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Abstract

The response of RPC detectors is highly sensitive to environmental parameters. A novel
approach is presented to model the response of RPC detectorsin a variety of experimental
conditions. The algorithm, based on Artificial Neural Networks, has been developed and
tested on the CMS RPC gas gain monitoring system during commissioning.
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1 Introduction

Resistive Plate Counters (RPC) detectors [1] are widely used in HEP experiments for

muon detection and triggering at high-energy, high-luminosity hadron colliders, in as-

troparticle physics experiments for the detection of extended air showers, as well as in

medical and imaging applications. At the LHC, the muon system of the CMS experiment

[2]relies on Drift Tubes (DT), Cathode Strip Chambers (CSC)and RPCs [3] for the muon

trigger system, with a total gas volume of about 50 m3.

The constituent elements of RPCs are two parallel electrode, high-resistivity bake-

lite plates between which, in a 2 mm gap, a gas mixture at ordinary pressure is circulated.

A 9.0-10.0 kV voltage drop is applied between plates. RPC usefluorine-based gas mix-

ture whose main component is Freon. Due to the large gas volume and high costs, the

RPC detector in CMS uses a recirculation gas system (”ClosedLoop”) with gas purifiers.

The absence of gas contaminants is of paramount importance in all gas detectors,

and especially in RPC detectors due to the high reactivity ofthe F-based gas mixture used

[4] [5]. The operation of the CMS RPC system is strictly correlated to the ratio of the gas

components, and to the presence of pollutants that can be produced inside the gaps during

discharges (i.e. HF produced by SF6 or C2H2F4 molecular break-up and further fluorine

recombination), accumulated in the closed-loop, or by pollution that can be present in

the gas piping system (tubes, valves, filters, bubblers, etc.) and flushed into the gaps by

the gas flow. The monitoring of the presence of these contaminants, as well as the gas

mixture stability, is therefore mandatory to avoid RPC damage and to ensure their correct

functionality.

The response of RPC’s is, however, strongly dependent on environmental param-

eters as temperature, pressure and relative humidity, as well as on other operational pa-

rameters typical of the application chosen, such as radiation dose. The dependence of

RPC response from environmental parameters has been studied in the past [6] and several

parameterizations have been proposed.

In this paper a new approach is proposed to model the responseof RPC detector

via a multivariate strategy. The algorithm, based on Artificial Neural Networks (ANN),

allows one to predict the response of RPC’s as a function of a set of parameters, once

enough data is available to provide a training to the ANN. As initial stage, environmental

parameters (temperatureT , atmosferic pressurep and relative humidityH) have been

considered. Further studies including radiation dose are underway and will be subject of

a forthcoming paper.

The data for this study have been collected utilizing the gasgain monitoring (GGM)

system [7][8][9] of the CMS RPC muon detector, during commissioning with cosmic
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rays.

This paper is organized as follows. In Sect.2 the GGM is described, while the main

features of the ANN-based algorithm are described in Sect.4. Datasets used are discussed

in Sect.3, while in Sect.5 results are presented.

2 The Gas Gain Monitoring system as online calibration system

The GGM system monitors efficiency and signal charge continuously by means of a cos-

mic ray telescope based on RPC detectors. The GGM is described in details elsewhere

[7][8][9].

The GGM system is composed by the same type of RPC used in the CMS detector

but of smaller size (2 mm-thick Bakelite gaps, 50×50 cm2).Twelve gaps are arranged in a

stack. The trigger is provided by four out of twelve gaps of the stack, while the remaining

eight gaps are used to monitor the working point stability. A3/4 majority coincidence is

required to acquire the cosmic ray event.

In standard CMS operation the eight gaps are arranged in three sub-system: one sub-

system (two gaps) is operated with the fresh CMS mixture. Thesecond sub-system (three

gaps) is operated with CMS gas coming from the closed-loop gas system and extracted

before the gas purifiers, while the third sub-system (three gaps) is operated with CMS gas

extracted from the closed-loop after the gas purifiers. A fraction of the eight gaps work in

pure avalanche mode, while the remaining will be operated inavalanche+streamer mode.

Comparison of signal charge distributions and the ratio of the avalanche to streamer com-

ponents of the ADC provides a monitoring of the stability of working point for changes

due to gas mixture variations.

In this study, the GGM was operated in open loop mode with freon 95.5%, isobu-

tane 4.2%, SF6 0.3% gas mixture. Six gaps out of eight were used. The monitoring is

performed by measuring the charge distributions of each chamber. The six gaps are oper-

ated at different high voltages, fixed for each chamber, in order to monitor the total range

of operating modes of the gaps (Tab. 1). The operation mode ofthe RPC changes as a

function of the voltage applied.

Table 1: Applied high voltage power supplies for GGM RPC detectors used in this study.

