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Abstract

The demand of large area GEM detectors requires extreme working conditions of the
layered foils from structural point of view; larger area need higher biaxial tensile loads to
overcome large deflections and the related stresses may exceed the copper yield limit
just around the holes; the present work shows that for a trapezoidal CMS GEM foil
(W=1040 mm; L1=530 mm; L2=345 mm) the sag due its own weight is about

28.6μmf  (electrostatic loads not included) for a tensioning of S=1 N/mm; the
related stresses are lower than the yield only in a biaxial load. Numerical results are from
ANSYS Educational v.10 [1] and their level of accuracy is very good when compared to
some theoretical and experimental results.

5 μm copper layer equivalent stresses (HMH) under a biaxial load showing the hexagonal symmetry.
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1 - Plane stress homogenization.

The GEM tri-layered foils have hexagonal symmetry due to the holes pattern, i.e. they
behave to the common in-plane isotropic thin plates; strictly speaking the GEM foils are
transversely isotropic since the out-of-plane mechanical properties are different because
of the layering a.

1§1 - Local stresses of a perforated single layer foil in plane stress.

The in-plane isotropy of the GEM foils is a macroscopic isotropy, in the sense that
remote tensile or bending loads give the same overall displacements field whatever
direction of the applied loads is; this is not true at the level of the texture element, that is
the local stresses and strains depend on the direction of the external loads; thus the GEM
foils are isotropic macroscopically but highly anisotropic at the level of the texture
element [2]; in other words the different behaviours of the stresses and strains of the
texture element along two orthogonal directions under the same remote loadings are
averaged by the overall hexagonal symmetry giving the same macroscopic
displacements in those directions, i.e. in any direction. Fig. 1§1-1 shows displacements
and stresses of the texture element (considering only the 5 μm Cu layer) subjected to an
uniaxial tensile load along X equal to , 86.5 MPauniform Cu  ; as usual local severe stress
concentrations around the holes are observed at 2 and 0 (respectively

367 MPax  and 65.4 MPay  ). That numerical result is not straightforward but
it is obtained by a simple trial-and-error procedure b; Fig. 1§1-2 shows the same results
when the same remote tensile load is applied along Y; the stresses at 2 and 0 are

149 MPax  and 289 MPay  ; then the same load applied along two orthogonal
directions gives unequal local stress and strain fields.

a Even if the effect of the transversal properties on membrane-type and bending-type problem is negligible for
moderately thin composite plates, the assumption of the transversal isotropy is fundamental to get consistent
and correct expressions of the averaged properties of any layered plate in plane stress. A simple but general
and elegant method of averaging is due to Backus (see Appendix A) but it is limited to plane stress problems
(such as the in-plane tensioning) and it not so accurate in bending-type problems (similar to the plane stress
problems but the stress gradients through the thickness and out-of-plane shears); the basic averaging criteria of
the bending-type problems are given in CLT (classical lamination theory).
b Given the remote tensile load , 86.5 MPauniform Cu  then symmetric trial displacements are applied on the
X-normal boundaries leaving the others free to move in the Y direction (all displacements on boundaries are
coupled also, of course); then the corresponding remote tensile load (the error) is given by the nodal forces
balance on the same boundaries (the arrows denoted by NFOR); it must be underlined that the application of
the tensile load , 86.5 MPauniform Cu  on the boundaries gives misleading results since along the same
boundaries only the displacements are constant as the symmetry, but neither the stresses nor the strains.
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Fig. 1§1-1 Texture GEM element (5μm Cu layer only) under , 86.5 MPauniform Cu  tensile load along X.

Fig. 1§1-2 Texture GEM element (5μm Cu layer only) under , 86.5 MPauniform Cu  tensile load along Y.
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It is not surprising that the ratio of the imposed displacements that give the same
tensile load , 86.5 MPauniform Cu  in X and Y (respectively 0.052565μmx xU  in
Fig. 1§1-1 and 0.091045μmy yU  in Fig. 1§1-2) is equal to 3 , that is the
macroscopic strains 4x x x xU p  and 4 3y y y yU p  are equal (i.e. x x y y  )
under the same uniaxial tensile load, being 140μmp  the ligament length c.

Fig. 1§1-3 Texture GEM element (5μm Cu layer only) under , 86.5 MPauniform Cu  biaxial tensile load.

Fig. 1§1-3 shows the texture element under a biaxial load; once again x xy y xy 

since 0.034670μmx xyU  d and 0.060050μmy xyU  are the imposed displacements
that give the biaxial remote stress , 86.5 MPauniform Cu  ; the local stresses at 2 and

c That simulation can be considered and indirect demonstration of the macroscopic isotropy of the GEM foils.
d In Fig. 1§1-3 the maximum, minimum X-displacement , max, min 0.037070 μmx xyU  is located on the hole
and the nodal averaged plot may be badly understood; the solution print out gives a displacement of

0.034670 μmx xyU  on all the X-normal boundaries; same considerations can be made on Fig. 1§1-1
( 0.031002 μmy xU  versus , max, min 0.033226 μmy xU  ) and on Fig. 1§1-2. ( 0.017899 μmx yU 
versus , max, min 0.019782 μmx yU  ).
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0 are 218 MPax  and 224 MPay  (the difference is not due to numerical
approximation or round-off); they are much lower than the previous ones, as expected e.

