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Summary. — A simple formalism is developed for the study of a strong-
focusing accelerator of arbitrary geometry. It is shown to yield readily
the necessary and sufficient conditions for stability and for periodicity
(with any preseribed period) of the orbits. C(riteria are also given which
allow the determination of the range of initial conditions for which the
orbits are stable.

1. — We consider an accelerator consisting of circular sectors which, for a
given mode of motion, act as focusing (fs) or defocusing (dfs) and of straight
ficld-free sectors (IYs) disposed according to some periodic pattern which we
need not specify. The behaviour of an accelerator of thys type (*) has been
studied till now only for some special patterns and with methods which do
not easily allow an understanding of its general properties. In particular,
the effects of ffs’s have been counsidered as perturbations, while, as we shall
show, it is possible to treat them, quite simply, on the same footing as the
fs’s and dfs’s. ’

Our treatment is valid as far as it is legitimate to adopt, for the description
of the particle motion, the customary lincarized equations for the vertical
and radial displacements from the stable orbit, in the adiabatic approximation.
Arguments in support of this procedure are given in the preceding work (3),

(*) This work has been performed at the University of Rome.
(M) E. Couraxt. 5. Lavincestoy and H. SxyYper: Phys. Rer.. 88, 1190 (1952).
(3) E. R. CAlANIELLO: Nuworvo Cimento, 10, 381 (1953).




STABILITY AND PERIOGDICITY IN THE S'H{()Nq:-vl-‘(‘.(‘,l,’.\IN(l ACCLELERATOR 595

where the effects of non-linearity of the tield are estimated to he unimportant
in comparison with those arising from imperfect construetion of the machine,

We study two separate questions:

1) the conditions under which stebility (i.e. houndeduvess within the
chamber walls) 15 guarantied for all the orbits of a given bundle;

2) the conditions which must be fulfilled in order that the orbits be
periodie after traversing an arbitrary number of scetors. We shall find here,
as a particular case, the well known periodicity after eight sections.

Only 1) is important if we restrict ourselves to the case of an «ideal»
machine, as we do throughout this work. Kuoowledge of 2) becomes, however,
important when considering the actual cuase, in which one wants to estimate
the tolerances of the machine, and needs kuow whether small systematie per-
turbations are enhanced by resonances or not. This question is treated in
detail in a very interesting work by SANDx and TOURCHEKR (¥).

We consider only the vertical motion; everything we say applies also to
the case of radial motion, due to the large value of the ficld gradient (n).
We take [#] constant in all fs's and dfs’s: sce, however, Part. 8:2).

2:1. — If z denotes the vertical displacement from the stable orbit, I the
adius of this orbit, {nf the magnitude of the tield gradient, the standard

linearized cquationus for z are:

in a fs:

1 O

(1) Ay =
in a dfs:

2 L 0

(2) 2 s =0

The derivative is taken with respect to the are length [ = Rg.  (Comparison
of (1) and (2) with formula (10) of ref. (*), from which they can be imme-
diately derived, gives an idea of the- approximation whicli is made by neg-
lecting non-linearities of the ficld: 23 ~ {n'/ I?).

Introduce now the two-compounent vecetor:

{there is actually no particular reason for choosing the cocflicient of 2" in this

fashien: nothing would be changed in the sequel by taking a different coct-

4y 3L Saxps and B. Tovsenex: Nvoro Cimento. 10, 604 (14933).
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ficient, except the discussion of Part 3°1, which should have to be modi-
fied in an obvious manner). If z, denotes the value o’ % at entry of a section,
one sees immediately from (1) and (2) that the value at exit of that section
is given by :

cos Vind l sin Ving l
(3 (L) I (L) SR kT
3) z=I.(,)s with () = — S

o sin VIl ey VN,

‘ I

for a fs of length I, and by
V ,(‘0’11 \/:_nﬁl sinh x/}_ﬁf l
(4) () 1 I TR N
- =z = 1 (I_)z, with () = _— —
B sinh Vin] l cosh Vil l
R E -

for a dfs of length I_. Tt is also readily verified that, at exit of a fis of
length 1,

s = Iy(ly)s,  with Ly(ly) = k
0 1

A convenient property of these matrices is that
(5) det I, = det . = det ['y= + 1.

If the particle enters a sequence of sectors, sy, dfs + ifs + fs + i/, it exits

from it with

s = Pu(l‘;) 1~+;(1+)1-'0(10)11—(1—):0 .

