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Abstract 
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classical problems. We discuss the application of the method to the solution of the Lorentz-type 
equations. 
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1 Introduction

Operational methods provide powerful techniques to solve problems both in classical and
quantum mechanics. The distinctive feature of these tools is their versatility and the possibil-
ity of exploiting them in absolutely different contexts, from the time dependent Schrödinger
problems to the charged beam transport in accelerators. Differential equations have been
the primary motivation for the introduction of these techniques. Lie introduced the algebras
bearing his name within the framework of a program aimed to clarify the reasons why only
restricted families of ordinary differential equations (ODE) can be solved by quadrature.
Operational methods have become “popular” in applied science for their wide flexibility and
have stimulated the development of new computer languages, useful for symbolic manipula-
tion.

In this paper we go back to the solution of some differential equations involving vector
products and we will further develop the point of view suggested in Ref. [1], by presenting
an analysis which includes a variety of problems often encountered in applications, including
classical time ordering techniques, which are not widespread known as they should.

We will start our analysis with the following Cauchy problem

d

dt
~S = ~T × ~S , ~S|t=0 = ~S0 , (1)

almost ubiquitous in physics, from classical mechanics to nuclear magnetic resonance. Al-
though this equation can always be written in a matrix form, we will develop our consider-
ations using the vector notation and the properties of the vector product because they are
more concise and more insightful from the physical point of view. We will assume, for the
moment, that the torque vector ~T is not explicitly time dependent, so that a straightforward
application of the evolution operator formalism yields

~S(t) = Û(t) ~S0 , Û(t) = et T̂ (Û(0) = 1̂) , (2)

where Û(t) is the evolution operator defined in terms of the operator T̂ , whose properties will
be specified below. The series expansion of the exponential provides the following solution:

~S(t) =
∞∑
n=0

tn

n!
T̂ n ~S0 (3)

where T̂ , called vector evolution operator (VOP), satisfies the following identities:

T̂ 0 ~S0 = ~S0 · · · T̂ n ~S0 = ~T × (~T × · · · (~T ×︸ ︷︷ ︸
n−1 times

(~T × S̄0)) · · · ) . (4)

The use of the cyclical properties of the vector product leads to the following closed form
for ~S [1] (T = |~T |)

~S(t) = cos(T t) ~S0 + sin(T t) (~n× ~S0) + [1− cos(T t)] (~n · ~S0)~n (~n = ~T/T ) . (5)
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This solution has an almost natural geometrical interpretation, which is recognized as a
Rodrigues rotation (R. r.) [2].

The solution of the non-homogeneous version of eq. (1)

d

dt
~S = ~T × S̄ + ~N , ~S|t=0 = ~S0 , (6)

is given by

~S(t) = Û(t)

(
~S0 +

∫ t

0

dt′ Û−1(t′) ~N

)
, (7)

which is the solution of the first ODE with the evolution operator in place of the integration
factor.

The results we have obtained so far are a more concise form for the well known solutions of
equations of the type (6), often encountered in the study of problems involving the Coriolis [3]
and Lorentz [4] forces. In the next sections we will discuss specific applications of the outlined
formalism and we will see how it may provide further progress when applied to actual physical
problems, including time-dependent or spatially non-homogeneous fields.

2 The Lorentz equation of motion

The non-relativistic dynamics of a particle with mass m and charge e under the combined
influence of static electric and magnetic fields, is ruled by the Hamiltonian (c = 1):

H =
1

2m
(~p− e ~A)2 + eΦ , (8)

where ~p is the canonical momentum. In the static symmetric gauge, the vector and scalar
potentials are given by [5]

~A =
1

2
~B × ~r , Φ = − ~E · ~r . (9)

The equation of motion for the mechanical momentum

~π = m~v = ~p − e

2
~B × ~r ,

derived from eq. (8), is the Lorentz equation:

d

dt
~v = − ~Ω× ~v + ~Q , (10)

where we have introduced the following vectors

~Ω =
e

m
~B , ~Q =

e

m
~E .
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This equation has the same form of eqs. (6) (~T = − ~Ω, ~N = ~Q) and its solution is given by

eq. (7) with Û(t) = e−t Ω̂. Therefore, we get (~n = ~B/B):

~v(t) = cos(ωct)~v0 +
sin(ωct)

ωc
~Q + (~n · ~̀)~n − ~n× ~m , (11)

where ωc = Ω = eB/m is the cyclotron frequency, and we put

~̀ = [1− cos(ωct)] ~v0 +

[
t − sin(ωct)

ωc

]
~Q , ~m =

1

ωc

d

dt
~̀(t) .

A further integration, with respect to the time, yields the position vector, which reads:

~r(t) = ~r0 +
sin(ωct)

ωc
~v0 +

1− cos(ωct)

ω2
c

~Q + (~n · ~o )~n − 1

ωc
~n× ~̀ , (12)

where

~o =

[
t − sin(ωct)

ωc

]
~v0 +

[
t2

2
− 1− cos(ωct)

ω2
c

]
~Q .

(The quantity rL = v0/ωc is called Larmor radius). The trajectories of an electron for
different fields configurations are reported in Fig. (1).

