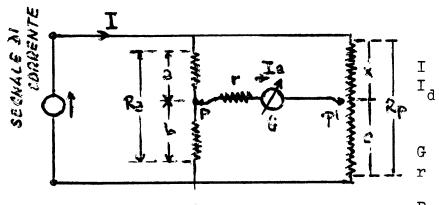
Laboratori Nazionali di Frascati


LNF - 54/8 11.3.1954.

F. Amman: SENSIBILITA' DEL GALVANOMETRO NECESSARIO PER IL RILIEVO DEI CAMPI COL METODO DEI FOGLI DI ALLUMINIO. -

SENSIBILITA' DEL GALVANOMETRO NECESSARIO PER IL RILIEVO
DEI CAMPI COL METODO DEI FOGLI DI ALLUMINIO .- =======

F. Amman

Il circuito di misura usato è il seguente:

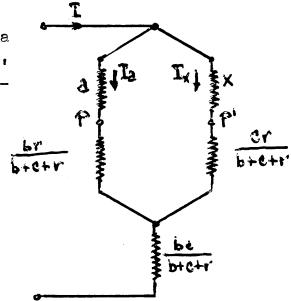
I corrente totale impressa
I_d, I_b, I_x, I_c, I_c correnti
 nei rami di resistenza d,
 b, c, x ed r

G galvanometro

r resistenza interna del galvanometro

R resistenza del foglio di ala luminio

R resistenza del potenziome-


 R_a è trascurabile rispetto a R_p ($R_p/R_a = 10^5 \div 10^6$)

Calcolo della Ig .-

Il circuito dato è equivalente al seguente (in cui al triango-

lo di lati b, c, r, è stata sostituita una stella): Bisogna ora determinare I_a e I_x ; in base a queste la tensione V_{PP} ; esistente tra i punti P e P' che, divisa per r, dà la corrente cercata I_g . $\frac{b r}{b+c+r} + a) I_a - (\frac{c r}{b+c+r} + x) I_x = 0$

$$\begin{cases} \left(\frac{b \cdot r}{b+c+r} + a\right) \cdot I_{a} - \left(\frac{c \cdot r}{b+c+r} + x\right) \cdot I_{x} = 0 & br \\ I_{a} + I_{x} = I & \\ I_{g} = \frac{V_{PP'}}{r} = \frac{I_{a} \cdot a - I_{x} \cdot x}{r} \end{cases}$$

Risolvendo il sistema e sostituendo nell'espæessione della \mathbf{I}_{σ} , si ottiene:

$$\Gamma_{\gamma} = \Gamma \frac{ca - bx}{(a+b+c+x)\left\{n + \frac{(d+x)(b+c)}{a+b+c+x}\right\}} = \Gamma \frac{ca - bx}{(R_a + R_p)\left\{r + R_{ja}\right\}} = \Gamma \frac{ca - bx}{\Delta}$$

 $R_{3a} = \frac{(4+x)(b+c)}{a+b+c+x}$ è la resistenza esterna al circuito del galvanometro quando la resistenza della sorgente fosse infinita (circuito aperto).

Nel caso nostro ($k_{\rm c} \ll k_{\rm p}$) si può scrivere

Si ha quindi in defintiva:

$$I_{3} z \widehat{1} \frac{a(R_{p}x) - bx}{(R_{0} + R_{p})\{r_{1}(R_{p} - x) \times A\}} = I \underbrace{a(R_{p} - x) - bx}_{\Delta}$$
All'equilibrio $a(R_{p} - x) = Bx$, quindi $I_{g} = 0$

Dando una variazione dx alla x, si avrà una corrente dI nel galvanometro che, trascurando, come è lecito, l'influenza della dx sul denominatore Δ , è data dalla relazione:

$$dI_{q} = -I \frac{(a+b)}{\Delta} dx = -I \frac{Ra}{\Delta} dx$$

Questa $\mathrm{d}\mathbf{I}_{\mathrm{g}}$, se \mathbf{K}_{d} è la costante amperometrica dellos strumento in A/mm, provoca uno spostamento nell'indice di 🗥 mm:

$$dI_g = K_d d\lambda$$

Uguagliando le due espressioni di dI_g , cambiando il segno della prima (segno che dipende solo dalle convenzioni scelte per variazione positiva o negativa di I_g nei confronti dello spostamento si ha: I Re dx = Ka SIX

Da cui, ricavando dx, dividendo per
$$R_p$$
 e ponendo $d\lambda = 1$ mm:
$$\frac{dx}{Rp} = \frac{Ra(A/mm)1(mm)}{I(A)} = \frac{Rp + (Rp - x)x}{Ra Rp}$$

Questa relazione dà la variazione di x relativa alla resistenza totale del potenziometro che provoca uno spostamento di 1 mm dell'indice del galvanometro.

Si può vedere che si ha un massimo nella dx/Rp (sensibilità minima), a parità delle costanti del galvanometro e della corrente I, per x = Rp/2 - 4 .-

La tabella seguente è calcolata per tale posizione più sfavorevole del cursore del potenziometro.

TIPO DEL	CAPATTERISTICHE DEL GALVANOM.					dx/Rp
GALVANOMETRO	X (/2)	Rer (A)	Ka (is #/im	Kr (41/Juni)	جر (١٤٧)	Rp=1000x Rp=100002
Cambridge 4/159/1	20	150	53	g	2	5×10"4 45×10"4
4 41:154/2	50	500	33	185	2	3,3×10-4 28×10-4
4 41759/3	450	14000	6	87	2	1,4×10-4 5,7×10-4
Kip entullen shuntdo	340	1500	0.17	04	7	0,034×10 4 0,16×10
ij 4 u non u	340	150000	0'02	4	7	4.004×10 0,019×10
Allocatio Backini 1501/1	10	150	15	2.4	7	1,3×10-4 12,5×10-9
11 4 1501/2	100	1500	5	8	7	0,53×10 4,35×101
u 4 1501/3	500	5000	3.5	193	7	0,27×10 4 3,5×10 4
M " 1501/5	3000	40000	0.4	17.2	14	0,43×10 4 0,74×10

Nota: Ky=Kax(X+Rer) deve Ror è la resistenza esterna di smorzzamento critico.-

Poichè, anche qualora si usasse un potenziometro a 5 decadi con Rp = 10000 ohm, si shunterebbe la prima decade, raggiungendos così Rp = 1.000 ohm, la resistentza del circuito esterno del galvanometro è variabile, secondo i punti del campa rilevato, tra 0 e 250 ohm. Si può quindi comprendere che la sensibilità, nominalmente lievemente maggiore, del Cambridge /3 nei confronti degli altri due /1 e /2, sarebbe assolutamente fallace, dato l'e norme smopzamento.

Tra il Cambridge /l e quello /2, sentito anche il parare dell'ing. Dadda, mi è sembrato meglio scegliere il /l.

Si avrà così a disposizione un galvanometro ad altissima sensibilità, il Kipp & Zonen, da usarsi su circuiti esterni con alta resistenza (campo tra i 1.500 ed i 150.000 ohm) ed un altro, con necessariamente minore sensibilità, il Cambridge 41.159/1, da usarsi su circuiti esterni con bassa resistenza.

ll Febbraio 1954

F. Amman