to the fact that the forces between
the nucleons are transmitted through pions. We confine
here to the case of E1 and M1 radiation. For the El
radiation a correction in principle arises due to the
fact that the total momentum of the nucleus may
undergo small fluctuations around its average value
zero; this is because the quantity which is conserved is
not the momentum of the (dressed) nucleons only, but
the total momentum of the dressed nucleons plus
mesonic field. This effect has been already considered
for the self-conjugate nuclei. It is difficult to calculate;
for an alpha particle to which the calculations of”
refer, it turns out that the order of magnitude of the
effect can be in some cases as large as the Coulomb one.
The expression order of magnitude here, has however
to be taken in an extremely loose sense on account of the
very many approximations which are necessary in the
computation. Moreover the effect should decrease
rapidly with increasing 4 while the Coulomb correc-

1 G. Morpurgo, Nuovo cimento 12, 60 (1934).
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{jons increase. There is no evidence from seliconjugate
nuclel for invoking this effect; so we may well neglect
it here. _

For the ;{1 radiation one may have exchange current
effects. However, as already pointed out by Gell-Mann
and Telegdi,** the terms in the Hamiltonian responsible
for them transform as the H, part in (1) and should not,
therefore, modify the present rules.

3. THE EXPERIMENTAL DATA

There are very few data, presently, to compare with
above predictions, and the most part of them is affected
by rather large errors,

Two kinds of measurements are of interest: (a)
branching ratios in vy de-excitation of corresponding
levels of conjugate nuclei. (b) The absolute values of the
lifetimes of corresponding levels in conjugate nuclei.

We first discuss the class (a) experiments; practically
the only material to compare with our predictions is
provided by some transitions in Al** and Mg*, in-
vestigated particularly by Gove ef al.?*** The similarity
of the branching ratios, in the cases in which they are
known in both nuclei, has been already stressed by
these investigators and is apparent from the Fig. 1
below [where we have reported all the information
existing on the levels (1) to (5) which is of interest for
the following discussion; the results of the present
paper show that such similarity, though expected, is by
no means an obvious fact, and has to be discussed in
each case.

Because the values of the individual intensities are
not known, the only thing which we may compare in the
two nuclel are the ratios of the intensities (for each
nucleus) of competitive decay modes in corresponding
transitions. For instance, considering the de-excitation
of level (2) we compare in the two nuclei the ratio
T's,1/Ts o of the intensities to the first excited state (1)
and to the ground state (0); such ratio we call on1,0,
where the left index refers to the de-exciting state and
the right indices refer, in the order specified, to the
states which are formed. We introduce also the symbol
2m1,0° to indicate again the ratio of the two widths
Ty and T, each being divided, however, by the
appropriate power of the energy difference between
the relevant levels, as explained in the past section:

PE,I / Fz,o
(Bam BNV (Ea—EQ¥

M1, 0=

where I and /' depehd on the multipolarity of the
emitted radiation.
The above notation, exemplified on a particular level,
‘-_-___——————
- M. Gell-Mann and V. Telegdi, Phys. Rev, 91, 169 (1953).
Gove, Bartholomew, Paul, and Litherland, Nuclear Phys. 2,

;32 (1956-57) ; also: P. Endt and C. Braams. Revs. Modern Phys,
29, 683 (1957). ]

Jr Litherland, Paul, Bartholomew. and Gove, Phys, Rev, 102,
208 (193¢,
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FiG. 1. The levels of interest in Mg and Al%,

will be used generally in the following discussion where
we shall compare the values of # and %¢, for those transi-
tions in Al and Mg which are relevant to the rules
discussed in Sec. 1. (1) De-excitation of level (2): from
the diagram 1 and 2 we see that all the transitions are
M1+4-E2; obviously AT=0. If we can disregard the E2
fraction (this assumption is perhaps unjustified; com-
pare reference 14) the rule 26 should apply. We have
o1, 0(Al)=1,38 and g1, 0(Mg) =0,43 ; therefore m, o (Al)/
on1,0(Mg)=1,43. More meaningful is the ratio 1, 0°(Al)/
a1, 0°(Mg)=0.70. (2) De-excitation of the level (4):
The similarity of the branching ratics in this case
cannot be explained using our rules since the transition
(4) — (1) is pure E2. We may still compare the values
of s, 0in Al and Mg, which refer to 441+ EZ transitions,
but the fact that the E2 transition is so strong raises
doubts about the smallness of the amount of E2 radia-
tion in the (4) — (2), (4) — (0) radiation.* (3) De-
excitation of the level (5): the decay scheme is not
exactly the same in Al and in Mg, as it appears from
Fig. 1. However we may safely assume that in the Mg*®
case, the (5) — (2) radiation has been missed and com-
pare the 16/84 ratio of Mg with a 13/87 ratio in Al
All the transitions are E1; they fall under the rule (2a).
We have sm1,0(Al)/5m1,0(Mg)=0.79; for the ratio be-
tween the 7°’s we have: g1, 0°(Al)/s71 0°(Mg) =0.76.
Summarizing the situation we may say that the
agreement between the predictions and the experimental
data is fair, though not strikingly good; however the
experimental branching ratios are probably affected
by rather large errors: in the case of the de-excitation
of the level (3) we have assumed in the discussion above
that the (5) — (2) radiation has been missed in the Mg
decay; this implies errors of the order of 209; in the
case of the de-excitation of the level (2) it is sufficient

