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Abstract 
 

A model of planar channeling of 400 MeV electrons taking into account the 
dechanneling processes in a crystal is developed. The dynamics of the initial angular 
distribution of relativistic electrons as a function of standard deviation has been studied. The 
simulation results for the density function of channeled projectiles distribution in a thick Si 
(111) crystal are presented. 
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1 INTRODUCTION 
 

Studies on electron interaction in solids under the channeling conditions is of continuous 
interests due to its ability to produce electromagnetic radiation well-known as channeling 
radiation. This type of radiation is characterized by high monochromaticity and intensity; 
moreover, such sources are tunable within broad energy spectrum. The radiation sources based 
on positron channeling might be very powerful because of the large dechanneling length for 
positrons in comparison with the beams of electrons. However, till now there is uncertainty in 
calculations of channeling processes for moderate energies [1].  

General features of electron/positron channeling radiation at moderate energies have 
been recently analyzed without details of the beam dechanneling [2]. As known at the energies 
higher then 100-150 MeV the description of electron/positron channeling in crystals can be 
done within the classical approximation; the motion is characterized by the particle 
trajectories, which the projectiles form within the continuous potentials of crystal planes or 
axes at either planar channeling or axial channeling, respectively. However, the motion under 
the channeling regime is rather unstable due to the strong scattering processes caused by 
various interactions in a crystal (the perturbations by thermal atomic vibrations, electron 
subsystem, etc.). That is why in order to calculate the radiation intensity we have to know the 
transverse particle distribution in the field of continuous potential, in other words, we have to 
solve the diffusion equation for the beam. For light relativistic projectiles the typical diffusion 
equation is reduced in well-known Fokker-Planck equation [3].  

In our work we have studied the dechanneling processes for electrons in a (111) Si 
crystal, based on the solution of Fokker-Planck equation [4, 5]. The dynamics of particle 
distribution density has been investigated in dependence on both energy and initial scattering 
distribution of electron beams. This method, combined with the theory developed in [6, 7], 
was used for calculating the radiation spectra for planar channeling of relativistic electrons and 
positrons in thick crystals. 
 
2 POTENTIAL ENERGY OF ELECTRONS IN A SYSTEM OF Si (111) PLANES  
 

In the case of (100) and (110) planar channeling in a diamond-like lattice, there are two 
types of solutions of the equation of motion. On the contrary, in the case of (111) planar 
channeling along double planes, there are three types of solutions for the transverse 
displacement and velocity, which depend on the relation between the angle of incidence into a 
crystal 0θ  and the critical channeling angle θc = 2U0 ε , and on the height (or depth) of the 
internal potential barrier ΔU =U1 −U0  (see, Fig. 1).  

 

 

  

    
 
 
 
 
 
 
 
 

Figure 1. Potential energy of electron 
in the system of double planes (111) in 
a Si crystal. 
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Two of these solutions describe the motion of channeled (under-barrier) electrons, while the 
third one describes the motion of quasi-channeled (above-barrier) electrons. 

Below we used the following classification for various types of the motion (Table 1): cd 
denotes the under-barrier motion along one of the two planes forming (111) continuous 
potential; cu denotes the under-barrier motion along two planes forming (111) planar channel; 
nc denotes the above-barrier motion in the one-dimensional periodic potential formed by 
periodic sequence of the potential shown in Fig. 1.  

 
Table 1. Classification of trajectories type for planar electron channeling. 

 
Type of  

trajectory 
Transverse  

energy 
Period of 
motion 

cd −U0 ≤ ε⊥ ≤ −U1
 

cdT  
cu −U1 ≤ ε⊥ ≤ 0  ucT  
nc 0 ≤ ε⊥  

ncT  
 
In accordance with three types of motion, we can define three groups of the periods of 

motion: cd and cu – for channeled (under-barrier) electrons, i.e. cdT , and cuT , and nc – for 
above-barrier electrons, ncT  [6]. 
 
 
3 THE INITIAL ANGULAR DISTRIBUTIONS 
 
We assume that the initial angular distribution of relativistic electrons in the beam satisfies 
the normal law (Gaussian distribution): 
 

€ 

Φ θ( ) =
1
2πσ y

2
exp −

θ −θ0( )2

2σ y
2

' 

( 
) 
) 

* 

+ 
, 
, 
              (1) 

 
Here, 0θ  is the angle of incidence of electron beam with respect to the channeling plane, 

€ 

σ y  
is the standard deviation. 
Taking into account that for the particle of energy E0 the transverse energy can be defined as 
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and that the number of particles with a given transverse energy is a positive value, the density 
distribution functions will be determined by the following integral 
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The points xd, xu  correspond to the solutions of equation E⊥ =U(x)  for E⊥ U0 <1 , and 
xu = dp 2, xd = −dp 2  - for the E⊥ U0 ≥1  case. 

