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Abstract

The response of RPC detectors is highly sensitive to enviesrial parameters. A novel
approach is presented to model the response of RPC detectovariety of experimental
conditions. The algorithm, based on Artificial Neural Netis) has been developed and
tested on the CMS RPC gas gain monitoring system during cesioming.
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1 Introduction

Resistive Plate Counters (RPC) detectors [1] are widelyl useHEP experiments for
muon detection and triggering at high-energy, high-lumsityohadron colliders, in as-
troparticle physics experiments for the detection of edéghair showers, as well as in
medical and imaging applications. At the LHC, the muon systéthe CMS experiment
[2]relies on Drift Tubes (DT), Cathode Strip Chambers (C&aj RPCs [3] for the muon
trigger system, with a total gas volume of about 50 m

The constituent elements of RPCs are two parallel electtuda-resistivity bake-
lite plates between which, in a 2 mm gap, a gas mixture at ardipressure is circulated.
A 9.0-10.0 kV voltage drop is applied between plates. RPCfluseine-based gas mix-
ture whose main component is Freon. Due to the large gas woblmd high costs, the
RPC detector in CMS uses a recirculation gas system ("Clbseg”) with gas purifiers.

The absence of gas contaminants is of paramount importaraégas detectors,
and especially in RPC detectors due to the high reactivith@fF-based gas mixture used
[4] [5]. The operation of the CMS RPC system is strictly ctated to the ratio of the gas
components, and to the presence of pollutants that can beged inside the gaps during
discharges (i.e. HF produced by Sér C,HsF, molecular break-up and further fluorine
recombination), accumulated in the closed-loop, or byytigh that can be present in
the gas piping system (tubes, valves, filters, bubblers) atwd flushed into the gaps by
the gas flow. The monitoring of the presence of these contamsnas well as the gas
mixture stability, is therefore mandatory to avoid RPC dgeand to ensure their correct
functionality.

The response of RPC’s is, however, strongly dependent onoamvental param-
eters as temperature, pressure and relative humidity, bh&sven other operational pa-
rameters typical of the application chosen, such as radiatose. The dependence of
RPC response from environmental parameters has beendindie past [6] and several
parameterizations have been proposed.

In this paper a new approach is proposed to model the respérRBC detector
via a multivariate strategy. The algorithm, based on ArtfitNeural Networks (ANN),
allows one to predict the response of RPC’s as a function @ft afsparameters, once
enough data is available to provide a training to the ANN.#gal stage, environmental
parameters (temperatuil@ atmosferic pressurg and relative humidity//) have been
considered. Further studies including radiation dose adewvay and will be subject of
a forthcoming paper.

The data for this study have been collected utilizing theggéis monitoring (GGM)
system [7][8][9] of the CMS RPC muon detector, during consiuring with cosmic



rays.

This paper is organized as follows. In Sect.2 the GGM is dlesdr while the main
features of the ANN-based algorithm are described in Sebdasets used are discussed
in Sect.3, while in Sect.5 results are presented.

2 The Gas Gain Monitoring system as online calibration systa

The GGM system monitors efficiency and signal charge coatisly by means of a cos-
mic ray telescope based on RPC detectors. The GGM is deddrilietails elsewhere
[71[81[9].

The GGM system is composed by the same type of RPC used in ti&edetéctor
but of smaller size (2 mm-thick Bakelite gaps 880 cnt). Twelve gaps are arranged in a
stack. The trigger is provided by four out of twelve gaps efskack, while the remaining
eight gaps are used to monitor the working point stabilityd3/A majority coincidence is
required to acquire the cosmic ray event.

In standard CMS operation the eight gaps are arranged i@ site system: one sub-
system (two gaps) is operated with the fresh CMS mixture.sHwend sub-system (three
gaps) is operated with CMS gas coming from the closed-logpsgatem and extracted
before the gas purifiers, while the third sub-system (thegesyis operated with CMS gas
extracted from the closed-loop after the gas purifiers. Atioa of the eight gaps work in
pure avalanche mode, while the remaining will be operateatanche+streamer mode.
Comparison of signal charge distributions and the ratitvefavalanche to streamer com-
ponents of the ADC provides a monitoring of the stability afrking point for changes
due to gas mixture variations.

In this study, the GGM was operated in open loop mode withrfr@.5%, isobu-
tane 4.2%, SF0.3% gas mixture. Six gaps out of eight were used. The mongas
performed by measuring the charge distributions of eacmblea The six gaps are oper-
ated at different high voltages, fixed for each chamber, deoto monitor the total range
of operating modes of the gaps (Tab. 1). The operation modleeoRPC changes as a
function of the voltage applied.

Table 1: Applied high voltage power supplies for GGM RPC detes used in this study.