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8
Applied high voltage (kV) 10.2 9.8 10.0 N/A N/A 10.4 10.2 10.4
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3 Environmental parameters and Datasets

The experimental setup is shown in Fig. 1 and Fig. 2. The environmental parameters

are monitored by an Oregon Scientific weather station WMR100. The WMR100 has

relative humidity, pressure and temperature built-in sensors in the main station and the

possibility to add remote wireless sensors for both temperature and relative humidity. The

DAQ has been modified in order to acquire via USB the environmental informations and

merge environmental parameters with performance detectorparameters such as efficiency,

average anodic charge and avalanche and streamer area. The accuracy of the temperature

sensor±1oC in the range0 − 40oC and the resolution is0.1oC. The relative humidity

sensor has an operating range from 2% to 98% with a 1% resolution, ±7% absolute

accuracy from25% to40%, and±5% from 40% to80%. The barometer operational range

is between 700 mbar and 1050 mbar with a 1 mbar resolution and a±10 mbar accuracy.

The online monitoring system records the ambient temperature, pressure and humidity of

the GGM box, as well as the gas mixture temperature before andafter each RPC gap, also

the pressure and the relative humidity are monitored and recorded both inside the box that

contains the RPC stack and in the gas mixture before and aftereach gap. The dataset

used is composed of four periods, each period composed of runs. Each run contains104

cosmic ray events where environmental parameters and GGM anodic output charges are

collected. The acquisition rate is typically 9.5 Hz. Tab.2 shows features of the three

periods.

Table 2: Periods summary table.

Periods Number of runs Timeline Environmental range
Start Finish temperature (◦C) relative humidity (%) pressure (mbar)

1 396 01/09/08 26/09/08 16.5-20.5 35-70 953-970
2 86 27/09/08 01/10/08 16.5-20.5 35-55 962-973
3 460 01/10/08 17/10/08 16.5-22.0 32-60 958-980
4 92 27/10/08 1/11/08 18.5-20.0 35-45 944-960

4 The Artificial Neural Network simulation code

An Artificial Neural Network (ANN) is an information processing paradigm that is in-

spired by the way biological nervous systems, such as the brain, process information

[10]. An ANN is configured for a specific application, such as pattern recognition or data

classification, through a learning process. The commonest type of artificial neural net-

work consists of three groups, or layers, of units: a layer ofinput units is connected to a

layer of hidden units, which is connected to a layer of outputunit as shown in Fig. 3.
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Figure 1: Gas Gain Monitoring system setup.

Figure 2: Layout of GGM experimental setup.
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Figure 3: Example of a simple Neural Network configuration.

The activity of the input units represents the raw information that is fed into the

network. The activity of each hidden unit is determined by the activities of the input units

and the weights on the connections between the input and the hidden units. The behavior

of the output units depends on the activity of the hidden units and the weights between

the hidden and output units. For this study temperature, humidity and pressure have been

selected as inputs and anodic charge as output. For the ANN anerror back-propagation

pattern with 3 hidden layers. It was demonstrated [11] that the number of layers is not

critical for the network performance, so we decided to go with 3 layers and give to the

neural network a sufficient number of hidden units automatically optimized by a genetic

algorithm that can take into account several configuration.

For each configuration, in each layer there are a number of neurons between 2 and

12, the genetic algorithm performs the training process with an estimation of the global

error; then the configuration is stored and the genetic algorithm continues to evaluate a

slightly different configuration. Once the algorithm has taken into account all the possible

configurations the best one in terms of global error is chosen. The error is calculated

point by point just with the comparison between the neural network forecast and the

experimental data.

During the training phase the network is taught with environmental data as input,

the output depends on the neuronal weights, that at the very beginning are initialized with

random numbers. The network output is compared with the experimental data we want

to model, and in this phase the network has an estimation of the error, the error itself is

back-propagated into the network in order to modify the weights to minimize the error.

Once the training is complete the network’s weights are optimized to have the min-

imum error for the chosen network pattern, the genetic algorithm goes on considering

several configuration in an automatic way and the really optimal network along with its

structure is returned. Such a network is ready to be executedin a non taught period, with

different input data.
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5 Results

Typical simulation outputs show generally good agreement between data and prediction

Fig. 4. In periods where prediction is not accurate, the discrepancy is typically concen-

trated in narrow regions (”spikes”) as shown in Fig. 5.

Figure 4: Gap 7 trained on period3 - prevision on period3.

Figure 5: Gap 8 trained on period1 - prevision on period1.

The overall agreement between data and prediction is shown in Figs. 6,7 where the

quantity
∆Q

Q
≡

QEXP − QPRED

QEXP

(1)
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is plotted as a function of the experimental points for all four periods, divided for training

and prediction respectively. The error distribution for the predictions is much wider than

for the training as expected (Fig. 8).

