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Sunmary

A method for constructing an unitary operator whkich
transforng the Hamiltonian of a Dirac electron in the presen
ce of an elesctric field into an even Hamiltonian, is proposed

and disoussced, The transformation function and the transfor-

o

‘med Hamiltonian are exprossed through an operator G which s

i

tigfies an operator eguation; when the electric field is ab
sént (Lrse particle) the Peldy Wouthuysen transformation is
rederivedy when the sleciriec fi@ld.is prasent and the equa=~
tion for ¢ is solved in series of m"1 the Pauli Darwin,Foldy
Wouthuysen non relativistic Hamiltonian is recbtained; Dbut
in addition a method of scluticn is now possible which & o=
verges rapidly and is not rostricied to the mon relativistic
cascy the expansion parameber 1r this method of gsoluiion 1s
;ﬁr BE for an uniform electric field and ;L? for a Coulomb
T8
potentials Though the trcatment in this paper considers Iin
detail only the case of an elscirostatic potential, +the in-
clusion of any other term in the EHamiltonian is sasy and, in

particular, a magnetic field may be included,
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1., = Intrcduction

. {1 \

In & well known paper” )Foldy and Wouthuysen have
shown how it is possible, for the casc of a free particle,
to obtain a representabtion of the Dirac Hamiltonlan which:

(2)

ariong other things, shown that the F.W. transformation can

does not contain odd matricecs. Subsequently Case has,
he oxtended %o the case in which a time independent magner
tic field is present; in the sense that, also in such casc,
an unitary trensformation can be found which transforme
exaofly the Dirac Hamiltonian into an Hamiltonian free from
0dd matrices.

The fact that the Hamiltonian does not contain odd
natrices implies that two component wave functions are suf~
ficient for the description of a Dirac particle_an& in par-
ticular makos it possible to discuss the transition ffom the:;
rolativisiic %o the non relativisbic casej this has heen
fully dipcussed by Foldy and Wouthuyseny who have shown, in
addition, héw'scme 'paradoxes’ arising in, the Dirac theory
can be solveds for instance the fact that the velocit§ of a
free Dirac particle ie always the velocity of light, on %hat§ 
in %he Dirac thoory only the projection of the spin in the
divection of the momentum ig a constant of the motion for a
free particle.

Mora.recentiy Eriksen(33 has”congidered a more go-
neral problems is it possgible to find an wnitary transforna-
tion leading to an even Hamiltonian alsoein cases more goene-—
ral than that of a free particle or of a particle in a ma-
gnetic Tield? Eriksen has shown this gquestion may be answe-— -
red in the affirmative; indeed he has been able to find an
exPression for the operator U inducing the trangformation.
While Briksen's treatment is very appropriate o discuss
existence problems, it is not ecasy to find in gehovral fronm

the expression of U given by Eriksen the transformed Hamiltow=
k1
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nian, in those cases where the initial Hamiltonian contains
both odd and even terms in addition to gxncg.

fhe purpose of $he present paper is to congider a-
gainr the zame problen (that ig to find in goneral an unita-
ry transeformation leading to an even Hamiltonian) using &
nethod different from thab folleowed by Eriksen. We shall
show that it is possible %o give an sxpreesion for‘the tran=-
sformed Hamilténian, in terms of an operator G, which sati-
sfies an oporator cquetion; this operator cquabtion canncd,
in general, be solved eczactly, but approximation methods ocan
be invented to obtain solutions in many cases of interest.
We shall confine here for sinplicity, to an Hamiltonrian con=

$zining only an eloctrostatic potentials this case is already

g7s)

tain
gufficiently general to 11llugtrate the methodsy it is eagy
consider the presence in the Hamiltonien of other terms, and
sn particular the addition of & nagunetic Tield.
It éhould be remarked at this point that the problen -
of constructing an unitary transformation leading %o an even
Eamiltonian in the pregence 5?7 an electric and magnetlc field
has boen already treated by Feoldy and Wouthuysen in their org‘
ginal paper.kThG way followed by Foldy and Wouthuysen congl=-
sted in vemoving the odd parts 6f the Hamiltonian through a
seguence of unitary transformations, each of which eliminaﬁesf_

+ 4
[T a7
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torms in the Hamil®onian %o one higher order in an
cxvansion parancter which is chosen as n ', m being the eleg
fron mass.

