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C. BERNARDINI

Istituto Nazionale di Fisica Nucleare
Laboratori Nazionali del Sinerotrone di Frascati

(ricevuto il 16 Settembre 1958)

Summary. — Space charge effects are considered (taking into account
positive ions) with the aim of deciding whether they can set up serious
intensity limitations for the beams of weak focusing electron synchrotrons,
or not. The possibility of linear resonances and non linear beam splitting
is shown. An estimate of the rate of production of positive ions in the
doughnut is given.

1. — Introduetion.

Space charge effects in electron-synchrotron are usually settled on by the
statement that, if the injection energy is high enough, magnetic forces com-
pensate nearly at all electrostatic forces (the well known 1 — % factor (%)).
This statement is, of course, valid in view of the till now obtained intensities
for such machines, 4.e. having in mind a figure of 102 for the order of mag-
nitude of the number of circulating electrons per pulse.

It is still assumed, even if not explicitly said, that the electron beam moves
in vacuum but for the problem of scattering losses. Consideration of scat-
tering losses gives an intensity independent rule for a troubleless pressure of
the residual gas; now, we want to show that this rule does not eliminate the
possibility of ion production, in the beam-occupied region, in such a quan-
tity as to give rise to troubles with the focusing properties of the external
magnetic field plus space charge forces.

(1) See for instance: W. HArRMAN, Fundamentals of Electronic Motion (New York,
1953), pag. 291.
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SPACE-CHARGE EFFECTS IN ELECTRON-SYNCHROTRONS 805

A complete formulation of the problem of positive ions production and of
their interaction with the electron beam is complicated by the number of
concomitant circumstances; nevertheless, orders of magnitude and semiquali-
tative results can be obtained by the use of simple models.

Two main results will be shown in the following paragraphs:

a) The possibility of reaching dangerous resonant values of the betatron
frequencies.

b) The possibility of beam-splitting into two or more parallel beams.

It is hard to maintain that the strange facts observed in some electron-
synchrotron laboratories (2) find an explanation in the results of this paper.
However, we think that such results can give a guide for an easy experimental
program with the aim of deciding if positive ion effects are to be accounted
for (or rejected) in planning high intensity machines.

Eventually, we anticipate that typical appearance values of the effects in
weak focusing machines (which we are interested in) are 5-10-¢ mm Hg for
the pressure, 5:10% for the number of electrons per pulse. The main pertur- -
bation parameters depend on the product pressure X intensity.

2. — Resonance eifects.

In this paragraph we want to study the effect of an uniformly distributed
sea of positive ions, charge --fe¢, on the betatron oscillation of the electrons
in the beam. We think of the ion density as constant.

Let us call N, the total number of circulating electrons, N, the number
of ions in the beam occupied region and put

{N,
N,

& ==

Suppose for semplicity the beam is made up of four bunches, uniformly
filled, with electrons and cylindrical in shape, the length, along the axis (pa-
rallel to the direction of the bunch), being RA®, the circular section having
a radius 7,. The total radial force on an electron of the beam, at a distance r
from the beam axis will be

1 _-J; _-,E.z..._ — 2
P,_ZNERA@rg(l Br—e¢)r.

(®) CERN symposium: 1, 67, 301 (1956).

52 - Il Nuovoe Cimento.
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806 : | C. BERNARDINI
The 1 — * dependent part is due to electron-electron forces, the & part

is due to electron-ion forces.
We neglect the 1 — 2 part, thus assuming

1—p2kKe;

the equations of betatron oscillations take the form

@'+ (L —mn+ dn)z =0 (radial motion)
2"+ (w + dn)z =0 (vertical motion),
where
1 R
8’]'& :*—2~ S.Ne m-—'—'_'czA@Tg 3

and the other symbols need no explanation.

The dependence on electron energy of this space charge parameter on is
not easy to guarantee: one could say that the quantity mAZr; behaves
roughly as B~* (B being the main magnetic field in the machine) due to adia-
batic dampings. But this energy dependence could be wrong because of a
number of influencing circumstances (like scattering, radiation fluctuations or
space charge effects themselves). We take a constant dn value, corresponding
to injection values of the paratneters; «injection values » means, of course,
values reached soon after RF capture, when the electron beam density is nearly
steady.

For typical values as

R = 360 cm, (M), . = 2.5 MoV,
r,=1cm, A® =1rad,

N,
on = 0.1¢ (i}jia) 3

one obtains

We can write down a resonance relation for the betatron frequencies, for
a racetrack synchrotron with four straight sections of length L, in the form:

p+(1 +;§>(Q‘\/l——%—!—3%+r\/ﬂ‘:’”8%)=oa

where p, ¢, r are integers (= 0) (°).