The distribution of the error for the predictions shows aσfwhm ∼ 7% whereσfwhm ≡

Γfwhm/2.36 width with very long tails, due to points with very large discrepancy between

data and prediction. The cases with very large discrepancy were studied in detail, and

found to be characterized by a(p, T, H) value at the edges of the parameter space. Fig. 9

shows the correlation between (p,T,H) and error.

To quantify the position of each point in the(p, T, H) parameter space, the centroid

of the distribution of runs in the(p, T, H) parameter space

Ci ≡

∑

i=1,N xi

N
; x ≡ (p, T, H) (2)

and the norm‖x‖ the distance of each run to the centroid

‖x‖ ≡

√

∑

j=1,3

(xj − Cj)2 (3)

were computed. The distribution of the∆Q

Q
error as a function of the norm‖x‖ (Fig. 10)

shows three distinct structures. The satellite bands with very large error were studied

in detail. All data point in such bands belong to period four and channel six for which

problems were detected. Period four and channel six therefore were excluded by the

analysis. The distribution of the error as a function ofrb after this selection is shown in

Fig. 11, with aσfwhm ∼ 4% width and nongaussian tails extending up to∆Q

Q
= 200%.

A selection on the fiducial volume in thex parameter space (Tab. 3) was applied in

order to avoid runs on the boundaries of the(p, T, H) space. After the selection cuts, pre-

dictions on two periods based on training on the third periodwere performed. Results are

shown in Fig. 13 to Fig. 21. The selection cuts provideσfwhm ∼ 5% error, as summarized

in Tab.4.

Table 3: Synopsis of selection cuts for fiducial volume.

(958 < p < 968)mbar (19.4 < T < 20.4)oC (34 < H < 44)%

6 Conclusions

A new approach based on ANN in modeling the response of RPC detectors was pre-

sented, and preliminary results obtained with data from theCMS RPC GGM system were
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Figure 6: Distribution of error for training for all runs.

Figure 7: Distribution of error for predictions for all runs.
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Figure 8: Error for training (left) and prediction (right) for all runs. Gaussian fit superim-
posed.
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Figure 9: (Top) pressure (center) temperature (bottom) humidity versus error.∆Q

Q
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Figure 10: Distribution of error as a function of the‖x‖ norm for all runs, six chambers
and both training and prediction.

Figure 11: Error∆Q

Q
vs norm‖x‖ after selection cuts.
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Figure 12: Distribution of errors for all norms‖x‖. Gaussian fit superimposed, showing
large nongaussian tails.

Figure 13: Period 1 training, prediction on periods 2 and 3.
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Figure 14: Period 1 training, prediction on periods 2 and 3, fiducial selection.
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  175.2    /    55
Constant   79.69   4.149
Mean   .1545   .1532
Sigma   4.456   .1721

Figure 15: Period 1 training, prediction on periods 2 and 3, (left) no cuts, (right) fiducial
cut, gaussian fit superimposed.

Figure 16: Period 2 training, prediction on periods 3 and 1.
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Figure 17: Period 2 training, prediction on periods 3 and 1, fiducial selection.
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Figure 18: Period 2 training, prediction on periods 3 and 1, (left) no cuts, (right) fiducial
cut, gaussian fit superimposed.

Figure 19: Period 3 training, prediction on periods 1 and 2.
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Figure 20: Period 3 training, prediction on periods 1 and 2, fiducial selection.
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Figure 21: Period 3, prediction on periods 1 and 2, (left) no cuts, (right) fiducial cut,
gaussian fit superimposed.
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Table 4: Summary of errorsσfwhm and nongaussian tails for various selection cuts and
samples.

Data sets ∆Q

Q

All six chambers, all four periods training 2.7 ± 0.1
All six chambers, all four periods prediction 6.7 ± 0.1
Chamber six and period four excluded prediction 3.0 ± 0.1
Prediction on periods 2 and 3, training on period 1 4.0 ± 0.2
Prediction on periods 3 and 1, training on period 2 3.4 ± 0.2
Prediction on periods 1 and 2, training on period 3 3.8 ± 0.2
Prediction on periods 2 and 3, training on period 1, fiducial cuts 3.7 ± 0.3
Prediction on periods 3 and 1, training on period 2, fiducial cuts 2.9 ± 0.1
Prediction on periods 1 and 2, training on period 3, fiducial cuts 3.3 ± 0.2

described. The model, once trained on the response of a detector well within the param-

eter space(p, T, H), is able to predict the response in other periods with a better than

σfwhm ∼ 10% accuracy. Further studies are in progress to determine and cure the resid-

ual nongaussian tails of the∆Q

Q
errors distributions, to deal with training and prediction

on detectors with different high voltage supply, to widen the sample of environmental

conditions, and in adding new dimensions to the parameter space such as radiation levels.
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