Fig. 1§1-4 Same as Fig. 1§1-3 but with p-method.

The stress concentration factors are easily computed for each configuration (the
subscript is the load direction, the superscript the location): 2 367 86.5 4.24xK    ,

0 65.4 86.5 0.76xK   , 2 149 86.5 1.72yK    , 0 289 86.5 3.34yK   ,
2 218 86.5 2.52xyK    , 0 224 86.5 2.59xyK   f; the more interesting factors are

2
xK  , 0

yK , 2
xyK  , 0

xyK that give the peak stresses; they do not depend on the material
but only on the geometry, that is on the solidity ratio 0 1d p  (being 70μmd  the
hole diameter) and on the angle (60° in GEM); these factors are always greater than

e The stress lowering due to the biaxial load is well known: in an uniaxial tensile load the maximum stress at
2 is a tensile stress having the same direction of the load; then if another tensile load is applied along the

perpendicular direction, that maximum stress is lowered since the region at 2 is unloaded (and vice versa).
f Note that 2 2 2Kxy Kx Ky    and 0 0 0Kxy Kx Ky  due to the superposition principle.
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those referred to a single hole in an infinite plate [3] ( 2 0 3x yK K   and
2 0 2xy xyK K   ) becausethe Saint Venant’s principle cannot be appliedg.

Furthermore all the stresses shown in the previous pictures are always
underestimated (and the stress concentration factors too) because of the poorly mesh
refinement in the high stress gradient regions; Fig. 1§1-4 shows the result for a biaxial
load obtained by means of the high order accuracy p-method; the numerical
improvements are not so significant between plane p-elements and shell h-elements that
will be adopted in the bending-type problems (but the coarse mesh and the highly
accurate polynomial interpolation).

Fig. 1§1-5 Shear stresses of the 5μm Cu layer under , 86.5 MPauniform Cu  biaxial tensile load.

Fig. 1§1-5 shows the shear stresses due to the biaxial load , 86.5 MPauniform Cu  ;
the cover picture refers to the HMH equivalent stresses under the same biaxial load.

g The solidity ratio of the GEM foils is 1 2 and then there is a mutual influence between two neighbouring
holes; the Saint Venant’s principle holds in the limiting case 1d p where the holes are isolated singularities,
the concentration factors approach those of the infinite plate, the texture becomes locally isotropic.
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Tab. 1§1-1 shows the stress concentration factors with p-method as illustrated in
Fig. 1§1-6 to Fig. 1§1-8; they are a little bit greater than before.

uniaxial X uniaxial Y biaxial XY

π/2 4.40 [4] -1.85 2.55 [2]
0 -0.80 3.42 [2] 2.62 [4]

Tab. 1§1-1 Stress Concentration Factors (SCF) of GEM foils with p-method.

The factors 0 3.42yK  and 2 2.55xyK   agree with Horvay theoretical results [2]
(see on the right of Fig. 1§1-9) but it seems that they are not the worst as the
experimental data reported by O’Donnell [4] (Sampson photoelastic measurements, see
on the left of Fig. 1§1-9); the O’Donnell experimental factors agree very well with the
values of 2 4.40xK   and 0 2.62xyK  that must be considered in the design.

Due to the hexagonal symmetry the stress concentration factors for uniaxial loadings
are the same every 60°, that is 2 4.40xK   and 0 0.80xK  are the stress multipliers if
tensioning along 0°,60°,120° while 0 3.42yK  and 2 1.85yK   if tensioning along
30°,90°,150°; the biaxial factors 2 2.55xyK   and 0 2.62xyK  repeat every 30°.

Fig. 1§1-6 Stress peaks varing the uniform tensile load along X.
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Fig. 1§1-7 Stress peaks varing the uniform tensile load along Y.

Fig. 1§1-8 Stress peaks varing the uniform biaxial tensile load.



1§1 - Local stresses of a perforated single layer foil in plane stress. 9

The calculation of the stress concentration factors along directions lying in between
cannot be solved by means of elementary mesh of the texture element and expensive
analysis must be carried out on larger portions of the foil.

Fig. 1§1-9O’Donnell [4] (on the left) and Horvay [2] (on the right) stress concentration factors; for the GEM
foils the ligament efficiency is 0.5; the pure shear ( 21; 4shearKxy  in [3]) is not taken into account.

The drawback of the stress concentration factors is that a simultaneous tensioning
along two orthogonal directions is needed to achieve extreme biaxial stresses without
compromising the integrity of the GEM foils; for instance if 272.5 MPayield  h for a
5 m layer thickness of copper on kapton then the tensioning along X (Y) only gives

2
, 4.40 86.5 MPa 380.6 MPax x uniform CuK      ( 0

, 295.8 MPay y uniform CuK   )
well above the yield point; on the contrary a biaxial stepped tensioning gives

2
, 2.55 86.5 MPa 220.6 MPax xy uniform CuK      , 0

, 226.6 MPay xy uniform CuK  
well below the yield point; if so the uniform biaxial tensioning may be up to

, 104 MPauniform Cu  ; besides the simultaneous tensioning avoids the growth of local
high compressive stresses (the sign of SCF) but not the shears (see Fig. 1§1-5).

h According to [5] 0yield
nkt    where 0 116 MPa , -335 MPa m nk  , 0.473n , 5 mt  .
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It must be also underlined that the difference between 2 4.40xK   and 0 3.42yK 
should be taken into account during uniaxial tensile tests on thin perforated strips
prototypes carried beyond the yield point as well as in the design of uniaxially loaded
cylinders such the KLOE-GEM detectors.

