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1. — Infroduetion.

Till now the external electron beam has not been achieved in high energy cir-
cular machines. Indeed, the regenerative ("%} solution is disadvantaged by the

fact that the required nominal value of the regenerator strength is not obtainable
in practice because of:

1} the narrowness of the linear fisld rezion;

ii) the form of the radial restoring force.

The radial equation of motion may be written — neglecting terms of order x/R
with respect to unity —

20
(1.1) ;iéig—]—w—[-g;(Bszo):O, r=r—N,
or
(1.2) @—}—[lw—'ﬁ(m)}x =0,
ao®

where
(1.27) ) = - f n(w) d; lw) — m{i ?EJ ,
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jicd

This means that it iz very difficult to obtain an (l/x)fqz(gc)dm required value

J
having the following features: nyuumea = const 1 only in a region of narrow

angular width and only on one side of the equilibrium orbit. Equations (1.2), (1.27)
and their consequences are also valid for cyclotrons.

We ghall now trace out the possibility of an azimuthally distributed regenerative
action to extract the circulating elestron beam from a racetrack having the
operating point [n,, L/R] in the neighborhood of the resonance line (for betatron
oscillations): 2 radial oscillations/3 revolutions. (This is, for example, the case of
the 1 GeV Frascati Synchrotron: (n,> = 0.61 designed field index value; four straight
sections of lenght L/R=0.335; resonance field index value Ty =0.685, B=2360 cm).

For a right investigation of the betatron oscillations stability from {his point
of view, the racetrack must be replaced by a Circular Synchrotron having the same
periodicily for radial oscillations.

For such a synchrotron the resomance (m,> wvalue is n, — 5. The porturbing
term most responsible for the radial oscillations growth is the non-linear term
F(dn/dx)+Px? sin 20 derived from an n(z, §) of the form

5 d’)’b (1,2) .
(1.3) nlx, ) = (5— (‘5) + (Eﬂ) 2 sin 20,

where
8 = Ny, — 0, = disbapce in ficld index from resonance .

The eguation of motion relative to this n(x, ) can be solved analytically using

the Krylov-Bogeliubov technique (7).
One finds that the resonance buildup of radial oscillations is aveided for

dn \ &
(1.4) radial amplitude- (a—) & 84,
7

(86 = 0.2 in the case of the Italian Synchrotron, and therefore we conclude that
this machine lies within very satisfactory limits of stability).

2. — The azimuthally distributed regenerative perturbation.

We admit a beam cross section (at energies above 100 MeV) of about d = 2 em
in width by 1em in height. The 1001000 MeV acceleration time being about
2-10-%s, the rise time of the proposed regenerative field lattice should be of the

same order or shorber.
By making use of the perturbation

— ] d
n{x, 0) = (5» 5)4— & 8in 20 when %> 3

(2.1)
— 5 d
#(w, 0} = §—~¢5 —egin 20 when T

() N. M. Eryrov and N. N. BOGOLIUBOV: Introduction to Non-Linear Mechanics (a free
translation by 8. LersceaTz from two Russian monographs), Princeton University Press.
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3.1 i O 5 5 1 {dn\®20 20 h d< - d
Ny L) = -— 0} = | — sin when ——<l < =,
L s 0 =150 Ty dx) ? 2 2
(e > 0; & >>& 3| §]) the desired buildup process can be achieved for radial oscillations
without increasing at the same time the axial oscillations. The (2.1) n(x, 6) required
may be get by inserting the =/2 wide regenerator field shown in Fig. 1 (¢ -7 » region)
Asg long as (1.4) is satisfied in the
1-d/2 radial extent, the amplitude of
radial and axial osecillations remains .

bounded. Radial deflection beging when _q;\ /:_,7 o /

(dn/dx)®® iy made toincrease until (1.4) 6 wam

1
is violated. The increasing radial oscil- oo S0 7 W IR
lation carries the particles into the field NG 7 y —t
lattice (2.1) (|x|> d/2). When |&|max 4 —
differs from d/2 by a relatively large E;’:;ins-‘ i &"Zii/m

value (|#] . /(d/2) 4) the equation of e

R X Fig. 1.
motion takes the simple form

d2z 4 .
(2.2) a-é—2+(§+ 5>x=s]w|s1n26‘,

and only negligible errors are thus introduced.
Solving this equation after the quoted procedure (7), the first approximation
golution is

(2.3) w(0) = a(0) sin [20 + D(B)] ,
where
d .
Eg mzinasiﬂ 30, (a(0) >0},
(2.4)
4@ & 3 '
- 3D + -5 . < @0y < 2m),
TR A (0 < 2(0) < 2n)

The condition to be met to allow an efficient deflection is |o|<C 1, where
a = (37/2)(d/s). In this case the following results: Whatever the initial phase value
@(0) is, the oscillation tends to a constant phase value determined by

[ cogd3dy, = —o0,
(2.5)
[ gin 3@, = 4 /1T — 07,
that is
D, =0 for o= —1,
T
D, = - for =0,
6
a3
Do = = for o= 1.
o
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This means that the maxima of this asymptotic solution can take place only within
the azimuthal extent

7 7T 3x b 3n VE,
- — — and — —_— —
4 2 4 4 2 4
1 1
. N ! 1
for c=+1 =20 c =—1 c=+1 c=20 c=—1.

Having discussed the stationary regime for the phase, we shall consider now the
first equation of (2.4) for the amplitude. One obtains (¢ > 0)

a4 (0) = a(0) exp [58— V1—g¢? Bl for @(0) near to @ ,
=TT
(2.6)

a(0) = a(0)exp [_ —23- V1 —g® BJ for @(0) opposite to @, ,
U
i.e. there is an wunique stationary behaviour of oscillations, represented by
e ,—— | . |2
(2.7) z(0) = a(0) exp {T V1 —g? 6} sin l-é- 6 + @mJ i
T

It is clear that this is a triple turn extraction mode, and therefore the realizable
gain is expressed by

(2.8) g = exp [3eV1—o2].

By way of example, say {(n,> = 0.61, L/R = 0.335 i.e. 6 = + 0.025. In this case
in Fig. 2 g and A4 (= n/2 —azimutal point at wich maximum occurs) are plotted
versus 7 = (n#/4)e. For my, = 0.66,

L6 15 L/R = 0.335 the results relative to
{ N g are the same, and 4 must be re-
\ // placed by — 4.
40P \ 4 g From the point of view of axial
A ,/ oscillations one can see that the
seal 2 \ 2 ! 13 particle is captured into a motion
‘ \\ T through a field structure of the form
AN (for the Italian Synchrotron)
300 y. \ 1.2
\‘_\ 9.9 3 & 4 0 7T
20 —7 : 1 24) ng4—|—2cos[§ _6]
A
2°f0_9/ o7 0 =5 g \.:r. The resulting equation of motion may

i be transformed into a Mathieu equa-

Fig. 2. tion having divergent solutions (%)

() N. W. Mo LACHLAN: Theory and Application of Mathieuw Functions (Oxford Clarendon Press).
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only when s> 1.4, This, however, is not our case and vertical stability of motion
is .therefore mantained.

The most disturbing. terms for this ordinated buildup of radial oscillation (the
linear damping term fx and the 1.3n(z, 6) variation) cannot invalidate the essential
aspects of our extraction method when

dn\ @
{( ) 'a(O)J<<2.217

dx
| B 0.4y,

These conditions seem reasonably weak.
Finally, it seems that the proposed perturbation cannot excite other kinds of
non linear resonances.
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