It will appear that in the particular cage in which
the solution of the operator equation mentloned above is con
structed by successive approximations 1in ! 4he results of
Foldy and Woulhuysen are reproduced but in esddition we shall
suggest other methods of solution which do not depend on the

axpansion in a1 and are not limived fo the non relativistic

cadce.
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o, = A group of transformationg of the Dirac equation

The problem dosgeribed inm the past section ig to
find an unitary operator U which eliminates the odd parts of
the Dirac Hamiltonian H in the PreS@ﬂce of an dxternal tine
independentd clectrio fiocld described by a potential cnecrgy V.

With the usval neaning of the simbols:
(1) ¥ = yB(ﬁ“ ) o+ ?)m - ¥

We want now to Find an unitary U (UUF=1) such that:

b

(2) UTEU = by + f3 1k,

whore h1 and'hz arc hermitian operators consitructed through

x, p and @, but nct containing odd matrices. From the uni-.

tord

tarity of U the equation {(2) may be rowrititens

(3) HU = U {(hy + [5112)

The most soencral operator U is now, as well known a linecar
combination of the 16 indepondent Dirac matrices and nay be

written as:?

(4) U=A+B£‘% +0X5+11)!?;5/5.

where A, B, G, D are cperators not containing A or X%.buﬁ*
i ,

depending on G cand X, Do

P,

The cquation (3) may be writien explicitely, using

(4) and (1)

VoG e o e | eV 4 1D 3
(5) ( tqi P %»m + VYA + Bﬁ & K}+ 1D%§%?
= (A + :B{s, + GXT_&.JF iD{?;&f;;)(m + (5112}

Por +thig cquation to be satisfied it is necessary and guf=
ficiont that the operators which multiply regpectively 1,

g 5 %fg, ﬁ&fé on tho left and right hand side of (5) are
e (A

)
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individually eguals we therefore obtaln, setting G p =JL 3

(6) VA 4+ nB +JSLC = An, o+ Bh,,
(7) nh o+ Y8 + 150D = B, + A,
(8) fia + VC 4 imD = Chy - iDhy

(9) . =iLlB + mC + iVD = = Chq + iDhy

We now sum and subtract the cquations (8) and (7); and we do
the same with the eguations (8) and (9); we introduce also

the Tollowing combigations of operatorss:

Y = C + iD R =V +mn

P4
]
=
{
(o5}

il

(10)

b4l

= A 4+ B T = ¢ - 4D . R'= V - 1

and

(11)

X o= h.! - hz

N hy + by

We obtair in this way the %wo independent sets of operator
J

gguations:

BT +1.Y

I
4
<

(12)

AT+ Rr'Y =Ty

and

it

ME +T = Xz

(13)

I

NAx + RY = Ix

In the two systems of cquations (12) and (13), B, rt,J 1 are



known operabors. If x and ¥y can be determined, hq and h, are
then dotermined through (i1). Similarly if X, ¥, X, ¥ are
deternmined, the operators Ay By C, D arc given by {(10) and
the cxprossion of U is then known.

T4 must be remarked at this point that we have not
yet considercd the restrictions on X, T, %, ¥, arising from
the unitarity condition. This will be done later (section 3); .
for the moment we concentrate on the cquations (12) and (13)
independentlj from the unitarity condition.

Gonsider the sysien (13); for the two eguations to

be sonpatible'it ia obviously necessary thatbe
ll t g =1y o :
(14) I (RtX +31T) = ¥ (JLIX 4 RY) \

an oquality which sxpresses that the operator x obtained®
from the first cquation must be the same aa that from the
second in obtaining the equation (14) we have assumnecd thal
the inverscs both of X and of Y exigts in the following it
will be apparcant that thig is usuclly the case.