1§2 - Equivalent material of a perforated single layer foil in plane stress.

The example of the previous section gives also the equivalent mechanical properties; for
the copper layer the data are taken from [5] ( 108800 MPaCuE  , 0.34Cu  ); thus both
the equivalent Young modulus , .Cu perfE and the Poisson ratio , .Cu perf can be easily
computed from Fig. 1§1-1 (uniaxial loading on X), that is , . ,Cu perf uniform Cu x xE  
where 4x x x xU p  and 0.052565μmx xU  ; then , . 57595.4 MPaCu perfE  ;
besides , .Cu perf y x x x   where 4 3y x y xU p  and 0.031002μmy xU  (see
note 1§1 - d); thus , . 3Cu perf y x x xU U  that is , . 0.34051Cu perf  ; the same results
can be obtained from Fig. 1§1-2 (uniaxial loading on Y), that is , . ,Cu perf uniform Cu y yE  
where 4 3y y y yU p  and 0.091045μmy yU  ; then , . 57595.5 MPaCu perfE  ; at
the same time , .Cu perf x y y y   where 4x y x yU p  and 0.017899μmx yU 
(see note 1§1 - d); thus , . 3Cu perf x y y yU U  that is , . 0.34051Cu perf  .

Just for sake of completeness the values , . 0.34051Cu perf  , , . 57595.5 MPaCu perfE 
can be checked in the biaxial state, that is  , , . , .1 4x xy uniform Cu Cu perf Cu perfU p E   and

 , , . , .3 1 4y xy uniform Cu Cu perf Cu perfU p E   ; then 0.034666 mx xyU  (instead of
0.034670 m ; see Fig. 1§1-3 and note 1§1 - d) and 0.060043 my xyU  (instead of
0.060050 m ); this is a further confirmation of the macroscopic isotropy of the GEM

foils. These results show that the ratios , . 0.53Cu perf CuE E  and , . 1Cu perf Cu   are
again in very good agreement with [4] a (see Fig. 1§2-1); these ratios can be extended to
the kapton layer also since the its Poisson ratio is more or less the same; it must be

a O’Donnell data refer to equivalent mechanical properties for 0.3 ; for a ligament efficiency of 0.5 the
ratios in Fig. 1§2-1 are equal to those found for the GEM foils (the data in [4] refer only to moderately thick
plates; that limitation is insignificant in plane stress but not in bending); it is a little bit strange that those data
(extrapolated from Sampson experimental measurements on plastic, 0.5 ) show a macroscopic anisotropy
of the hexagonal perforated plates; that anisotropy regards the Poisson ratios (averaged by O’Donnell) that 
were found to be different along two orthogonal directions, but not the Young modulus; it is conceptually
difficult to understand that experimental result because of the macroscopic isotropy due to the hexagonal
symmetry; some numerical tests with 0.3Cu  (instead of 0.34) and a ligament efficiency of 0.35 (instead of
0.5) give the ratios , . 0.33Cu perf CuE E  , , . 1.19Cu perf Cu   (that is , . 0.357Cu perf  ) and 2 6.47Kx  ,

0 3.45Kxy   that again match very well the O’Donnell data; on the contrary tests with 0.45Cu  give a
lower equivalent Poisson ratio , 0.4Cu perf  for a ligament efficiency of 0.35 (the Young modulus ratio is
always 0.33); thus the O’Donnell data are in good agreement for Poisson ratios close to 0.3 (i.e. for copper and 
kapton in plane stress).
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underlined that the equivalent properties found by a plane stress similitude give a good
approximation in plane stress problems but are not accurate in bending problems, as
Sampson experimental data on moderately thin plates.

Fig. 1§2-1 O’Donnell equivalent elastic constants for perforated and relatively thick plates ( 0.3 ) [4]; these
constants are not accurate in bending problems of relatively thin plates (Sampson).

Furthermore the ratios , . 0.53Cu perf CuE E  and , . 1Cu perf Cu   agree with
theoretical results of Day [6] (see Fig. 1§2-2 where 0.77p  , being 1p f  ,

2 22 3 0.23f d p  the holes area/total area fraction); on the contrary in [7]
. 1 (1 3 ) 0.60perfE E f   , 0.23f  is slightly greater because the applied Airy stress

function on the boundaries is simply taken from [3] and gives the so called “dilute 
solution” corresponding to very small solidity ratios only (i.e. the solution for a single 
hole in an infinite plate, see note 1§1 - g); thus the relations (1§2-1) hold for the GEM
foils (both for kapton and copper layer).

