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A Theory of the Capture in a High Energy Injected Synchrotron.
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1. — Introduction.

In all synchrotrons for protons and in most of the modern electrosynchro-
trons the particles are injected with a kinetic energy of the order of at least
one MeV while the r.f. oscillating cavity is not yet excited, or is oscillating
at a negligible amplitude. The particles accumulate in the donut, spiraling
inwards because of the rising magnetic field, until the radio-frequency cavity
starts oscillating, as suddenly as possible. At this instant, the particles that
happen to be in a favourable phase are «captured » by the radio-frequency,
and form one or more bunches that start being accelerated, while those that
are caught in unfavourable phases are lost against the walls.

We will now expose an attempt to calculate the number of captured particles
as a function of the radio-frequency peak voltage (and therefore of the initial
equilibrium phase), of the width of the donut and other parameters of the
machine, This calculation, although made under several simplifying assumpt-
ions, should give a criterium for choosing the initial equilibrium phases (for
which we find an optimum value) and for evaluating the infiuence of the donut
width on the output of the machine.

The simplifying assumptions. are the following. We suppose that all the
injected particles have the same energy and the same direction (parallel to
the equilibrium orbit). The theory could be extended to the case of an injected
beam having an energetic and angular spread by subdividing it in elementary
beams.

We suppose also that the radio-frequency peak voltage across the cavity
rises istantancously from 0 to a given value U. By this we mean that the rise
time should be short compared with the period T, of the phase oscillations
and with /T8, where T, is the rotation period for the velocity ¢ and 0 is
the duration of the injection. ‘
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When the rise of the radio-frequency voltage cannot be considered istant-
aneous, the theory needs a numerical integration of the phase equation for
edch set of parameters, which has been worked out only for a few typical
cases. It seems that the results are not very different from those of the istant-
aneous rise, even for a rise time of 7,/h and of 4v/7T .

2, — Betatron Osecillations.

Let ¢ be the time and

1) B(ry t) = B,(t)(B[r)",

be the vertical magnetic induction at radius . Here R is the radius of the
so called «principal orbit » (running approximately in the middle of the donut
section) and B,(t) is the magnetic induction on it: during the injection B,(t)
can be considered a linear funection.

The equilibrium orbit (e.0.) at time ¢ is defined by

bE
; = 3.335-10-3 =
(2) r; = 3.335-10 Bl
- (r:; in em, B, B, in gauss)
BE \Yoa-m
! — . -8
(29 = (3,335 10 B.R

where K is energy of the particles (included the rest energy) in eV, and b is
the velocity divided by c. The e.o. contracts at each tour approximately by

(3) o= -2 B

(T being the duration of the revolution).

We take as origin of time the instant at which the e.o. passes through the
injection point: so at time ¢ the e.o. will pass at a distance ot/T from that
point. )

We suppose that the radio-frequency cavity starts oscillating at the time 6
at which 7, =R, and that during the interval from ¢ =0 to ¢= 6§ the injector
keeps injecting at a constant rate of I particles per second. - We consider this
interval as the «injection interval»: probably some particles injected before
t=0 or after { =0 can still be captured but we neglect them. So the duration
of the injection is

aT
6= 50

(4)
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where a/2 is the distance of the injection point from the principal orbit (and
therefore a is the useful donut width).

Of course, part of the particles injected between 0 and.@ will be lost, before
time 0, owing to collision against the injector or the walls. We introduce there-
fore a quantity o(f) <1, representing the «instantaneous injection efficiency »,
such that Ip(f)d¢ is the number of particles injected between ¢ and t -+ d¢
still surviving at time 6. The calculation of ¢ does not belong to this paper.
We can ounly say that, as a rule, it will increase from & to almost 1 during the -
first few revolutions and then remain near unity for most of the time 6.