We now introduce the operator

(15) g = x7!

Multiplying both sides of the equation (14) by X from the
left and by v~! from the rizht wo obtain the following o=

perator equation for G



(16) a{fic + R) = 316G + JL

Tf &5 gsolution G of this equation can be found, x is then given

bys

N

(17) x = 7 Ve )Y

and & Tvelation between X and Y is ostablished through:

(18) X = GY

Tn a completely similar way we have from the systen (12) 3

(19) TLE + B') = RE + 5L
axd.
(20) y = T1ULT 4+ aDT

where now

i
a2
-

(21) X

Obviousgly the equations (17) and (18) show that x and ¥
(and therefore hy and hp) are not uniquely detormined,
even if the solutioﬁs g and T of the equations (16) and
(19) were unique. This frecdom in x, ¥, Which im of course
expectod, Will‘bc digcussed in section 4.

We end this seciion 6y rewriting the equations

(16) end {(19) in a morc ecxplicit forms using (10) we haves

(22) ofle + GV = VG + 206 - St =0

and



(23) T0G 4+ Y - VE - 208 - JL = 0

The invariance of the above eguations with respect Lo the

substitution V—> V + const. ahould be noted.

3, - The condition of unitarity

We now determine the restrictions on A; By C, D, or
equivalently on X, T, X, Y implicd by the unitarity condition.
When the exprogsion (4) for U is inscrted in the equation
t*U = 1, four bilinear -equations in 4, B, C, D rosulbs these
four cquabions, when reexpresgsed using (10) in terms of X, T,

i

X, ¥ ares

(24)  T'T + THT = 1
(25) 5z 4+ 7YY = 1
(28) TIX o+ XtY = O
(27) I o+ XFF = 0

Recalling the equations (18) and (21} we obtain from the equz
tion (26)?

THETY + TH6Y = 0
that is

(28) B = -G

1

it follows that the operator T is determined from the ope=
rator G by the unitarity condition: it can be casily checkod
that the relation (28) is compatible with the equations (22)

and (23) which heve to be satisfied by G and G. Infact the



nermitian conjugate of the eguation (23) iss
(29) FHOTT & VOt - otV - gaCt =34 =0

which is' just $he eguation satisfied by ~¢, Tn writinz (29)
use has been made of fhe hermiticlity or [ and V.

Coming back o the squations (24) to (27) we noto
that since he equation (27) is simply the hermitian conjgw
gate of the cquation (26) it is alrcady satisfied By (28):
we thoreforc have still to consider only the eguations (24)

and (25). They give respectivelys

(30)  TETT 4 VT - 1
and
(31) vator ¢ TTY = 1

which may be rewritten, using also the condition (28):

(32) T . (12 )N = (14 aaty !
(33) tyt = (14 o)™

The cquations (32) and (33) are conditions on Y and Y. Wo

notice that may be in particular satisfied if we choosec ¥

(4},

and ¥ to be hermitian operators, respectively equal TO

-

(31) T == (1 saety"1/?

il

(1 % G+G)—1/2

(35) Y

To end +his scechtion we wish %o check explicitely that the
oporators x end y defined by (17) and (20) are hermitian asg

they must be. Let us consider the expression {17) of x3
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wo may writs 1t as:

o
@
i._l
w
o
Pl
VS
ILQ
G

(36) v = TF(1 + 676) (N6 + R)Y = YR(LG + R4
rooteJle 4 6TeR)Y = THULG + R o+ ONL 4
¢tRre)Y = =¥

A similar check con be made for y which can be written:
g o

v o= T (T + R' + THREG + GE)T = v

4, = The arbitrariness in X and v for a given G

The results of the scctions 2 and 3 showkthaﬁ, if an
operator ¢ which obeys the equation (22) can be found, the
o?erato:e x and y or quivalenﬁkvﬁq and hz can bhe defermigedg:
Infact once 2 G has been found the equations (34) and (35)

may be used to doetermine a particular choice of ¥ and T3 in

addition © ie simply egual %o =8%, so that all the sperator

which appo;rﬁn the exprosslons (17) and (20) for x and y axe e

H
ks

avallablec,

The question which we now ask ise having found an

.