(®) E. Persico: report T1 della Sez. Acc. del’INFN (1953).
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SPACE-CHARGE EFFECTS IN ELECTRON-SYNCHROTRONS 807

In the case of L/zR = 0.106, n = 0.61 (as for the Frascati machine), there
are three linear resonances near the unperturbed working point, namely

p = 1 =0 r=—1 S?ZCZf{).Q
p=—2 g=1 s | n~ 0.3
p=1 g=—1 r=20 dn~ 0.4

The first resonance (3n = 0.2) reveals itself by the build up of vertical
oscillations due to first harmonic median plane irregularities. The second one
(dn=10.3) i8 a coupling resonance excited by field or median plane second
harmonic irregularities. The last resonance (8n = 0:.4) is a field first harmonic
excited radial motion (*).

Non-linear resonances are not considered here because of the surely longer
amplitude build-up time, which could allow for ion density rearrangements
destroying the resonant value of 3.

3. — The ion density.

We want to estimate the quantity 3 as a function of pressure, beam in-
tensity, atomic number Z of the residual gas, ete. We neglect the secondary
electron production since, as can be easily shown, secondary electron velocities
are > than ion velocities, so that they rapidly leave the beam region.

Let us call N the number of the atoms per em?. At 300 °K of temperature:

N =3.2-101P (cm?)-?,

where P i3 the pressure in mm Hg.
o; is the ionization cross-section: it is energy independent for relativistic
electrons (*). We shall take as in reference (4

g;~0.272-10"18 ¢m?2 ,

Put 7, for the time an ion needs to escape from the beam-occupied region.

(*) Resonant blow up of the beam, of the just considered kind, seems likely to be
observable only in the vertical direction because of the need of having ions over the
whole path of the electrons during the oscillation amplitude build up time. This has
been kindly pointed out to me by doctor A. TOLLESTRUP.

(1) M. J. Moravcsik: Phys. Rev., 100, 1009 (1955).
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808 C. BERNARDINI

It follows that

¢
N, ~ ca,‘NfNe(t’) exp[—t'[t,]di .
0

We suppose N, is made up of two parts:

N,=N,+ N, exp[—t/7],

where N, and N, are constant; 7 is a characteristic time of slow losses.
When ¢>>t,, 7, ¢ reaches a steady value

e = fety,o:N (1 + -

the factor 1-+ (7/(r+1%,))(N,/N,) is likely to be about two, so that

e~ 2Cct o, N .

The main problem is to calculate #,: The ions, since the time of their pro-
duction, move along the lines of force of the external magnetic field, that is
along the z axis. Thus, for an ion moving with velocity », and produced at
a random point of the beam section,

P 87,
7 3xm|v|”

What we need is the average (1/t,> over the possible |v| values, |v| being
the modulus of the z component of the ion velocity (see Appendix A). One
could take the average on thermal velocities (*), thus obtaining

1 - 3 [2#=ET\}
te 27, ) ’

- M

(*) Recoil energies of the ions do not change appreciably the termal energy distri-
bution. The transferred momenta ¢ are certainly less than 10 keV/c in a collision, so
that the ion mean recoil energy is certainly less than

g 10 0,025
oM  47Z10° 7

eV,
which is less than thermal energies by a factor 1'/Z ;

=
-

=
-]



SPACE-CHARGE EFFECTS IN ELECTRON-SYNCHROTRONS 809

where M is the mass of the ions; but ion-ion and electron-ion electrostatic
effects are certainly not negligible from the point of view of the ion distri-
bution. There is the possibility of ion trapping by the main beam, which we
shall examine in Appendix B. For the moment being, assume that the thermal
distribution of velocities is valid; it follows that

ty ™ 3r0VZ W8 (r, in cm)

assuming M ~ 2Z (mass of the H atom).
The formula giving e is

e~ 1200 {r,Z%°P,

where P is in mm Hg. The formula for 3» is thus

CZEP ( Ne) j7o in cm

~ 120222
on 7o \10% |P in mm He .

We see that for
=0 £ =30, P =108, ye =1 cmi; N,=>5-101

one obtains

on~0.1.

4. — Beam splitting.

So far we were concerned with a simplified model having cylindrical sym-
metry. Beam splitting effects can be put in evidence by simply removing this
assumption.

We will treat in Appendix C the general case of ion distribution; for the
sake of clearness we now consider a gimple model in wich the ion distribution

has elliptic asymmetry:

N, 1 + 2¢, sin?

- P oA . ’
4R AD 1+e¢ rdrdg T<To

ny(r, )rdrde =

where n, stays for the ion density as a function of polar co-ordinates around
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the electron beam axis, » and ¢. ¢, i8 a constant measuring the ellipticity,
satisfying e, >—% because of n,>0.