CHL| CH2 | CH3| CH4 | CH5 | CH6 | CH7 | CH8
Applied high voltage (kV)| 10.2| 9.8 | 10.0| N/A | N/A | 10.4 | 10.2 | 10.4




3 Environmental parameters and Datasets

The experimental setup is shown in Fig. 1 and Fig. 2. The enwental parameters
are monitored by an Oregon Scientific weather station WMR108e WMR100 has
relative humidity, pressure and temperature built-in een# the main station and the
possibility to add remote wireless sensors for both tempegand relative humidity. The
DAQ has been modified in order to acquire via USB the envirantaienformations and
merge environmental parameters with performance detpatameters such as efficiency,
average anodic charge and avalanche and streamer areacClinacy of the temperature
sensor+1°C in the range) — 40°C and the resolution i8.1°C. The relative humidity
sensor has an operating range from 2% to 98% with a 1% reso|uti7% absolute
accuracy fron25% to 40%, and+5% from 40% to 80%. The barometer operational range
is between 700 mbar and 1050 mbar with a 1 mbar resolution aridlanbar accuracy.
The online monitoring system records the ambient temperatuessure and humidity of
the GGM box, as well as the gas mixture temperature beforafi@deach RPC gap, also
the pressure and the relative humidity are monitored aratded both inside the box that
contains the RPC stack and in the gas mixture before and edtdr gap. The dataset
used is composed of four periods, each period composed sf Each run containk)*
cosmic ray events where environmental parameters and G@lli@autput charges are
collected. The acquisition rate is typically 9.5 Hz. Tabt@ws features of the three
periods.

Table 2: Periods summary table.

Periods | Number of runs Timeline Environmental range
Start Finish | temperatureqC) relative humidity (%) pressure (mbar)
1 396 01/09/08  26/09/08 16.5-20.5 35-70 953-970
2 86 27/09/08  01/10/08 16.5-20.5 35-55 962-973
3 460 01/10/08  17/10/08 16.5-22.0 32-60 958-980
4 92 27/10/08  1/11/08 18.5-20.0 35-45 944-960

4 The Artificial Neural Network simulation code

An Artificial Neural Network (ANN) is an information procesg paradigm that is in-

spired by the way biological nervous systems, such as the,hpeocess information

[10]. An ANN is configured for a specific application, such astern recognition or data
classification, through a learning process. The commogest ¢f artificial neural net-

work consists of three groups, or layers, of units: a layenpfit units is connected to a
layer of hidden units, which is connected to a layer of output as shown in Fig. 3.



Figure 1: Gas Gain Monitoring system setup.
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Figure 2: Layout of GGM experimental setup.
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Figure 3: Example of a simple Neural Network configuration.

The activity of the input units represents the raw informatihat is fed into the
network. The activity of each hidden unit is determined by dbtivities of the input units
and the weights on the connections between the input anddderhunits. The behavior
of the output units depends on the activity of the hiddensuaitd the weights between
the hidden and output units. For this study temperaturejdityrand pressure have been
selected as inputs and anodic charge as output. For the ANdranback-propagation
pattern with 3 hidden layers. It was demonstrated [11] thatrtumber of layers is not
critical for the network performance, so we decided to gdh\@itlayers and give to the
neural network a sufficient number of hidden units autonadlfioptimized by a genetic
algorithm that can take into account several configuration.

For each configuration, in each layer there are a number abnsuetween 2 and
12, the genetic algorithm performs the training procesh @it estimation of the global
error; then the configuration is stored and the genetic ghgorcontinues to evaluate a
slightly different configuration. Once the algorithm hassiainto account all the possible
configurations the best one in terms of global error is choSgme error is calculated
point by point just with the comparison between the neur&lvoek forecast and the
experimental data.

During the training phase the network is taught with envinental data as input,
the output depends on the neuronal weights, that at the eginbing are initialized with
random numbers. The network output is compared with thererpatal data we want
to model, and in this phase the network has an estimationeoéttor, the error itself is
back-propagated into the network in order to modify the \Wiigo minimize the error.

Once the training is complete the network’s weights arenoigid to have the min-
imum error for the chosen network pattern, the genetic #@lyorgoes on considering
several configuration in an automatic way and the reallynogttinetwork along with its
structure is returned. Such a network is ready to be exedni@don taught period, with
different input data.



5 Results

Typical simulation outputs show generally good agreemetween data and prediction
Fig. 4. In periods where prediction is not accurate, therdsa&ncy is typically concen-
trated in narrow regions ("spikes”) as shown in Fig. 5.
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Figure 4: Gap 7 trained on period3 - prevision on period3.
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Figure 5: Gap 8 trained on periodl - prevision on periodl.
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is plotted as a function of the experimental points for alirfperiods, divided for training
and prediction respectively. The error distribution foe gredictions is much wider than
for the training as expected (Fig. 8).