shich satisfies the eguation (22) which is The

o2
=

cperator
arbitrariness in by and h,? I% is easy to answer this quegtiogf
gimply by loocking at the expression which give x and y3 1%

is convenicnt for this purpose to use the expressions (36}

and {37). It is then apparent that for a given ¢ the arbitra~’
riness which remains in x is eimply the arbitrariness in the
choice of Yj thé unidarity condibtion only fixés Kcompare tho

unation.(33)} the product IYT but not separately ¥ and Y+;



t

if¥ therofore T is a pariticular operator satisfying the egua-—

D

tion (33)(e.zg. the ocperatoxr (35)) the most general operatfor

which s%ill satisfiecs the eguation (33) is:
(38) Y! o= YT

whers ® is an arbitrary unitary operators 1t follows fron

the cgquatlon (36) that x ig correspondingly transformed inbtos

2

(39) =t =itz ,

Tor a givenl this is therofore the arbitrarincss in X.. A

i

exista for yi infaot if ¥ is & parficu-

&2}

similar srbitrarines
1lar solution of the ecquation (32)(c.g. the operator (34))

where S is again an unitary ope=

2

snother solution is T! = T

rator indepcndent from T, From the equation (37) it then fol-

lows that

) (4‘0) :y‘t = S
Phe origin of the arbitrariness in = and ¥ which we
have just illustrated (we shall call it tnormal!) is clear:

at the beginning of the section 2 we d4id ask to find an uni-

)

tary operator U which transforms & given ‘Hamiltonian into an
Tamiltonian free from odd operators, that Iis of the form
hy +(§h2§ but we have nod put resitrictions on the form of

hy; and h,. This implies that, once = particular operator

hy + 7h21has been found, the poggibility remains of obtal-

f
i
i

ning other even hamiltonians through unitary transformations

produced by unitary operators of the form 1,+5§M, where L
. . N i
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and M are arbitrary operators constructed trough X, p and J .

I+ is apparent that the normal arhitrariness illustratgd

the
shove is justrarbitrarinssgs which ig present in such unitary
transformationss it is easy to find the connection betwecn
the operators L and M and 8 and T previously introduced§ we
do not.need nowever to write down the explicit formulas.

Tn addition to the normal arbitrariness in x and ¥
there is another kind of arbitrarinéss; thig stems from the
fsat that in general different solutions for the eguation
(22) for & can exists 1% is not yet clear to us what is the
extént and the meaning of this arbitrarinoss; some remarks
concerning this poiﬂﬁ wi}l be ma&e in gecetion DJ.

?

5. = The operator equation for G

We now discuss the cguaticn (22) for Gj we shall

t

s
from now on use respectively ne? and N /me as units for

energy and lenght. In these units the equation for G ig sim-
i /

‘

ply writtens

i
o

(221)  GJIG + GV = VG + 20 =i

#here now all the guantities which appear in The egquation
are dimensionless.
a) Pree particle.

As a first example we consider the case of a frese

particle (V = 0}, simply %o chack that we obtain the same
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regults ag Foldy and Wouthuysen. The operator G for this ocas

will be called G,5 we haves

ry SIS
(41) Gyl G, + 265 = JL =0

Obviousgly G, 1s =a funciion of the operator mrl only, so that

and G, commute and the solution of the equation (41) pro-

ceells as il G, were a ¢ number. We Have two golutions

R i

. (1) _ —1+\f1Tzf' e (-—1+v1+pz)
(4“) - 4L )
J | D

R ————" "i\ ) . Pt
(2) S (-1 - ﬁﬁ: + p ) SL
( 43 ) G a T T B —

- Ak
= 2 z 2 2 -1 ™ -2
where the properitiss Jz_ = Ty + p§ + p_ =P andwff =

-,

have boen used, Recalling the expressions {(17) and (20}

. . - | .
x and y, noiing that in thig case T 1 sr ¥ ' nay be freely

transferred to the rilkht, using for X and ¥y our system of

1)

units and takiﬁg the soclution G we gebt 7
R JOR—
=% 1 4+ p° y o= - K 1 + p?