Now, a particle injected at time ¢ will be injected at a distance

. ot
(5) Ly = —j-y y

from its e.o.: so it will start betatron oscillations of this amplitude about the e.o.
These oscillations will continue, practically undamped, following the e.o. while
it contracts, so that at time §, when the radio-frequency is excited, the particle
will oscillate about the principal orbit. '

So, at time 0, all surviving particles will be oscillating, with various ampli-
tudes, about the prinecipal orbit. Those, which have an amplitude between x,
and ,-+4dz, will be those injected between ¢ and ¢-di, and their number
will be
dx,,

(6) “ To(t)dt = IeT—*.

3. — Synehrotron Osecillations.

As soon as the radio-frequency is excited, synchrotron oscillations are
superimposed on betatron oscillations. This means that the e.o., about which
the betatron oscillations take place, is no longer slowly contracting, but cont-
racting and expanding alternately about the principal orbit. Besides, the
e.0. i8 no longer the same for all particles because each particle, at each revo-
lution, will pick up a different (positive or negative) amount of energy according
the the phase ¢ in which it happens to cross the radio-frequency cavity.

Let us recall the law of synchrotron oscillations (*)." The phase ¢ varies
according to the equation ~

™) # = ¥ (1— 7 sing),

(*) D. Boum and L. Foupy: Phys. Rev., 70, 249 (1946).
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where U is the peak value of the radio- -frequency voltage across the cavity
(in volt); u is the energy (in eV) which must be supplied at each revolution
to the particle in order that it keeps the same radius B notwithstanding the rise
of the magnetic field: it is given by

) 4= (1—n)pB2,

M is defined by

kK w kK o
where
1
(10) _1+ﬂ2[_—m_1],

4 is the total length of the principal orbit divided by the length of the curved
parts; & is an integer (usually called the « harmonic order ») giving the ratio
between the radio-frequency and the frequency
of revolution. -

To the variations of the phase ¢ are re-

L, ‘ e T lated the oscillations of the e.o. through the
b b relation ‘
§ (11) R ¢
Fig. 1 1—mn)pEw,”’

where: X =R,— R is the displacement of the e.0.;
w, =k(27/T) is the pulsation of the radio-frequency field.

During the injection, that is when U=0, eq. (11) and (7) give, of course,
the well known contraction of the e.o. at the rate ¢/7.

After time 0, U has a constant positive Value (greater than u). Equation (7)
can be integrated once and gives

(12) @ =2MF(p) 4+ const. ,
where

U
(13) : F(p) = — cosp +¢.

If we define the « equilibrium phase» (or « synchronous» phase) s by

(14) sing, =u/U, 0<p, <72
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equation (13) can be written

cos @
sin @,

(13" Flp) =

+o

The function F(p) is plotted in Fig. 2 (%).

It has obviously a maximum at ¢ = @,.

Equation (12) permits plotting ¢ (and therefore X) as a function of ¢ (Fig. 3).
If we consider the « synchronous particle » run-
ning on the principal orbit at an angular ve-
locity w,/k with the constant phase ¢,, and
call 0,() its azimut, we have

0*‘-08 :((p—(}?s)/k, /,'/ E /,,’

(since ¢ =k0) and so the abscissa in Fig. 3
represents, in a convenjent scale, the azimuth ,
of a generical particle referred to that of the Fig. 2.
synehronous particle. On the other hand the

ordinate, through equation (11), represents its radial displacement {(apart from
betatron oscillations). Therefore the curves of Fig. 3 represent the mouvement
of any particle, apart from betatron
oscillations, with respect to the syn-

/ chronous particle.
/ These curves fall into two classes,

according to the value of the constant

Fg)

\ \/ sooner or later, collide with the walls
and are lost. The remaining, and .
more interesting, curves, are closed,

\ and represent particles oscillating

\ around the synchronous particle.