. 0.53perfE E  . 1perf  0.34 (plane stress only) (1§2-1)

In despite of the previous successful comparisons there is a much more important
concept regarding with the strain energy that must be emphasized; Fig. 1§2-3 shows the
strain energy of the 5 mCut  Cu layer under , 86.5 MPauniform Cu  biaxial tensile
load; the numerical integration over the volume gives , 0.364E 05 mJbiaxial CuW   ; the
macroscopic strain energy is 2

, , ( ) 3 8biaxial Cu uniform Cu x xy y xy CuW p t    where
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4x xy x xyU p  , 4 3y xy y xyU p  , 0.034670 mx xyU  , 0.060050 my xyU  ,
being 23 4Cup t the volume; then , , ( 3 ) 2biaxial Cu uniform Cu x xy y xy CuW U U pt  that is

, , 3biaxial Cu uniform Cu x xy CuW U pt if 3y xy x xyU U ; thus , 0.364E 05 mJbiaxial CuW  
again; for uniaxial loads (not presented for conciseness) , ,uniaxial X Cu uniaxial Y CuW W  .

Fig. 1§2-2 Day [6] simulations for Young modulus and Poisson ratio for a regular array of circular holes in a
triangular arrangment; the most important conclusion of that work is that “the ratio .perfE E is the same for
all materials and independent of the Poisson ratio for any prescribed geometry…”as the numerical tests in
note 1§2 - a have showed, that is .perfE E depends only on the ligament efficiency; these simulations were
compared with uniaxial tensile experiments only.

Fig. 1§2-3 Strain energy of the 5μm Cu layer under , 86.5 MPauniform Cu  biaxial tensile load.
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In the same way, if , . 2.7 MPauniform kap  and . 50 mkapt  , then the strain energy
of kapton layer is , . 0.113E 05 mJbiaxial kapW   under the same biaxial displacements.

It follows that the relations (1§2-1) are derived assuming that the strain energy of
the perforated foil equates that of the equivalent material under the same load; this is a
general concept that will be applied on the bending problems also b; even if its
effectiveness is accepted without any proof (it is not the subject of the present work)
there are many hints revealing it really works on an hexagonal symmetry; furthermore
the Backus averaging formulas c for any multilayered material can be derived in similar
fashion (i.e. by means of a strain energy balance) as shown in (1§2-2) to (1§2-4) where

(1) (1) (2)( )t t t  is the volume fraction; then the strain energy comparison is
fundamental in the homogenization of a multilayered perforated foil.
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(1§2-4)

Note that in general the Backus averaging (1§2-2), (1§2-3), (1§2-4) should be
performed before the perforation homogenization (1§2-1); in the present case, where the
rule of mixtures holds, that sequence can be reversed.

b The integration of the strain energy over the volume is simple for solid elements since the product  is
constant in each; on the contrary the integration for shell elements must take into account at least a linear
variation of both  and through the thickness; a dedicated macro was written for this aim.
c Appendix A is a brief summary of the Backus averaging that was applied only on two layers since the tri-
layered GEM foils are transversely symmetrical.



14 1 - Plane stress homogenization. Guido Raffone

1§3 - Equivalent material of a perforated tri-layer foil in plane stress.

Up to now only a single layer was examined; the mechanical properties of a multilayered
material can be replaced by those of an “equivalent material”; the process of averaging
in elasticity is not unique and is limited to the weighting of the mechanical properties of
the bulk materials by means of proper hypothesis to fulfil peculiar problems; the Backus
averaging has been tested separately in many different simulations and gives very good
results in the plane stress problems; it was selected among many others since it is
complete from theoretical point of view and it is simple; furthermore the Backus
averaging takes into account the transversely isotropy of each layer as well as the
mismatch of the Poisson ratio and the shear modulus other than the Young.

As far as the GEM foils the process of averaging is greatly simplified if only the
difference of the Young modulus between copper and kapton is taken into account; then
the so-called rule-of-mixtures (1§3-1) holds.

 . . 1eq kap CuE E E    . .eq kap Cu    (rule of mixtures) (1§3-1)

Nevertheless it must be underlined that if some other mechanical property “jumps” 
across the thickness then the rule-of-mixtures does not hold anymore; furthermore each
single thin foil of any material always exhibits at least transversal isotropy features itself
separately before bonding or depositing as for kapton [8]; if . .( ) 5 6kap kap Cut t t   is
the volume fraction of the GEM foils, . 50 mkapt  , 10 mCut  (5+5) and if [5]

. 3400 MPakapE  , . 0.34kap  then . 20966.7 MPaeqE  and from (1§2-1) then (1§3-2).

., . 11112.4 MPaeq perfE  ., . 0.34eq perf  (plane stress only) (1§3-2)

The Young modulus in (1§3-2) is more than twice of that reported in [9] and should
explain the discrepancy between numerical and experimental results.