1

where tho equation (28) has been used.

In the tvansformoi namlluonlan one hasg aocoralngl¢c

—_mwwv“"‘-’j
o
= - t@i 1 + BT

(z + 7)

(]
o
=
na
1
mJ:s
ey

1
h—l ="2—'

in agreenment with the result of Foldy and Wouthuysen.
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. . 2
“ad we chosen the golution Gg ) we would have ob=

tainod:

[
hy = 0 112=+x/1+1a2

_which &ifforé from the previous resulis only for having ex-
changed the positive with %the negative gnergy states.

Tt ig mlso straightforward to deduce an expregsion
for U, in this casej; the general exprosgsion of U, in terms of

1, will be given in ggction 8 (formula (61)). Specializing

. . ; X - . 4}
thig expression to the present cage, uging the golution Gg

and tho Tormulas (34) and (35) of section 3 we get:

(44) U =G5 F
y

i LD S
Putting cos-= = G, s
2 # 1+ Gé1r?

and ocongequently ﬁangk? = - J]. the expression (44) may be

rewrittens

f - e 4 b

= om in - = oXd -
U = cos +v(§§% sin =3 eX?r{ﬁg

hY

& {“’gb

(2}

in agreemont with ref. .

_b) T4+ doos not seem possible to find a formal soluition of

the equabion (22}) iﬁ an arbitrary Ffield. It is possible %o
find a solution in the particular ﬁase of an uniform gleciric
field (oompare‘the seotioﬁ 9)s or it is pdssible to try to

construct the solution by successive approximations in V (we

recall that V ig now adimensional, being equal to the poten-
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$1al onmeray, divided by me?). This will be done Iin the next

section.

» G

+hative soluiion of the operabor squation fo

6, =~ The pertu
Tho terms conbaining ¥V in the equation (22%) are

nsually small with respect o the otherss infact the guanti=—

ty ¥ in (221) appears usually multiplied by

figient when everyhthing is made adimensionals For instance in
v &

= ZJ*

me
i

. ¥ . Al
the case of an uniform eleciric field (puttlng z

/

1 e e e T oo
(45) Vews ——E+zzs -~zEorp 2-p2TE
2 ped 2 h 2
. ~  eh 1 3 L | .
with B} =~ — B, & guantity which is cxceodingly small

mG gt
( ) even for the strongest masroscoploc sloetric fiolds ob=

tainable.
&

Tor the case offCoulombd fields

7Ze® mec 1 Ze 1
(46) ‘v. = ,-..J = - facrd
me? BT E e r

which is reasonably small for small Z.

T4 appears therefore reagonable to try to get the

aolution of %he equation (22') by perturbation theorys

zarding V as smalli this is what will be dones in this s8co-

tion.
We writes

- s ogu v son

& very small coef -

«
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where the lower index characterizes the order in Vi and we
proceed 3o debtermine the succoding operators of the series
By substituting the oxpansion (47) in the eqﬁation (22t) and
equating to zero terms of any given order 1in V. In this way
we obtain, of course, for G, the eguation (41); for G4 we
have:s

(48) e fla, + 6 fla

o £ 28, = VG, = GGV

1
For 62 we obhainsg
(49) Gpdle, + e dley + 20, = VG, = &7 - ¢ /L,

Tor the succossive terms we have sinilar coguations whele in

each casec terms of any order ar determined from the know-

@

ledge of terms of lower order.

(1)

We now chooge for GO the solution Go givén by (42)
and we confine here to the determination of Gq. From (48),

uging a representation in which G% and p are diagoneal Wwe

have:
(50) < pAY/Gq /A > =

T C<ll /V/Q”VQ“(V'I + ﬁ"z + 1) .