Let us consider one of these closed
Fig. 3. curves. If we call ¢,, and @, (P <p<
<@y) the extreme values of ¢, we

can assume one of these quantities, f.i. py, as a parameter to label the curve.
The other extreme, ¢, is related to ¢, by a universal function

, in eq. (12). Some of them are open
’/ /—\ curves, and represent particles that,

Pm = g(@a, Ps)

defined by F(p.,) = F(p,), which has been numeﬁca]ly calculated for different
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values of ¢,. The widest of all closed curves (dotted line in Fig. 3) corresponds
10 @y =7 —@,.
Equation (12) ¢an now be written

(1) ¢*=2M[F(p) — Flpx)] -

H Now we are interested in the am-
12 ! plitude X, of the synchrotron
L1 oscillation, and therefore (eq. (11))
~ in the maximum ordinate ¢, of
1.0{4 the curve. It is seen immediately
21 that it corresponds to ¢ = ¢, and
is given by

|A S— ST

P = V2M VE(p)— Flp) -

We have plotted, in Fig. 4, the
B universal function

H H(g) = VF(p,) — Flg),

N

for several values of p,. By means
of these curves, we can immedia-
tely determine the amplitude X,
of the synchrotron oscillation as
—y a function of one of the extremes
120" B (@, OF @,) of the phase oscillation.
' In effect, from (11) and (15) we get

-30°

(16) Xy = CH(pn) = CH(py) ,

where

17 ¢ = ‘/Mff@_.
() akK (1 —n)f?

4. — Theory of Capture.

Since the cavity starts oscillating at the instant 6 at which X = ¢ =0,
the initial conditions for the synchrotron oscillations are: ¢,=0, and g,
distributed with uniform probability (3) between —z and z. This initial

(2) The phase of the particle at time 8 is related to the instant of its injection ¢ by:
@, = const. — wyt.  So the particles injected in an interval 4t = T/k = tn/w, have
phases spread uniformely between — n and =, and since I/k < 6 we can practically
assume At as an elementary interval di.
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value g, will be the ¢, or the @, of the phase oscillations, according whether
it is <@, or > @,.

Those particles, whose @, happens to be in the region of closed curves,
i.e. between n—g, and g(z —@,), initiate their oscillations around the syn-
chronous particle, while the others are thrown against the walls. But only
a part of the former group of particles can really perform their oscillations
without hitting the walls, namely those for which the total amplitude of oscil-
lation (synchrotron amplitude X, plus betatron amplitude ®,) is less than
the useful half width of the donut. We consider as «useful» width a’ the
radial width @ diminished by a certain amount to take into account the gas
scattering and the distortion of the orbit due to field irregularities and fre-
quency errors. Therefore, once chosen the value of a’, the capture condition

" can be written

al

(18) X, + 2, < <5
Now we want to calculate how many particles satisfy this condition.

Let us consider first only the particles injected between ¢ and ¢--d¢. They
are Ipdt and perform betatron oscillations given by (5): so the capture con-
dition for them is

X<

H!&

& _
2
or, because of (16)

1 r
Hpo=5(3—7)-

If, in Fig. 4, we draw an horizontal line of ordinate

- (19) Z-3(5 %)

0\2 T

and call O(H) the length intercepted on it by the curve of given ¢,, divided
by the abscissa length corresponding to 360°, this @ represents the captured
fraction of the particles injected in d¢. So the total number of captured part-
icles will be

o
(20) N=|o (HJ OT>IQ dt.

J
0

Let us take H (eq. (19)) as integration variable and remark that for H< 0



8 E. PERSICO [466]

we must assume O(H)=0, because these particles have w, > a’/2. Then
equation (20) becomes

(21) - f BH)IpdH
0
where
a’l
22 —_
22) *=30"

We shall discuss later the factor g, for the moment let us call g a con-
venient average of ¢ and suppose that I is constant.
Then

(23) N=1I§— |PH)AH .

0

The integral represents the area between the curve of Fig. 4 and the horiz-
ontal line of ordinate «. It has been calculated numerically as a function of «
for different ¢, and is plotted in Fig. 5. Remark that these curves represent
universal functions, not depending on the parameters of the machine.