A numerical simulation by means of solid elements (fully 3D) was also performed in
order to prove (1§3-2). The texture GEM element shown in Fig. 1§3-1 is submitted to a
biaxial stress equal to 16.7 MPauniform  a imposing the displacements obtained from the
shell elements (note 1§1 - b); the stresses are underestimated a little (Fig. 1§1-4).

a That value corresponds to 1 N/mmS  tensioning given in [10] for a 60 m thick GEM foil (50 + 5 + 5;
300 mm x 700 mm); then the copper layer is subjected to , 86.5 MPauniform Cu  (as in previous sections) and
the kapton one to , . 2.7 MPauniform kap  , if , . ,(1 )uniform uniform kap uniform Cu     , 5 6 ; the value of

16.7 MPauniform  is given by the nodal forces balance on boundaries and it is not applied straightforwardly.
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Fig. 1§3-1 Half of the tri-layered GEM foil (not refined mesh due to number of elements limitation).

Fig. 1§3-2 shows the stresses and the strain energy of the “real material” under the 
biaxial tensioning while Fig. 1§3-3 the same things but of the “equivalent material” (in 
Appendix A are given the basic formulas to reconstruct the real stresses starting from the
equivalent ones); from these pictures it is possible to see that the averaging spreads over
the thickness stresses and energies of the more rigid material (i.e. copper).

These results confirm (1§2-1) and (1§3-2) also from the strain energy point of view
(and not only from the stresses via the displacements); a numerical integration of the
strain energy gives the value of , 0.422E 05 mJbiaxial GEMW    both of the “real material” 
and the “equivalent” one as expected b; that value refers only to half of the tri-layered
foil (Z symmetry) and then , , , .(2 ) 2biaxial GEM biaxial Cu biaxial kapW W W  that exactly matches
the values found in 1§2 - section; the results related to the uniaxial loadings are not
reported and they agree very well also; some numerical tests on materials having
unequal Poisson ratio and shear modulus give also very good results.

b It is a numerical proof of the exactness of the averaging.
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Fig. 1§3-2 Stresses and strain energy of the tri-layered GEM material under 16.7 MPauniform  biaxial load.

Fig. 1§3-3 Stresses and strain energy of the equivalent material under 16.7 MPauniform  biaxial load.
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2 - The bending homogenization.

Numerical test on bending of non-perforated tri-layered GEM plates show that the
equivalent mechanical properties given by the “rule-of-mixtures” greatly overestimate 
the displacements (sometimes much more than a factor of 2 if considering the Backus
averaging, that includes the transversal properties); it follows that the non-perforated
GEM foils are more stiff in bending than in tensioning; that disagreement is due to that
the averaging does not take into account the distribution through the thickness of the
flexural rigidities of the layers (in the GEM foils the top and bottom copper layers carry
the most of the bending load and are at the same time the more rigid); then the first step
is to determine the flexural rigidity .eqD of the equivalent material that replaces the rule-
of-mixtures; the second step deals with the perforation. Since the bending stresses in
GEM foils are negligible then the attention will be focused on the displacements only.

2§1 - Equivalent material of non-perforated tri-layer foil in bending.

The factor of 2 gives a quick estimation of the ratio of the flexural rigidities between the
real material and the equivalent one given by the Backus averaging; but that ratio is
meaningless since that averaging does not work properly in bending; then it is more
correct to determine an absolute value of the equivalent flexural rigidity rather than a
ratio.

The flexural rigidity of the equivalent material .eqD can be computed numerically by
comparing the displacements of simple bodies of the real tri-layered material (as strips,
plates, beams and so on) to those given by analytical solutions of the homogenized
material under the same loads. There are many ways to do it but one of the simplest and
well suited is that of a simply supported strip of length l [mm] submitted both to a
transversal load q [N/mm²] and a tensile force S [N/mm] [11]; in (2§1-1) f [mm] is
the mid displacement and u a dimensionless parameter.

2

2 2

4 sech 1 2Sf u u
ql u

  
 

 
where

2
2

.4 eq

Sl
u

D
 (2§1-1)

The trivial computation of .eqD is not free of contradictions as it can appear at first
sight: a numerical simulation of the simply supported strip of the real material gives the
displacement f ; then the LHS of (2§1-1) is known, then u and .eqD . Once .eqD in
determined a new simulation is performed in order to check if the equivalent material
gives the same displacement f and the same elongation under the same loads q and S .
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It can be easily understood that the results are not consistent, since .eqD usually
meets the displacement f but not the elongation (even if playing with the Poisson ratio)
and it is not unique under different conditions; then any calculated equivalent flexural
rigidity .eqD is circumscribed to a small range of the given loads and must averaged in
some way to approximate both displacements and elongations a; thus the homogenization
of a tri-layered material subjected to both bending and tensioning is rather difficult;
fortunately this is not the case of the GEM foils since the non-dimensional parameter u
in (2§1-1) takes extremely large values.

2 2

2

sech 1 2 1 1
lim

2 8u

u u ql
f

Su


   (2§1-2)

It follows that the GEM foil behaves like a cable; the expression (2§1-2) gives a
much more remarkable information, i.e. an accurate material characterization of the
GEM foil in bending is not needed since its sag is independent on the flexural stiffness.

Thus the bending homogenization is not introduced at all even if its analysis is very
interesting especially in that “grey zone” where the tensile stresses are of the same order 
of magnitude of the bending ones.

