Laboratori Nazionali di Frascati

LNF-59/38 (11.12.59)

G. Sacerdoti, L. Tau: UNO SPETTROMETRO MAGNETICO PER p = 1000 MeV/c.

Nota interna: nº 24 11 Dicembre 1959.

G. Sacerdoti e L. Tau (o):
UNO SPETTROMETRO MAGNETICO PER p = 1000 MeV/c'.

In connessione con l'esperienza sulle coppie di mesoni k, è stata studiata l'ottica di un analizzatore magnetico del tipo di quello che Wilson ha usato a Cornell per esperienze di fotoproduzione di K. Esso è costituito da due lenti; la prima con n = +25, la seconda con n = -20, senza sezione diritta. La deflessione totale è 40° , e il raggio di curvatura 2,5 metri. Con una gap utile di 9×15 cm² (9 cm in verticale al centro della gap, e 15 cm in orizzontale) si ottiene un angolo solido 2×10^{-3} steradianti.

Esso può certamente analizzare momenti fino a ~ 800 MeV/c. A 1000 MeV/c effetti di saturazione riducono la parte utile della gap e l'angolo solido diventa 3 o 4×10^{-3} ster.

Nella annessa tabella sono presentate le altre caratteristiche, e sono confrontate ai valori corrispondenti del magnete di Wilson e del magnete progettato da Sona, ora usato in questo laboratorio dal gruppo di Roma nello studio di fotoproduzione di pioni carichi.

Si presenta un progetto preliminare del magnete; esso include una camera a vuoto per la calibrazione con particelle \swarrow .

⁽x) Laboratori Nazionali di Frascati del C.N.R.N.

⁽o) Istituto Nazionale di Fisica Nucleare - Sez. di Roma

ī.			
	Sona	Wilson	Wilson modificato
	,—I	°. ○	а; О
	ŧ	Ω	9
ີເດັ	5.30 m	1,80 m	2,60 m
	1.4 %/cm	6 %/om	3 %/cm
m	1.0×10 ⁻³ ster 3.	3.5 x 10 3 ster	$7 \times 10^{-3} $ ster
- 4	1000 MeV/c 6	000 MeV/c	750 MeV/c
	30 tonn	6 tonn (?)	18 tonn
	Ţ	4	