Laboratori Nazionali di Frascati

LNF-56/31 (1956)

Sezione Acceleratore: LIST OF PARAMETERS OF THE ITALIAN ELECTRON-SYNCHROTRON.

Estratto dal: CERN SYMPOSIUM PROCEEDINGS, VOL. 1, 480, (1956)

LIST OF PARAMETERS OF THE ITALIAN ELECTRON SYNCHROTRON *

Sezione Acceleratore, Istituto Nazionale di Fisica Nucleare, Roma

We collect here a number of informations about the Italian electron synchrotron, which may be useful in understanding the preceding notes.

The main data are the following:

Maximum energy

 $E_{\text{max}} = 1000 \text{ MeV}$

Maximum induction on the prin-

cipal orbit

 $B_{\text{max}} = 9260 \text{ GS}$

Principal orbit radius

R = 360 cm.

Number of straight sections

== 4

Nominal length of the straight

sections L = 120.6 cm.

Field index n = 0.61

 $E_i = 2.5 \text{ MeV}$ Injection energy (total)

Injection induction on the prin-

cipal orbit $B_i = 22.7 GS + \epsilon$

Average gap height $= 8.6 \, \text{cm}.$

Width of the free pole surface = 22.7 cm.

Injector Cockcroft Walton

Magnet excitation Sinusoidal 20 periods

> $(\Omega = 125.66 \text{ sec.}^{-1})$ with adjustable bias between 4170-4630

gauss

Other useful numerical data are:

Final revolution period $T_{\infty} = 9.154 \times 10^{-8} \text{ sec.}$

Radiation energy loss per turn

at 1000 Mev $L_r = 25 \text{ KeV}$

Number of oscillations per turn

(vertical) $Q_v = 0.863$ (horizontal) $Q_h = 0.688$ Velocity at injection $v_i = 0.9789 C$

Injection revolution period $T_i = 9.35 \times 10^{-8}$ sec.

Radio-frequency cavities

Harmonic k = 4

* This paper was presented in title only.

R.F. final frequency v = 43.70 MHzR.F. injection frequency $v_i = 42.78 \text{ MHz}$

Frequency modulation

2.11%

On varying the continuous component (Bb, bias) of the magnetic field we cover a range of spiralizations (defined by

$$\left(\frac{dB}{dt}\right)_i = B_i \frac{(1-n)}{T_i} \frac{\sigma}{R}$$
, at injection

from about 0.2 to 0.6 cm.

We have

 σ =0.2 cm for B_i= 53000 Gs/sec or E_i= 5550 Mev/sec σ =0.6 cm for B_i=158000 Gs/sec or E_i=16600 Mev/sec

The magnet has C shaped sections with external doughnut The poles are independent from the C's

Magnet main data are:

Iron weight $= 9.3 \times 10^4 \text{ Kg}.$

Number of copper turns per quadrant 12 Copper weight about $0.8 \div 1 \times 10^4$ Kg.

Average maximum induction in Iron about 14,000 Gs

Magnet inductance = 18.5×10^{-3} henry

Maximum energy in air = 2.65×10^5 Joule

Excitation main data are:

Capacitor bank in parallel with the magnet:

Power = 10.560 kVA (at 20 periods)

Capacity = 3420 Farad

Choke coil inductance value 45 mhenry

Capacitor bank in parallel with choke coil:

Power = 4300 kVACapacity = 1400 farad

Power of the a.c. generator = 510 kVA

Power of the d.c. generator = 315 kW

Injector characteristics are:

Pressure in the tank : 15 atmos. (of N_2 with about 10% CO_2 or freon).

Approximate dimensions

length 5 m. width 3.5 m.

height 3.5 m.

The tank is made of stainless steel.

Maximum current 200 mA.

Pulse duration: from 1 to 10/sec.

Angular spread of the beam at injection (after the electrostatic deflector) about 6×10^{-3} rad; section of the beam at injection about 1×1 cm².

Raman Sa