- ST T, g

.E.'(‘;, 1 % P"é-]j- 1)"‘1 <£’_/V/p“>

Fiepr2 s W spm 2’ j

Tt ig possible to write Gy as follows:

|

o
=1
(51) G, ={ds o 1+p LV,—-'—‘-"—,-—:E‘—-— oS V1P
e 1+¥13p?



where the brackete in the inbtegrand indicate the commutator.
T+ ig important to rTecognize that, on account of the

smallness of V pointed out at the beginning of this gection,

tho term G,isg sufficioent for all practical pufposes, 2t least

i

in the casc of macroscopic fields. Of coursc the convergenco

of +the whole procedure has to be examined; some Temarks on

this point will be mads in seciion 9.

t

]
JER

s alsp important to stress that the cxpansion
discussed in this section is znot a non rolativisgtic approxi-
mations it is simply an expansion in terms of a well defined
parameferg in other words the formula (51), in particular, is
completely general as far as the velocity of our electron is

[
concerned.

We can now eﬁhibit the connection between our pro=-
cedure and the non roelativigiic expansion in n~! discussed by
Foldy and Wouthuyson which we have mentioned in the introduc—
ticng this is very gimple .

The non relativistic limit of Pauli, Darwin, Toldy
and Wouthuysen is simply obtained from our Thrmulasy by praﬁn

: o . .
ding G in series ofkand limiting ourselves to the terms of
order\m"i;

We mecall that our p stays for p/m and our V is V/mj.
it ig then straightforward to ghow that to ftake into account

a1l tho torms up %o the order m 2 it is suf

e

icient To confine

ourselves to G, and Gy in other words Gg ig already of cr-
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-1 . , . I
der nn " and it does not coniribute to tormg of order m 2 in
the expressiogp of hy and hg.

Ms be more definite we note below the relevant terms

in the expansion in n

of the various quantities which are
nececagary for the determination of hy and hop including terms

J -] e ..
af order m . In order to exhibilt the mass explicitely wo

shell write the fornulag bolow in conventiocnal units, We have:

{1 1§l 1
(52) J£)=—2——TI +0(':3")
o ‘
e i
i 2s vhiL N 1
(53) G, = J @ dg ([ — R I .. (—) =
! zﬁg 232 m4
w——
"}“.m
41112 e ~4 i
4 (¢ = - grad V)
| T
(54) Gp =0 {—)
m

The expressions (17) and (20) of x and y may now be writhens

1, 2 e (1 7 v
(55) x = nY 1G—§——"'EG§ )+ Gpj +— + 1) ¥
dep =
a1 BTET (1) ! Vo =
(586) y = nT ( — - % + 0 o 1) Y
where use heas been made of the relation @+ = =3 agnd of the

antilermiticity of Ge. It appears from (55) (56) that ‘a
w1 |

¥, Y and T have o be caloulated including terms of order

m”3. We sinply give here the gxpressgicn of T
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1 ~ 1

(57) Y = e G =
3 a1 L 1 .
Y1+0+6G Y14624G 04 =0, G,
i

2 2y 13 ,
i) 1 @ @

=1 = e e diV B o+ G (1

! 8me T 16 e V2 B m( EA 2)

To obbain Y| simply changc the sign of all‘the terms in ¥
sxcept the first; -Y differs from ¥ for a change in slign in
$he torms of order m > and ~T—T differs in the sanc wey from
—y ‘ :

Though wo have written down the T's correcct to the
crder m~3, the terms bf ordor m™d diéappear in the calocula-
tion of x and ¥ bacause div E and g(EA‘E) both commute with V{ 

Hence we coblbalin:

v p2
z = m(1+ - Az (57 (O B) 4 — +1) (1=5

812

(58)

(EDED 7 o2,
. == e =1 ) (1
Bn< one  4m3 nd al 8m?