The electric field components due to such a charge distribution are, at
points far from the head or tail of a bunch

. 2 A2
E’x:C(l-— 2% (:i—{-h:l?—){:D z)m—40 6:0 (}--{—lni){c—z—z,
0

146 \4 o 3 1+ e

2 ___ ~2 )
E,:O(l— 2 (§+1n1)m?‘zz)z+40 % (1+1n3)“"%,

146 \4 o 1-+e \4 o 72
where
R =1, z=0wtgy,
C“} feN .
_"2r§RA@°

Limiting the analysis of possible motions to a simple case, ¢.e. to the motion
on the median plane z= 0, we see that the equations of betatron oscillations
for the electrons of the main beam

are of the following kind:

(1) &-{-(wg-{—eowflnl?agl)x:().

0

A
Pot. energy

\ / The log term is a new feature for
\ / betatron oscillations; w,, w,, are two
\ / constants readily obtainable in terms
% / of the parameters defining the fields
A / E,, E, and the external magnetic
. 7 x field.

\/ : >~ The motion described by eq. (1)
can be visualized by means of the
Fig. 2. graph (Fig. 1) of the potential energy

of the force

(a)ﬁ + ¢,w} In [:0—[) z,

3

o

for the case ¢, > 0. (Were actually ¢, < 0, the same conclusions hold true
for the motions out of the median plane, round z = 0).

Two equilibrium positions are found for the beam; the axis (z= 0) is no
more a stable equilibrium position.

[~ 4
e
=
=3
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The parameters defining the well-depth and well centers are quite sensi-
tive to the ellipticity e,; in the case shown here, for instance,

|2 | = 7, €xp

2

—_—
a9l ?

600)1

where -4 2z, are the well-center co-ordinates (*).

5. — Coneclusion.

This report summarizes a list of possibilities for space charge effects due
to residual gas in the doughnut.

We do not maintain these effects will be so strongly evident in a well
working machine as can be conjectured from some of the reported formulas:
these are, in fact, rough calculations containing too many unknowns.

Nevertheless we are afraid that intensity limitations for weak focusing
machines follow on this reasoning line; the point is whether they are so near
the actual working points as here shown or not and this, we think, can be’
only decided by a suitable experimental program.

E I I

We would like to thank Professor G. SArvinI for stimulating help.

APPENDIX A

Simple Boltzmann equation for the ion density.

Let us call n.(z, 2, v, ) the density of ions in a space of coordinates z, 2, v
(v being the z component of the velocity). Put n.(z, 2, f) for the electron density
in the beam and f(v) for the maxwellian distribution function of the velocity v.
Then
8?‘2—+ 8n+

R = —27 e +0: Nen (2, 2, 8)f(v) .

Let us consider the case in which

Ne(®y 2, 1) = (@, 2) N, (1),

(*) Once two beams are produced further splitting could be envisaged for'each
one of the two beams on the same basic mechanism. Prof. R. WiLsoN pointed out to
me this possibility.

1=
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where

ffgu‘(a:, z)drdz = 1.

whole space

A solution is readily found with the only condition that there are no ions

at the time ¢ = 0.

t

w2, 2, 0, 1) = caiNf(?))fw [@, 2 —

0

A

a)

A
<W

b)

o(t'— )] N(¢) dt' .

This formula allows us to
perform the correct average
over the velocities. Namely,
what we need is

I(z, ;1) =f]‘('v)1p(m, z—ot)do .

Now, f(v) is a gaussian
function of width <{v?);y, as a
function of z — vt, is a strongly
peaked function around the
value 2 — vt = 0 of the argu-
ment. The width of this peak
is of the order r,. When (Fig. 2a)

(oryte ST,

Fig. 2.

we can substitute for p a ¢ function:

p(a, 2) =~ u(x)d(z — ot) .



SPACE-CHARGE EFFECTS IN ELECTRON-SYNCHROTRONS 813

" Here u takes into account the z dependence. Thus, for this case

1 M\ Mz2 1 1 M \}
I(z, 2, 1) ~ m‘u(r)(é}a‘_fp) exp { 2}(‘,1—,';4 ﬂm %(w)(inﬁ) :

The last approximation comes out from the fact that we are mainly inter-

ested in z values less than r,.
On the other hand, if

(vt L g,

and if z 5= 0, the y(z — vt) function, as a function of », displaces its peak toward
infinity as ¢ — 0, so that it does not overlap appreciably with the velocity distri-
bution, (Fig. 2b).

There is an intermediate region in which

2 P <1

where things are somewhat more complicated. This region is, however, of no
interest for the final result. One can check all the qualitative considerations
just made by calculating what happens for a gaussian shaped ». Eventually
one obtains that:

I(z,2,t) ~ 0 , ar> P =<1 ]

u(x) (—I—IE--)*, oy 12 > 72 J} 2| <7, .