It must be underlined that (2§1-2) is an upper bound, that is if the foil is stretched
along the other two edges also, its sag will be surely lower than 2 8ql S ; just to write
some numbers [10] assuming 21.21E-06 N/mmq  b, 300 mml  , 1 N/mmS  then

13.6μmf  .
In order to determine an approximate value of .eqD the relation (2§1-1) can be used

only in very small scale models where the bending effects become dominant; roughly
. 1 NmmeqD  is obtained for a simply supported non-tensioned strip ( 0S  ); no further

investigations on the bending stiffness have been carried out since they are meaningless.
The sag f of a rectangular membrane [3] c is given by (2§1-3) where l , w are

respectively length, width in mm; the equation (2§1-3) is equal to (2§1-2) as w .
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S ln



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

       
   

 (2§1-3)

a The introduction of an “equivalent thickness” should be a remedy. 
b ( . )eq kap Cuq p g t t  where 29.80665 m/sg , . 0.06 mmkap Cut t  , . (1 )eq kap Cu     , 5 / 6 ,

0.77p  the effective area/total area fraction, . 31420 kg/mkap  , 38900 kg/mCu  ; q is the own weight
and can be increased or replaced by some other load such the electrostatic one (about 1 Pa).
c The solution in [3] seems to be incorrect about the sign of the alternating terms and was slightly modified.
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Fig. 2§1-1 GEM foil sag (own weight only) under 1 N/mmS  biaxial load (bending stiffness 1 Nmm) .

Fig. 2§1-2 Same as Fig. 2§1-1 but bending stiffness 0.5 Nmm (the sag error in bending should be 100%).
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Since (2§1-3) converges rapidly if w l then the sag 1f (2§1-4) is given taking
only the first term of the series; if 700 mmw  then 1 12.9μmf  .

2

1 3

32
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8 2
ql w

f
S l




        
 w l (2§1-4)

Fig. 2§1-1 gives exactly the same sag of 12.9μm equal to 1f in (2§1-4); Fig. 2§1-2
gives the same sag also but with one half of the flexural stiffness showing that the
displacements are independent on the material characterization. Thus any numerical
analysis concerning the sag of any large area GEM square foil is unnecessary.

Fig. 2§1-3 Trapezoidal membrane sag (own weight only) under 1 N/mmS  biaxial load.

As far as a trapezoidal membrane the conclusions are not much different; for
instance, if 1040 mmw  and 530 mml  , the sag (2§1-4) due the own weight only
corresponding to 1 N/mmS  is 1 38.5μmupperf  which is the upper bound for the
trapezoidal membrane; furthermore (2§1-4) gives the lower bound also for the same
membrane; then any trapezoidal membrane has sags included in the range given by
(2§1-4) as shown in Fig. 2§1-3 where 28.6μmf  is the sag due to the own weight
(the lower bound is computed assuming 1040 mmw  and 345 mml  ; then

1 17.7μmlowerf  i.e. 17.7μm 38.5 μmf  ; roughly f is more or less the arithmetic
mean: 28.6μm (17.7 μm 38.5 μm)2 28.1 μm   ).
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2§2 - Equivalent material of perforated single layer foil in pure bending.

This section can be skipped as the previous conclusions; nevertheless there is still a
merely academic question concerning the macroscopic isotropy of the GEM foil in pure
bending also; the following analysis is focused on a single layer only and will show the
equality between the strain energies related to orthogonal directions of bending.

Fig. 2§2-1 Strain energy of 5μm Cu layer under 0.35 mN pure bending in X.

The procedure is similar to that adopted in plane stress; , 0.35 mNuniform CuM  is the
remote bending load in X and the trial and error procedure described in note1§1 - b gives
a rotation of 27.8 mradx (imposing the nodal moments balance); the same bending
moment ,uniform CuM applied in Y gives 16.1 mrady  , i.e. 3x y   ; Fig. 2§2-1 and
Fig. 2§2-2 shows that the integrated strain energy is equal in both cases, that is

, , 0.679E-06 mJbending X Cu bending Y CuW W   .
Thus that result confirms that the GEM foils are macroscopically isotropic in

bending also; it must be underlined that this does not mean that they are fully isotropic
since the engineering parameters cannot be reduced to only two (Young & Poisson).
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Fig. 2§2-2 Strain energy of 5μm Cu layer under 0.35 mN pure bending in Y.

The macroscopic strain energy is 2 2
, , . , .2 3 2 3bending Cu Cu perf x Cu perf yW D D  

and equating to , 0.679E-06 mJbending CuW  it follows that , . 0.76E-03 NmmCu perfD  , i.e.
, . 0.59Cu perf CuD D  , being 3 212(1 )Cu Cu Cu CuD E t   the flexural stiffness; in general

the ratio . 0.59perfD D  is a little bit greater than . 0.53perfE E  (1§2-1) and thus also
the perforated GEM foils are more stiff in bending than in tensioning.
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3 - Concluding remarks.

Some subjects should be analyzed with deeper simulations and experimental tests; first
of all the mechanical characterizations of the non perforated materials are given in [5]
but there are some open questions about the Young modulus and the Poisson ratio of the
copper layer as well as the yield strength a.