2k2 ‘
B, o= - I W T
8m qne =
2
R
h2 2n .

which is the same result of Foldy and Wouthuysen, for a pure
electric field.

The results of this secfion may be summarized as
follows: we have made an expsnsion of G in terna of the adi-

. . ki s . .
mensional quantity geull a gquantity which is usually very

I



smsll. Tn %hig expansion, of which (42) and (51) give the
Zero and firagt order terms, no non relativistic approxi*
mation is made; when each term of the expansion is further

expanded in series of m"j, t+he non relastiviestic Foldy

Wouthuyeen expansion is reobtained.

7. = The evaluation of G4 for an uniform electric fisld

The senge in Which'dur\series expansion id a ge-
neralizmation of the Foldy Wouthuysen one may be fully ap-=
preciatad if the exanmple of an uniform electric field is
congidered. In such case G1 may be easily determined exzac-
tly and h4, hp, may therefore he givén exactly %o the first
order in He

We have?t

(B-a)¥1ep? (14V1202)~(E"2) (C*R)

(1+p2)(j+v1+p2)2

2
(59) Gy = =

where V has been again written, like in (45), as:

s
2

=
2

Vo= -

The calculation of hy and h, sives!
S AE

s 2
71402 (1471 4D°)

!

m
(601) hi—v+?

2

(602) ' h2 - m Yil+p

These formulas are correct to the first order in the eX-
pansion parameter E’and to all orders in m_1; from the

formulas (60), the non velativistic limit for the present
cage is cbtained simply neglecting p2 with respect %o the

unity in the second term on the right hand side of (601);
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8. - Comparison with the regults of Eriksen

Mhe results of the past secitions show that, if
a ¢ exists, the transformed nanmilbtonian ig eveny therefo-
re for the transformed hamiltonian hy +§@ hay i% ig a
conatant of the mofion. This implies that UQ;U+ ig a con=
stant of the motion for tho iﬂitiallhamiitOﬂian H. Since
the eigenvalues of ? and UQ3U+ maost be the same, that is
& 1, EBriksen has obeorved that it should be possible o
identify U@3U+ with an operator commuting with H and haw

1
ving anly the two elgenvalues X 13 he bhas called this ope-
rator A and has rgmdrked that a possilble explicit expres-—
sion for M may bes H/(H2)1/2,

Briksen then procceds bo determine T in terms

£ A from the equation UpUY = A to which he adds the

i
2T regitrlotion U{E = F3U+ which is geen to be com=

My O
-
@

B

H

atible witk the previous onc. As Wwe have said in The in~

Lo

troduction Erilksen hag found an expression for U in terma
of Ay this expression is usgfdl for discussing existence
problemsg; our nethod is perhaps more appropriate to de=
Hermine the transformed hamiltonian explicitely, as we
did alrendy mention in the intreduction. Obviously howew
ver a relaftion exists betweern the two procedures; We shall
briefly ghow below whickh is the connection.

‘ farmulas it 18 easy To obtain an expreg

I'ro

0

o
H

b
g

¥

gion for Ug it is ¢

(61) U x-jz-[(e+¥({;§)(1—{?;)*f + (-G++L>§5)(1+§) )'3??

k(s) ha

The connecoetion heltween our G and Triksen's can

estfblished congtruvoting U@}U+ and idontifying this quan-

tity with A. Explicitfelys
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. 1 1 1 1
ENCLANE = + A (1- ¥ + ) -
i reaet  1aote 146G 1467 G

(62)

1 + 1 1
(G g ) +-?&'(G - G —)
X% 1+cc+ 1eate 5 jicet 14070

Egquation {62} shows that Eriksen's A can be exprossecd

through our CGs however EBriksenl!s condition UYE 3 Ut

does not correspond to our particular hermitian choice of

Y and ¥, but corresponds instead to the cholce: GY = Y+G+

Y3 = ¢Tyt, ¥ = ~TF; these equatlondaﬁa the cquations (32)
- 1/2

(33) can be smatisfied withh ¥=C ( 3

14GG7T
Tt should be noticed that bhe oquation (62) 1is

[

important for establishing the existence of & G once the

existence of a A is establisheds infact if we write A as

Aq +F,n2 vgjk3-¥Gg h4”G can he explicitely expressed in

terms of A'I’ }\2’ }‘.35 ;\4 -by- !