0.3t
0.2

[eD)]

Now, this diagram shows that the family of curves has an envelope on the
upper side. Therefore, for each value of « there exists a value of @, for which:
the number of captured particles is a maximum: it is the value belonging
to that curve, which is tangent to the envelope at the point of abscissa «.
So, if we call J(x) the ordinates of the envelope, the number of captured part-
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icles corresponding to the optimum @, 18

, -CT [a
24 M= 18 5 o)
or, using (22)

- a'T J(e)
24’ N . = Ip -
(247 i ® %6 =

.

Fig. 6.

9

The function J(«), numerically calculated, is given in Table I. The same
table gives also the optimum ¢, and U/w = cosec ¢, as functions of «. This
table enables one to find immediately the most convenient radiofrequency
voltage and the corresponding number of captured particles. For << 2 one
can also use the diagram (Fig. 6) where the functions J, ¢,, U/w are plotted

against «.
TasLE I.

o J (o) @4(0) Ulw
0.0 0.000

0.5 0.072 59.5° 1.16
1.0 0.234 46.0 1.39
1.5 0.447 36.8 1.67
2.0 0.687 30.6 1.96
2.5 0.952 26.3 2.26
3.0 1.24 23.1 2.55
3.5 1.55 20.4 2.87
4.0 1.87 18.4 3.17
4.5 2.20 16.6 3.50
5.0 2.53 15.1 3.84
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5. — Discussion of the Results.

To discuss the influence of various parameters on the number of captured
particles it is convenient to approximate the function J(x) by an empirical
formula. A good one is ’

(25) J (o) = 0.242at .

Then eq. (24’) becomes

R ot

- — 2\ 3 g’k
(26) . No.=0.11-IgT (M> ¢

In the case of an electrosynchrotron we can assume f ==~ 1; then we get

26 N oa1-757 [F ) 4P
( ) max —— Ve @ (E) ;% .

This formula can be written (expressing all lengths in cm)

]
N = 0.23-10-°Igk}(AR)* % ‘

The most interesting result contained in these formulae is the proportion-
ality of N__to k"%a'*%¢~%% It is, however, based on the assumption that the
«injection efficiency » o(t) is practically constant over inost of the injection time.

If the r.f. voltage U is not given its optimum value, the number of captured
particles decreases in a measure that can be easily calculated from the curves
of Fig. 5.

6. — Influence of the Injection Losse:s.

Let us now discuss the influence of the variation of the injection efficiency
o(t) during the injection time.

If the spiral pitch g is very small, a good deal of particles will be lost against
the deflector or the walls in the first two or three revolutions, while in the
subsequent revolutions these losses will be negligible. That means that the
integral in (21) represents now a sort of « weight » of the shaded area of Fig. 4
with a density which is << 1 in a strip near the upper border and almost =1
in the remaining part of the area.

This suggests dividing the injection time 6 in a first, short interval 0,,
(corresponding to the upper strip) in which ¢ < 1, while in the remaining inter-
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val 6 —0, it can be assumed ¢=1. The two parts may give comparable
contributions to the integral, because the low density corresponds to the wider
part of the area, that is, because the early injected particles have lesser be-
tatron amplitude and so are captured in a wider phase interval.

Putting

27) “=35—o%),

equation (21) becomes

-

N= ICO%YUQ(H) " —}—/(D(H)@dﬂl .

The first integral can be calculated be means of the curves of Fig. 5. The
second integral, in most cases, will extend over an interval of o in which the
curve of Fig. 4 is vertical, that is @ is constant. In such cases it will be

N I(Jgf(b(ﬂ) AH + I0,5,0 (),

]

where p, is now the average of o(t) during the interval 6,.

The determination of the optimum ¢, and of the corresponding N . must
be done in this case by trial and error.

This theory has been extended, by I. Solomon, to a strong focusing syn-
chrotron. The final formulae are the same, provided K and C are replaced by

K=1+i[ 1 1],

7 lag
C'——‘—“——‘t*‘i?__ .I.__e._(;,
V@ =1V 7k
where @ is defined by ’
&r_1dp
rooQp’

p being the momentum of the particle. -