Fig. 2 shows the initial distribution at the parallel to channeling planes incidence θ0 = 0  
for various incident beam divergences σ y =1 2θC, σ y =θC, σ y =1.5θC.  Obviously, due to the 
non-zero divergence, a part of the beam particles undergoes the above-barrier motion even 
θ0 = 0  (unlike a model with equal probability of the particles distribution over transverse 
energy where all particles get to the channel [6]). 

 

 
 

Figure 2. The initial angular distributions of relativistic electrons channeled in Si (111) at zero 
incident angle θ0 = 0 . Various curves correspond to different beam divergences: σ y =1 2θC,  
σ y =θC,  σ y =1.5θC.  

 
 
4 FOKKER-PLANCK EQUATION FOR 400 MeV ELECTRONS CHANNELED 

IN Si (111) 
 

Kinetic description of the channeling effect was first suggested by Lindhard using the 
equation of motion of the diffusion type (see in [3]). The Fokker-Planck equation in phase 
space of transverse coordinates and velocities to describe the channeling effect was first 
considered by Kitagava-Ohtsuki [4]. General expression of the Fokker-Planck equation is the 
following 
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Drift and diffusion coefficients have been calculated within the Kitagava-Ohtsuki 
approximation [3] evaluating the integrals 
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where  
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 is the function defined by both projectile and crystal 

parameters, with 

€ 

Es =13.6  MeV,  E is the total electron energy, u1 = 0.076  Å is the thermal 
transverse vibration amplitude of the plane atoms, the coordinates 

€ 

xd , xu  are as above 
defined, X0 is the characteristic radiation length of the crystal, for the (111) crystal planes the 
continuum potential depth and interplanar distance are 

€ 

U0 = 21.21 eV and dp ≈1.92  Å, 
respectively;  the time parameter can be reduced from the solution of the equation of 
transverse motion: 
 

T E⊥( ) = E
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where 0x  is defined by E⊥ =U(x0 )  for E⊥ U0 <1  ; x0 = dp 2  - for E⊥ U0 ≥1  case. Fig. 3 
shows the dependence of time parameter on electron transverse energy. 
 
 

 
Figure 3. Time parameter for planar electron channeling in a Si (111) crystal. 

 
 

Taking into account the above mentioned conditions, the dependences on both drift and 
diffusion coefficients of the transverse energy are shown in Figs. 4, 5, respectively. 
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Figure 5. Diffusion coefficient for planar 
electron channeling in a Si (111) crystal (E = 
400 MeV). 

 
It should be underlined, that for E⊥ =U0 , for which the parameter diverges, the drift and the 
diffusion coefficients are characterized by deep minima. It takes place due to the fact that the 
probability electron density at the potential maximum is very high. Since the nuclear density 
in middle between the crystal planes is rather low (mainly negligible), also the scattering 
probability becomes small. That is why the kinetic coefficients have their minima at this 
point, in constant to the condition E⊥ = 0 , which corresponds to the case of electron trajectory 
lies in a crystal plane. Obviously, on channeling plane the transverse energy increase reaches 
its maximum. For E⊥ >>U0  the drift coefficient approaches the constant value for amorphous 
matter, since the continuous potential influences only very little the trajectory of an electron, 
while the diffusion coefficient increases linearly as function of ⊥E . 

 
Fig. 6. Channeled electron density distribution for a Si (111) crystal at the deviation angle 

€ 

σ y = 0.5θC . 

 

 
 
 
 
 
 
 
Figure 4. Drift coefficient for planar electron 
channeling in a Si (111) crystal (E = 400 MeV). 
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Fig. 7. Channeled electron density distribution for a Si (111) crystal at the deviation angle 

σ y =1.5θC . 
 

Figs. 6 and 7 show the solution of the Fokker-Planck equation for various values of the 
standard deviation (

€ 

σ y = 0.5θC , σ y =1.5θC ). The increase of standard angular deviation 
results in the broadening of density distribution function that takes place due to the 
redistribution of beam particles over the channel, i.e. continuous transition of the particles 
from channeling to above-barrier modes of the motion in a crystal. 
 
5 CONCLUSIONS 
 
In this work we have presented a model for the dual-channeling (111) of electrons in the 
crystal, taking into account the effects of dechanneling. The calculations were performed for 
400 MeV electrons channeled in Si, including: 

• Investigated the initial angular distribution of relativistic electrons in the beam as a 
function of transverse energy for various angles of entry to (111) planes of the crystal. 

• Drift and diffusion coefficients channeling of electrons in the system of double planes 
(111) are constructed. 

• The results of numerical solution Fokker-Planck equation for (111) planar channeling 
of 400 MeV electrons are presented. 
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