~1
¢ = ( =hy + h4)(j = Ay = Ag)

This observation shows that the resilt of Brikson sho=
~wing the exsisﬁence.of an U eniails necessarily the oxiw

stence of a G, solution of the equation (221).

9, = Some Final problems

This section contains a few comments on sone
questions Which arige naturally from the previous troant-
ments they are:

&) kow many solutions of the operator equation (22') for

G do exist?

b) Which is the relation betwéen the class of transformed
(even) ﬁamiltonians obtained using a partiocular ﬂglu%ion“
end thco olass obtaining another solution?

c) Does the sum of the perturbative series of section 6
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in V/m give a solution of the cquation for G and which is
the connececbtion between this perturba’tive expansion and the
general solution?

‘We are not able, at present, to answer these
questionss wo confine to illustrate them on the simple
example of the uniform elesciric field where the operator
equation for G rcduces to a differential eguaition; we ha—
ve already examined the case of the uniform field in the
first perturbative approximation in section 7. |

I+ is easy bo see that, since for an uniform
field ~
GV - VG = =i E ¢ grad o

the equation (22!') vecomes a differential equation.
If we writes |
WA - 2)

B =~ 1

where £ is an unift veotor in tl dircction of E and A, B
are some functions of Dy, Pyy Ppy it 1s easy to see that
L and B satisfy a pair of coupled differential eguationss

“If we further introduce the funetlon Z of Pxs Pys Py though

2.4 2 2,472

P Ak and B =g -2 tl7Z
2(p* & -2) 2(p* €. -3)

/ B

. 2 2 2 , ’
where p2=px + pv + pz, the problem reduces 1o find a fun-

ction Z which satigfies the following ordinary differen-

tial egquationt

&2

H 8
(63) 72 - 4% g% - p2 =1 4 iE = O
oS

Here ths direction of { has been assumed to be that of
the x axig,., The equation (63) is a Riccati cquation with

complex soefficients. It is therefore clear not only thai
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a solution exists, but also that a manifold of them‘exis%
depending on an arbitrary complex constant C. ’

The questions which have been raised at the be=
ginning'of this scetion reduce therefore in the present
case tot
1) which rekation exists betmeen the transformed hamilto-
nian corresponding to different choices of the above men=—
tioned complex constant? |
2) Ts it possible to find two solutions of the cguation
(63) corresponding te two values of C, which are aunaliti=
cal in %lnear §J= 0 and may be constructed by the pertur-
bative approach?

Fotice that also here, as in general, there awe iwo SR
ferent perturbative serics, one starting with Z = Yp241
the other with Z, = — p2+Ti ’

Wow in the present case 1% would be clearly bog
sible, using known results in the theory of differential
cquations, %o give a detailed answer %o the above questions
1) and 29, Since, however, the example of the uniform field
was discussed here ounly with the purpose of making more
concrete the general gquestions introduced at the beginning
of thig section, we shall stop ouf‘analysis here, sdding
only two remarks: the Tirst is thet, both in generegl.and
in the particular case of +the uniform field, the simplest
angwer to our qgucstions would be that the perturbation 80O~
lutions converge at least asymptotically and at least for
& certain range of values of the éxpansion parameter to a
solution of %he equation for &, while all the other solu-
tiong have some kind of irrezularity which makes them not
usable for the construction of the fransformed hamilto-
nian§ that this is true has becn, however, not provod +The
second remark is that, in the case of the uniform field
at lcast an asymptotic convergence of the perturdative

series exists almost certainly as one may conjecture from
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general theorems(7) on non linear differential equatiocns

belonging %o a class very near %o that of equabion (63},
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