The effect of crossing any number of sectors of various types is always de-
scribed by a matrix which is the product (from right to left) of the matrices
corresponding to the crossed sectors (from left to right).

The machine is a periodic structure, in which any given type of sector
reappears again and again. We can consider it therefore as composed of con-
secntive identical «units », calling by this name the smallest set of contiguous
seetors which can he regarded as the periodic clement.

We leave, otherwise, completely arbitrary the number and type of sectors
which, together, form the unit of the machine. We know from the preceding

)

considerations that the unit is characterized bv a 2 x2 matrix 4 with real
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elements, such that = = Az, is the exit value of = for a particle which has
entered the unit with z == s5,. This is all we need to discuss most of the
properties of the aceelerator.

2°2. — Cull 2 the spur of the matrix «I. Since 4 is a product of matrices
I'o, I'_, I,, it follows from (3) that also det 4 = + 1. The characteristic
equation of A is therefore:
(6) AP—20A+1=0.
Consider the roots 4,, 4, of (6). Three cuses are possible:
1) 7, and 2, are complex conjugate, therefore of the form

(7) fo=10", A=, ¢ #E=kx, T=cosqg.

'

The conditions for this to happen is 'x{<C1.

2y =2 real: =1 1if =1, =—1if «=—1.

3) 2, %= A, both real. This happens if 'w!> 1.

The following theorem holds (for the proof, sece App. I): The nceessary
and suflicient condition for the existence of stable orbits is [xi<<1, i.e. that (6)
have cowmplex conjugate roots. The following corollary is then immediate:
A nceessary condition for stability is that A be not symmetric (or else, /1 being
in this case Hermitean because of its reality, its eigenvalues would be real).

The stated theorem tells whether the machine allows stable orbits or not;
it does not suflice, however, to delimit the bundle of orbits which are actually
stable.  (In other words, the initiul conditions for which a particle, injected
into the (ideal) machine, does remain at all times within the vacuum chamber).
Information on this point, which is clearly of importance, can be had if one
knows:

a) number, type and orvdering of the sectors which together form the
unit (smallest periodic element of tife machine), in ovder to determine the
maxinmum value that = can reach within the unit, for given initial conditions.
This maximum depends upon the geometry of the unit.  We outline in
Part 81, the general procedure by treating in detaail simple example.

b) the maximum value that s can veach after crossing an arbitrarily
Iaree number of sectors. This equation is treated in the next section.

2:3. = The only situation of interest is that described by (7). The discussion
is facilitated Ly observing that -1 can be decomposed as follows:

(3) d = cosqg = Jsing




(where .J — which has, elearly, spur zero — c:

as (4 — cos ¢)/sin ¢).
J has the remarkable property that:

(9) : Jr==— |
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ul be immediately constructed

(this can be veritied by using the fact that 4 must obey the same characteristic
equation (6) as its eigenvalues; the same result is derived in App. I from a

more pedestrian point of view).

As a consequence of (9), we can evaluate

any power of 4 as if A4 were a complex number:

(10) Am =

We can now answer question b) of the preceding section.

3
/ \\
Fie. 1. — Numerical data corresponding to the
i v . T
figure: nl=5-10%; I = 10 em; — "1 oo 7 s
‘ i 2
Viz L= 2244100 em. Ly = 410 e, viz b =
= 284 10-1: it follows 20 =0 — 1,586,
1 (2.21 l,m;s)
0613430885 —221)°
1
Iz, = ( —_ 1
i on - 1\‘—2,/
it follows 3, = 1.75¢m: Ay 12,8 e By 1090,

In this nunerieal and graphical example, the great

semiaxis dider in magnitude and direction very

lede frome,. 11 ois not represented in the ficure
for the sake of clearness.

€™ = cosmy + J sin meq .

Write me =
and consider, in the plane
spanned by =z, the curve of

equation:

11 5 = cos I3, + sin ¥t, ,
I

where t, = Jz, (tig. 1). This
is the equation of an ellipse,
of which =, and ¢, are two
conjugate semidiameters. The
explicit knowledge of J per-
mits one  to  deduce, with
simple conside-
rations leave to
the reader, direction and ma-
gnitude of the great semiuxis
as o function of s, [rom
which the wanted information

We may

geometrical
which we

is readily gathered.
Just mention here that, once
z, and ¢, are given, a stan-
dard  construction  due  to
Chasles permits one to solve
this problem graphically (see
any textbook on projective
geometry): also, if one is in-
terested only in the maeni-
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tude of the semiaxes, the following construction sutlices (it is an immediate
consequence of Apollonius’ theorems on conies): let « and & be the magni-
tudes of the semiaxes, §, the angle between s, and g,: draw the parallelogram
with sides of length 'z,| and !¢, the angle between these two sides being
taken = (7/2) — 4,: the two diagonals of this parallelogram have length a=-b
and a — b respeetively.