The distribution of the error for the predictions showsay,,,, ~ 7% whereo ¢,p,, =
I rwnm/2.36 width with very long tails, due to points with very large digpancy between
data and prediction. The cases with very large discreparey wtudied in detail, and
found to be characterized by(p, T, H) value at the edges of the parameter space. Fig. 9
shows the correlation between (p,T,H) and error.

To quantify the position of each point in thig, 7', H) parameter space, the centroid
of the distribution of runs in thép, T, H) parameter space

CZEM ; x=(p,T.H) 2)
N
and the normj|x|| the distance of each run to the centroid
Il = /> (2= C;)? 3)

were computed. The distribution of tl% error as a function of the noriffx|| (Fig. 10)
shows three distinct structures. The satellite bands wetly Varge error were studied
in detail. All data point in such bands belong to period fond @hannel six for which
problems were detected. Period four and channel six therefere excluded by the
analysis. The distribution of the error as a function-péfter this selection is shown in
Fig. 11, with ao fwhm ~ 4% width and nongaussian tails extending uﬁég) = 200%.

A selection on the fiducial volume in theparameter space (Tab. 3) was applied in
order to avoid runs on the boundaries of thel’, H) space. After the selection cuts, pre-
dictions on two periods based on training on the third penwede performed. Results are
shown in Fig. 13 to Fig. 21. The selection cuts prowvigg,,, ~ 5% error, as summarized
in Tab.4.

Table 3: Synopsis of selection cuts for fiducial volume.

| (958 < p < 968)mbar | (19.4 < T < 20.4)°C| (34 < H < 44)% |

6 Conclusions

A new approach based on ANN in modeling the response of RP€ctbes was pre-
sented, and preliminary results obtained with data fronClsS RPC GGM system were
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Figure 6: Distribution of error for training for all runs.
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Figure 7: Distribution of error for predictions for all runs
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Figure 8: Error for training (left) and prediction (righrfall runs. Gaussian fit superim-
posed.
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Figure 10: Distribution of error as a function of the|| norm for all runs, six chambers
and both training and prediction.
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Figure 12: Distribution of errors for all norm||. Gaussian fit superimposed, showing
large nongaussian tails.
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Figure 13: Period 1 training, prediction on periods 2 and 3.
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Figure 14: Period 1 training, prediction on periods 2 anddjdial selection.

8Q/Q percent 80/Q percent
X’/ndf 6986 | 107 I X/ndf 1752 | 55
Constant 185.4 + 6.022 4 Constant 79.69 + 4.149
Mean -1.070 £ .1262 10 b Mean 1545 £+ .1532
2 Sigma 5.954 + .1516 Sigma 4.456 + 721

10 ¢
FWHM/2.36 = 3.4 +—[0.2 percent
FWHM/2.36 = 4.0 +# 0]2 percent

10

L N 1

-300 -250 -200 -150 -100 -50 0 50 100 -300 -250 -200 -150 -100 -50 0 50 100

10

N

Figure 15: Period 1 training, prediction on periods 2 andedt)(no cuts, (right) fiducial
cut, gaussian fit superimposed.

Figure 16: Period 2 training, prediction on periods 3 and 1.
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Figure 17: Period 2 training, prediction on periods 3 anddudial selection.
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Figure 18: Period 2 training, prediction on periods 3 andeft)(no cuts, (right) fiducial
cut, gaussian fit superimposed.
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Figure 19: Period 3 training, prediction on periods 1 and 2.
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Figure 20: Period 3 training, prediction on periods 1 anddjdial selection.
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Figure 21: Period 3, prediction on periods 1 and 2, (left) otsc(right) fiducial cut,
gaussian fit superimposed.
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Table 4: Summary of errors;,,;,,, and nongaussian tails for various selection cuts and
samples.

Data sets =

All six chambers, all four periods training 2.7+0.1
All six chambers, all four periods prediction 6.7+ 0.1
Chamber six and period four excluded prediction 3.0+0.1
Prediction on periods 2 and 3, training on period 1 4.0+0.2
Prediction on periods 3 and 1, training on period 2 34402
Prediction on periods 1 and 2, training on period 3 3.8+0.2
Prediction on periods 2 and 3, training on period 1, fiduaig$¢ 3.7 + 0.3
Prediction on periods 3 and 1, training on period 2, fiduaig$ ¢ 2.9 + 0.1
Prediction on periods 1 and 2, training on period 3, fiduaigs ¢ 3.3 4+ 0.2

described. The model, once trained on the response of aaletesll within the param-
eter spacdp, T, H), is able to predict the response in other periods with a b#tan

o rwnm ~ 10% accuracy. Further studies are in progress to determine @nedtite resid-
ual nongaussian tails of th%g errors distributions, to deal with training and prediction
on detectors with different high voltage supply, to widee g#ample of environmental
conditions, and in adding new dimensions to the paramesarespuch as radiation levels.
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