* Note added in proef —Dr. H. E. Gove has kindly pointed out
that, as explained in reference 14, the E2 contribution to the £—2
radiation in Al is negligible. Assuming the same to be true in
Mg*, one may then use also these transitions to test the rule;
one gets s o¢(Al)/ma of (Mg)=1.35.
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to say that Maeder and Stahelin®® give for o7, 0(Mg) the
value 0,44 0,07 instead of the value 0.95 quoted above.

In view of this it is better to wait for more precise
data to continue this discussion; we note only that in
any case one would like to have the branching ratios
estimated also in other pairs of mirror nuclei possibly
with a lower Z and with small E2-3/1 admixtures;
from the 19335 complication of Ajzenberg and Lauritsen?®
we learn that the only other reported case in which a
branching ratio in corresponding transitions in mirror
nuclei is known is one in N, C!¥; the radiations in-
volved are here M1 and E1. No disagreement with the
results of the present paper exists, but again the data
are not sufficient to say more.

Finally only in one case the values of the lifetimes of

15 D, Maeder and P. Stahelin, Helv. Phys. Acta 28, 193 (1933).

16 F, Ajzenberg and T. Lauritsen, Rev. Modern Phys. 27, 77
(1953).
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corresponding excited states in mirror nuclei ara .

known'’: those of the Be? and Li7 first excited states ' -
which go into the ground state through an M1 transi. *

tion; they are, respectively 2.7 X107 sec with an error
of =309, and 7.7 X107 sec with an error of +20%,.
To compare the two values we multiply the latter by
(4.77/4.3)%, the cube of the ratio of the energies in-
volved; we therefore have to compare 2.7 X101 with
1.05X 107, Within the errors no discrepancy with the
rule (2b) exists.

We end these considerations by stating that it would
be interesting to collect more precise data of the kind
discussed; we notice that once the rules have been
checked accurately in some cases, they can become a
useful tool in several circumstances.

1785, Devons, Proceedings of the Rehovoth Conference on Nuclear
Structure, edited by H, J. Lipkin (North-Holland Publishing
Company, Amsterdam, 1938).
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Formulas of Allowed Beta Decay*

Masaro MoriTa
Columbia University, New York, New York
(Received December 17, 1958)

The corrections due to the relativistic matrix elements are given for the various formulas describing all
phenomena of allowed beta decay. It is shown that without explicit calculation one can derive these correc-
tions from the formulas for the first forbidden transitions, which have been published in many papers. It is
suggested that a generalization of the present work to the higher forbidden transitions can be made.

T “HE corrections to the beta spectrum and the beta-
alpha and beta-gamma directional correlations

for the allowed transitions of beta decay due to the
second forbidden matrix elements have been investi-
gated recently by many authors.*™® The relativistic
(momentum-type) matrix elements are especially im-
portant in connection with Gell-Mann’s theory of beta
decay.? In this short note, we give a rule with which the
corrections due to the momentum-type matrix elements
are derived for all beta-decay phenomena. Namely, the
formula with these corrections for the allowed transi-
tions can be obtained from that for the first forbidden
transitions of the relevant phenomenon, with the

* This work partially supported by the U. S. Atomic Energy
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following replacements:

M (vs) — (1), M(ox) =N (e 1),
M(e) =PW(e), M(oXr)—I(eXr),
M) =W (ver), M(Biy) =M (4s),

CraCy, Ci'=2C4.

This rule can be easily proved by the fact that the

interaction Hamiltonian,
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is invariant under the transiormation
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and that ¢, and ys, satisfy the same equation of
motion with #,=0. For example,
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