One sees from (10) that, for arbitrary m and a stable orbit, all points Az,
“lie on the cllipse (11). The following theorem is also evident:
The neeessary and sufficient condition for all bounded orbits to hare a period

of m o wunits iy ™= 4+ 1, ie.: from (7) and (10)):
R :I\ 2/; .
(12) ¢ = --, —— = mteger ,
m m

which gives distinet roots only for 0 << 2L <Zm. If m is not a prime one finds,
of course, also the periodicity conditions relative to its prime factors: thus,
for m = 6, one tinds ¢, = /3 and ¢, = 23/3, the sccond being the periodi-
city condition for m = 3. Periodicity is forbidden for n = 1 (see App. I),
and then also for n = 2,
Assumie now that one wants to build & machine such that all orbits have

a period of m (and not less than m):

1) a value of @ must be obtained from (12) which secures this periodicity
{and not less). This sets one condition on the geometry of the unit. by
fixing @ = (Jy, + )2 = cosg¢;

2) a second condition is given by assiguing the total number of fs, dfs

and ffs contained in the machine.

These two condition may or may not suflice to determine uniquely the
geometry. A very simple pattern is that corresponding to a unit dfs -+ fIs - fs+-
-+ s, with the dfs and fs having both length L, and the ITs’s having all length
Ly,. The two stated conditions sullice in this case to determine uniquely
the geometry, i.e. the values of L and L,. 4 is given in this case, from

(3)-(3), by (writing: cos(V in+ B)L=a, cosh (V0 RYL= ', (N 0 BYLy = b,
b=V1—at b= Va1

Ay = —0bh*-E= (2ab’ - ba'ih < (aa’ -+ bb')
dpp == = b R4 (2aa’ - LY - (b - ba)
Adoy= —bb'h - (@b —-bua')
Aaw = - bl = (i’ — bb7)

and

20 = = b I 2(abt — b Y == 2aal .
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We record in App. II, for possible future reference, some formulae which give

an alternative expression of Am,

3'1. - We study here in detail a very simple example which shows clearly

the role of the fs’s and dfs’s and indicates the procedure

to answer question a) of 22,

to follow in general

Consider the unit as composed only of one (fs of lIength L and one fs of

length (:z/;‘)(]n’;’v/szg‘), 50 that

' Voul I - VinlL
- eosh T sinh - ..
AR\ 0T 1 It
d =1 (== ) :( ) - —
AN e — 1 0 . \/?n;L \/{nfL
o sinh cosh —— =
\ i v ’
One finds immediately that 42 — _ y tegardless of the value of L. Periodi-

City occurs therefore after four units, i.e. cight sectors.

We want to detep-

mine the initial conditions for which a particle remains bounded in the vacuum

chamber,

Call d the half-aperture of the dfs. Soundedness requives that 1z|< d in

the dfs.  Assume that

. , | Rz |
(13) |20 =< &, P <
Vo
Nince
VL

sinh ——
I

y

one finds the condition

. d
(]!) TS — ~\~__\ -
Nint g, . Vo L
cosh ——-—" o gy 115
R v
In the next fs, from (3):
(15) G d(Ceos @y sin g ) Ve,

A ( 1 Via L ~ sinh \/'T”TL)
cleosh ———— o giph S0 K
—— < osh —5 sin 7 ’

L

I the fs has a half aperture ) >V q, all the orbits (13), (14) remain bounded
(clearly, once boundedness is insured in .- it is insured throughout, since,
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Lere, * = — 1). The role of the dfs is to fix & by means of (14); thus on
finds, with 4. D V2.

Vin L = Lo
T s’
3 i d
» - —- R
1 10.5
d
S b= gaq-

3'2. — We add a few final remarks to the preceding considerations.

1) It is possible to deseribe by means of matrices of type I also the
sectors in which an eleetrie field is applied to aecelerate the particles.  The
net action of these sectors would immediately show up, by doing so, as a
damnping effect.  We forego this discussion, since stability should be secured
independently of the existence of accelerating fields.