It is well known that the copper/kapton multi-layers can carry loads higher than the
yield bounds of bulk materials without appreciable permanent deformations; that feature
cannot be easily extended to the perforated foils since the plasticization area begins to
grow just around the holes (i.e. just on the free circular edges where crack and de-
bonding easily occur depending on the quality of the etching; for instance the previous
SCF are computed for a perfect circular profile of the hole and sharp micro-
imperfections along it are potentially dangerous as far as any crack propagation even at
low stresses).

Thus the tensile loads in perforated foils can exceed the yield bounds leaving the foil
perfectly elastic from a macroscopic point of view (in a biaxial tensioning the copper
plastic zones look like rings leaving most of the ligaments elastic) but the local
permanent deformations may be unacceptable.

At the present time a plastic analysis is unnecessary since the sags seems to be
acceptable even for large area foils in a perfectly elastic regime; if the yield strengths
reveal to be in some way lower than those suggested in literature then only dedicated
experimental tests as well as numerical plastic analysis may indicate the upper bounds of
the tensile loads.

A creep analysis is also not so stringent since the kapton layer is extremely stable for
long time loads in pure elasticity; on the contrary it should be taken into account in a
wide plastic regime.

A modal analysis can be easily carried out since the membrane-type behavior
(analytical solutions should be available in literature) to check resonances.

If a simultaneous tensioning is taken into account then local buckling and de-
lamination due to compressive stresses are avoided; on the contrary these are two
additional subjects to be investigated as well as the wrinkling.

a The copper Young modulus in [5] is averaged through the thickness but it is much more greater at the
interface (because of the <111> dominant crystallographic texture) where also the Poisson ratio gets the greater
value of 0.45; then there is a remarkable mismatch of the Poisson ratio between copper and kapton at the
interface; the mismatch induces an unbalanced biaxial stress even in uniaxial tensile loads on very thin
specimens that may be followed by wrinkling; the corresponding stress-strain fields are more complicated and
the copper layer should be divided into two sub-layers at least.
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4 - Appendix A

4§1 - Compliance and stiffness matrix of a TI material.

The compliance matrix 1D (4§1-1) is given in terms of the five parameters (the so-
called engineering parameters) E , zE (in-plane and out-of-plane Young), , z

a (in-
plane and out-of-plane Poisson) and zG (out-of-plane shear) being  1 2 1G E E 
(in-plane shear), σ,ε(stress and strain vector), 1ε D σand the symmetry axis z .
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(4§1-1)

Then the stiffness matrix D (4§1-2) is given in terms of the five constants

11D , 12D , 13D , 33D , 44D being  66 11 12 2D D D G   , σ Dε.
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(4§1-2)

The inverse relations are given in (4§1-3) where B ,  1bE E   are respectively
the bulk and biaxial modulus.

a
z xz  is the out-of-plane major Poisson ratio (and E Ezx z z  the minor) if E Ez ; conversely (i.e. if

E Ez ) z is the minor (and E Ez z the major);  is the in-plane Poisson ratio.
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A more readable expression of the stiffness matrix D (4§1-4) is written by means of
the five parameters , T , L ,, being T G  , L zG  ; note that if zE E ,

z  , L T G   (first Lamè constant) then   1 1 2E      (second Lamè
constant) and 0   .
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(4§1-4)

A further expression of the stiffness matrix D (4§1-5) is given in terms of the five
parameters , T , L ,,  where 2 T  ,  2 2 2 4T L        ; ( 0  
when 0   ).
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(4§1-5)

Since the strain energy is a quadratic form (i.e.  0, 1 2 0T
strainE   ε εDε ) then

the stiffness matrix D (as well as the compliance 1D ) must be positive, that is all its
principal minors , 1,...,6iM i  (4§1-6) must be positive; it follows that 11 0D  ,

33 0D  , 44 0D  , 66 0D  , 11 66D D ,  2
13 33 11 66D D D D  . Assuming that all the

above mentioned engineers parameters are positive then the constraints due to the strain
energy of a TI material lead to    2 1 2z zE E   that is 0 ( 1 1 2 
isotropic).
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4§2 - The Backus method.

Backus (1962) introduced a method of homogenization assuming that the equivalent
material (in terms of stress and strain) of a bi-layered material is TI (even if the bulk
materials are isotropic); then it can be stated that the homogenized material of a bi-
layered material is TI regardless the two layers are TI or not; that criterion was initially
adopted for the analysis of seismic waves but its validity is general and can be extended
to the analysis of thin multi-layered materials since foils of bulk materials always exhibit
TI features. Without entering into details and assuming the material of each layer
isotropic, the stiffness matrix of the homogenized material is given again in terms of five
parameters L , M , R , S , T (4§2-1) which are function of ( )i , ( )i , ( )iE , ( )i (Lamè
constants, Young, Poisson respectively, 1, 2i  ) and , the volume fraction of the
material 1 (that is (1) (1) (2)( )t t t  being ( )it the thickness of the material i ).
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( )i is the square of the ratio of the S-wave speed ( ) ( ) ( ) 1 2[ ]i i i
Sv   on the P-wave

speed ( ) ( ) ( ) ( ) 1 2[( 2 ) ]i i i i
Pv     (distortion on dilatation), ( )i the density of material

i ; the constants 11D , 13D , 33D , 44D , 66D being 12 11 662D D D  are shown in (4§2-2).
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Thus the parameters L and M give respectively the volume averaged out-of-plane
and in-plane shear modulus of the homogenized material; the other engineering
parameters can be computed by means of (4§1-3).
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4§3 - The strain energy of the TI homogenized material.