Using this result to calculate

+ 00

(i =[n.do,

-

one obtains

{ny)=co; N|N,(')I(x,2,t—1t')dt ~co,Nu(z N(t dt :
.JnkT

ro/V<o®

neglecting the time dependence of N,:

1 M (o 1 M\ 2k Tt
<’ﬂ+> _éCO’iNu( )(_;J'C)IL‘T) N In ( ?3 ) =—2—00}Nu(m)(2ﬂkT) -Ne In (T{rs‘) -

13
1=
bl
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The log term is of no importance.

: ) 2
}ca,-Nro( M ) N, In (@) .

Ny~ ?'oj Ny A2 = 5 ST i

This calculation shows that the qualitative arguments of Sect. 8 can be
followed with some confidence.

APPENDIX B

Ion trapping.

The ion trapping mechanism can be described by means of matrix technique
as follows: the ions in a given azimuthal position are periodically inside a
bunch of electrons for a time RA®/c, outside of the bunches for a time
(Rle)((m|2) — AD).

When inside, the ions equations of motion are of the form

Z+wiz =0;
when outside, however,

- S o
z2—wiz=0,
where

This is a time alternating focusing defocusing structure, whose matrix
trace is given by ' '

) _
5 Tr (transf. matrix) =

” 1 1—2¢ -
= cosh y,V. VI—¢—Z —=———-dinhy, Vesiny,Vl—e.
cosh y; Ve cos y,V1 —¢ T sinh y, Ve sin y, €

where we put for brevity

(1 __( {N.Re* \}(m|2) —AD\ ((JE/2)~—-—A@)
yz)" 2Mcgr§A®)( AD )“7’ A® )

When y < 1 the analysis of the trace is quite easy:

1 Tr (transf. matrix) =~ 1 — § y.(y; + 9.) + $ ey +72)%
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and there follows that trapping is possible until ¢ reaches the value

2AD
& = ;
7T

the assumption of this & value as equilibrium value would lead to a pressure
independent shift of betatron frequencies. But the just described trapping
mechanism must be interpreted with some care: in fact we claim that the
situation we shew in Sect. 3, based on thermal motion considerations for free
ions, is more likely to be true for the following reasons. Let us suppose an
ion oscillates along the z axis (i.e. it is trapped). If it leaves the beam axis
with a velocity <(v) (thermal average), the amplitude of its oscillations will
be (v»/Q2 where 2 is the characteristic frequency of the composite structure
we deal with in this appendix. Trapping is effective only if

_<£2.<?*0’

Q2

because if the ion goes outside the electron beam boundary repulsive space
charge. forces prevail and make it reach the doughnut’s walls. Now £ is given,

in the y < 1 approximation, by 2 ~V8ry(AD — (7/2)e)*(¢/R) and

(v , R 1 0> . RA® i
Q T V8zy (AD — (n/2)e)? - *|C(N 109 (AD — (7/2)e) | ’

and this shows that trapping will be effective in fastening the ion cumulation
but, as soon as £ — 0, the trapping mechanism becomes less efficient and
the pure thermal motion considerations give a good approximation.

We remark that because of this phenomenon the pressure dependence
of ¢ could be far from linear.

APPENDIX C

The ion distribution. General case.

To show the possibility of appearance of log terms in the electric field
formula, we develop here the potential due to an ion distribution of density
n.(r, ). The potential V(r, ¢) is given by

27 w©
V(r,p) = const—20e d@f? d7n, (7, @) In Vrr 72 — 2r7 cos (p — @) =

0 (1]

= const — 20eK(r, @) ,

8777
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Expanding in Fourier series

ni(r, @) = > qu(r) exp [ike] (€ = g%} ¢
and
K(r,p) =nln 'rf?go(?) dr + th? In 7¢,(r) dr —
nte explike] (1 (o o — o [ 1
-3 %#e _I:;}E_If] {m[’f“|kl”%(?’) ar -JrJ M- qx(7) d?‘} i
: : /

Logarithmic terms can appear in the last term of the expansion, whenever
qu(r) ~ rlH-2 (for not too large r; k == 0)

The case we studied in Sect. 4 is that of ¢., = const for » <r7,. Attention
must be given to the condition n.(r, ¢) > 0; in the model of Sect. 4 this condi-
tion requires, for instance, ¢, > — %.

RIASSUNTO

Si studiano gli effetti di carica spaziale (tenendo conto della presenza di ioni posi-
tivi) per stabilire se possono dar luogo a serie limitazioni per 'intensita del fascio di
un elettrosinerotrone a focalizzazione debole. Si mostra che sono possibili effetti lineari
di risonanza ed effetti non lineari di sdoppiamento del fascio. 8i valuta inoltre il numero
di ioni positivi prodotti nella camera a vuoto.
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