2) It is not essential to the preceding treatment that the magnetie tield
gradient | have the same value for all fs’s and dfs's. The generalization
would be quite immediate, consisting essentially in slight changes in notation.

Also, it is not essential that det =1, det 4 = 1.

3) The example considered in the previous section shows that the dfs's
might bLe given, in prineciple, an aperture 2d smaller than that 20 of the fs's
the ratio Did depending upon the geometry of the muachine,

4) From (3), (4) and (3) one readily eathers that the matrices J can
be given a simple geometrical interpretation in the pline of fig. 1. 17.(1,)
rotates the vector z, by an angle Vi nf!,/]f in the positive direction, the
maximum value of & in the fs being given by the maximum 2 reached in the
rotation. I (1) causes the end point of 5 to move along a hyperbola (a simple
construction could be likewise found); Iy(l,) adds to =, = {z0, J{::,j"\/i n}
the vector {f,5,, 0} .\ detailed study of this fact, in conjunetion with the
considerations made with regard to tig. 1, would afford a quite simple means
of determining graphically the trajectory of a particle entering the vacuun
chamber with given initial conditions.

In conclusion, the authors wish to thank Prof. I3, AMALDI for his constant
encouragement in this work, and him, Drs. M. Saxps and B. Tovscues, for

many interesting discussions.
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ArrExDIX I.

Proof of Theorem of 2:.

We start by considering case 3): 4, %4 1, = 1/4,, both real. Let u, and u,
denote the {real) vigenvectors of .1 Any vector s can be expressed as a linear
combination of e, and u,:

It follows:

L
mzy = 4 /‘mll N A 1]
I O 2 i U
“1

which proves the theorem in this case.
Consider now case 2): A4y = A, = -+ 1, for v = = 1. Two cases are pos-
sihle: «) 1 i3 not symmetrie: then iv can be reduced, by transformation with

. . , 41 1 . . .
a suitable matrix, at most to the form (*” ; 1) , from which one readily

sees That the theorens is again true; b) 1 is symmetrie and ean be reduced there-
fore to the form 2 1. It is not possible to discard this case a priori by considering
exclusively the behaviour of the ideal machine.  The argument that leads to
its rejection is that the condition .« == 41 is very eritic, because small de-
viations from this value due to the unavoidable imperfections of the actual
machine might lead to instability (cuse (3)). See also ref. (3).

To stwdy case 1): A == 2, = ¢, r == ¢03 ¢ 2= - 1, we express again z as
a Lo of the eigenvectors u and u (with complex coefficients): then

S5 =l + % Uu,

A"z = xexp [implu + xexp-— imgla = cos mgs -+ sin mgt ,

with:

. - A cos . X
t == i(x1e-— 2xu) == —— f s (from the above, for m == 1);
s q

i

setting J = (L1 — cos ¢ )/sin g, comparison of
A= cos mg - sin mep

with the analogous expression for complex numbers, shows that J2= — 1.
(This method of proof could be applied also tu ease 3), but we need not insist
on this point),
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AvreExpIx IT.

Alternative study of .Am =1 for Jr|-<1.

Write
vo== 20 =2cosg.
From:
i L ‘;'-,] L 1=0,

one finds by recursion:
'P,;,_‘(‘}/)'J“—— P, sy} P»n—x(}')jl:
\P""‘(;')Jil l)m——l(;')‘ ‘:z - I’m——‘_‘(:”)

Ay =
where

Puy) =1,
i) o=y

Do) = 3 Por()— Prsly) = 0 1 3 1 ... 0,

/

S S
the determinant being  of order m.  The condition tfor periodicity after m
units dm== -2 1 1is
PLi) =0, Po_.) 1= 0.

The roots common to these two equations ean be shown to be all and only
the roots of:
(m = :.’[\) ])k—x(}’) = ()
(m == 2k + 1) P () + Puly) = 0.

They coincide with (12), as is scen from the relation:

sin (kb -- Ly
P2 cosq) = (Sih (; s .

RIARSUNTO

Viene indieato un semplice metodo per o studio delle proprictiu di un aceeleratore

A« foealizznzione forte » di strutiura arbitraria, St mostra come da esso derivino pron-
tamente e eondizioni necessarie ¢ suliicionti per la stabilitd o per la periodicita (eon
<i danno intine eriteri che consentono di

pericdo  asseeiato a pineere) dele orbite.
v dei quali le orbite ri=ultino

determinare it campo dei valori iniziali in corrispomdenz:

~tabili.

Gt ™