The Backus relations can be easily obtained by assuming that the strain energy of the bi-
layered material and the homogenized one are the same under two different state of
stress, respectively plane and transversal stress.

§ 4.3 i - Plane stress.

The stress-strain relationships of a TI material under plane stress are shown in (4§3-1)
and hold both for each of the two materials and the equivalent one (i.e. all are assumed
TI); note that (4§3-1) are equal to the isotropic case but z.
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(4§3-1)

Then in the plane stress the equivalent material strain energy is the volume averaged
strain energy of the bi-layered material under the same strain field (4§3-2).

 ( .) (1) (2)

( .) (1) (2) ( .) (1) (2) ( .) (1) (2)

1eq
strain strain strain

eq eq eq
x x x y y y xy xy xy

E E E 

        

  

     
(4§3-2)

It can be easily recognized that in the plane stress the stresses of the equivalent
material are the volume averaged stresses of the bi-layered material (4§3-3).

   
 

( .) (1) (2) ( .) (1) (2)

( .) (1) (2)

1 1

1

eq eq
x x x y y y

eq
xy xy xy

     

  

     

  
(4§3-3)

The third of (4§3-3) gives the Backus parameter M in (4§2-1) i.e. the equivalent in-
plane shear modulus  ( .) (1) (2)1eqG G G    ; rearranging the first two of (4§3-3) the
in-plane Young modulus ( .)eqE , the Poisson ratio ( .)eq and the shear modulus ( .)eq of
the equivalent material are straightforward (4§3-4).
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   

' '' ' ''
( .) ( .) ( .) ''

' '' ' ''

(1) (2) (1) (2)
' ''

(1) (2) (1) (2)

2
2

1 1
1 1 1 1

eq eq eqE

E E E E

  
  

   

     
   


  

 

     
   

(4§3-4)

Note that if, and only if, ( .) (1) (2)eq    then  ( .) (1) (2)1eqE E E    that is the
rule of mixtures holds iff the in-plane Poisson ratios are the same. Once ( .)eqE and ( .)eq
are computed, the out-of-plane Poisson ratio ( .)eq

z is obtained considering that an in-
plane biaxial stress leads to a volume averaged out-of-plane contraction (4§3-5).

   
( .) (1) (2)

( .) (1) (2)
( .) (1) (2)1 1

1 1 1

eq
eq z z z

z z z eq

  
    

  
      

  
(4§3-5)

§ 4.3 ii - Transversal stress.

The relationships of a TI material under transversal stress are shown in (4§3-6).
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  
 
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            

  
       
  

(4§3-6)

Then in the transversal stress the equivalent material strain energy is the volume
averaged strain energy of the bi-layered material under the same stress field (4§3-7).

 ( .) (1) (2)

( .) (1) (2) ( .) (1) (2) ( .) (1) (2)

1eq
strain strain strain

eq eq eq
z z z xz xz xz yz yz yz

E E E 

        

  

     
(4§3-7)

It follows that in the transversal stress the strains of the equivalent material are the
volume averaged strains of the bi-layered material (4§3-8).

     ( .) (1) (2) ( .) (1) (2) ( .) (1) (2)1 1 1eq eq eq
z z z xz xz xz yz yz yz                 (4§3-8)

The last two of (4§3-8) give the Backus parameter L in (4§2-1) i.e. the equivalent
out-of-plane shear modulus  ( .) (1) (2)1 1eq

z z zG G G    , that is the S-wave modulus

44D ; rearranging the first of (4§3-8) the out-of-plane Young modulus ( .)eq
zE (in terms of

( .)eq ) is straightforward (4§3-9).
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      

 
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1 1 1 1 1 1
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1 1 1
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  
(4§3-9)

Note that if the two layers are isotropic then ( ) ( ) ( ) ( ) ( )2(1 ) 2i i i i iE      , 1, 2i  ,
and (4§3-9) gives the Backus parameter R in (4§2-1), that is the P-wave modulus 33D .
The relationships (4§3-4), (4§3-5), (4§3-9) give the five engineering parameters

( .)eqE , ( .)eq , ( .)eq
zv , ( .)eq

zE , ( .)eq
zG by means of elementary calculations; they are in perfect

agreement with Backus formulas for isotropic layers in 4§2 - section.

4§4 - Back to real stresses.

For each fiber it is possible to write (4§4-1) (analogous for ( )i
y , 1, 2i  ); note that if,

and only if, ( .) (1) (2)eq    then ( ) ( ) ( ) ( )( )i i eq eq
x xE E  that is the mismatch of the

Poisson ratio always induces a biaxial stress.

   
( )

( ) ( .) ( ) ( ) ( .) ( ) ( )
2 ( )( )

1
1

1

i
i eq i eq eq i eq

x x yeqi

E
E

     


      
( 1, 2i  ) (4§4-1)
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