It is interesting to stress the contribution ~n × ~m, that appears when the initial velocity
and/or the electric field are not parallel to the magnetic field. It is given by:

~n× ~m = sin(ωct)
~B × ~v0

B
− 2 sin2

(
ωct

2

)
~vd , ~vd =

~E × ~B

B2
, (13)

where ~vd is the drift velocity [5,6]. In physical terms it can be understood as the component
of the velocity which allows the balance between electric and magnetic forces in the Lorentz
equation of motion. In fact, if we decompose the velocity as ~v = ~u+ ~V , and impose that

e ~B × ~V = e ~E , (14)

solving for ~V , we recognize that, in the case ~B · ~V = 0, this vector coincides with the drift
velocity vector defined in eq. (13). It is evident that the presence of a further force acting

on the particle will induce an analogous drift. By replacing ~E with ~E + ~E ′ in the Lorentz
equation, we obtain the composed drift velocity

~vd =

(
~E + ~E ′

)
× ~B

B2
. (15)

The role played by the drift velocity can be further stressed by noting that it can be associated
to the conservation of the so called pseudo-momentum vector [5–7]

~Π = m (~v − ~vd) + e
(
~B × ~r − t ~E

)
, (16)

which is ensured by eqs. (10), and has been used as an a posteriori check of the correctness
of our computations.
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Figure 1: Trajectory followed by an electron for different configurations of electric and mag-
netic fields and initial velocity: (upper panel, left) ~v0 = (v0, 0, 0), ~B = (0, B/

√
2, B/

√
2), ~E =

0 (upper panel, middle) ~v0 = (v0/
√

2, 0, v0/
√

2), ~B = (0, 0, B), ~E = (0, 0,−E) (up-

per panel, right) ~v0 = (v0/
√

2, 0, v0/
√

2), ~B = (0, 0, B), ~E = (0, 0,−E) (lower panel,

left) ~v0 = (v0/
√

2, 0, v0/
√

2), ~B = (0, 0, B), ~E = (0, E/
√

2, E/
√

2) (lower panel, right)

~v0 = (v0/
√

2, 0, v0/
√

2), ~B = (0, 0, B), ~E = (0, E, 0).

3 Lorentz-type equations and damping

It is evident that terms of non-electric/magnetic nature1 can be added to eq. (8). An example
is represented by the simplified Drude-like models [8], where is introduced a term depending
on the velocity and a relaxation time and that may be associated with electromagnetic-type
interactions. From the mathematical point of view the problem to be treated is the search
of the solution for the following vector differential equation

d

dt
~v = − ~Ω× ~v + ~Q − 1

τ
~v . (17)

The presence of a velocity-dependent contribution does not modify the procedure described
before and the solution is given by eq. (7) written for the following evolution operator

Û(t) = exp

{
− t

(
1

τ
+ Ω̂

)}
, (18)

and ~N = ~Q.

1We mean that the magnetic and/or electric field do not appear explicitly in its expression. As shown in
the following, genuine non-electric/magnetic effects, like the gravitational term, can also be included.
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The Lorentz equation (10) is mathematically equivalent to the one describing the falling
of a body under the influence of the Coriolis force. It has been stressed, within the framework
of the so called gravito-magnetic theories [9], that effects like the Foucault rotation can be
associated to a vector potential of the type reported in eq. (9) and the relevant analysis
has been conducted using the perspective of parallel transport and covariant derivative [10].
The supposed existence of such a potential has given the opportunity of developing further
speculations as those associated with a possible observation of the Aharonov-Bohm [11]
effect involving the Coriolis vector potential. This phenomenon, suggested by Aharanov and
Carmi [12], has been observed experimentally using the techniques of neutron interferometry
[13].

For the above reasons we will treat in detail the solution of the equation of motion of a
body falling on the Earth under the action of the Coriolis force. If we include the effect of
a velocity-dependent force, due, for example, to air friction, we can write this equation as 2:

d

dt
~v = − 2 ~ω × ~v − η ~v + ~g , (~ω = ω ~n) , (19)

where ω is the angular velocity of Earth rotation. Also in this case, with an obvious redefini-
tion of the vectors, the formal solution is given by eq. (7). The explicit form for the velocity
vector is:

~v(t) = e−ηt cos(2ωt)~v0 +
{
a − e−ηt [a cos(2ωt) − b sin(2ωt)]

}
~g

+ (~n · ~̀)~n − ~n× ~m , (20)

where

~̀ = e−ηt [1 − cos(2ωt)]~v0 +

{
1

η
− a − e−ηt

[
1

η
− a cos(2ωt) + b sin(2ωt)

]}
~g ,

~m = e−ηt sin(2ωt)~v0 +
{
b − e−ηt [a sin(2ωt) + b cos(2ωt)]

}
~g ,

a =
η

η2 + 4ω2
, b =

2ω

η2 + 4ω2
,

while, for the position vector one has

~r(t) = ~r0 +
{
a − e−ηt [a cos(2ωt) − b sin(2ωt)]

}
~v0

+
{
at − a2 + b2 + e−ηt

[
(a2 − b2) cos(2ωt) − 2ab sin(2ωt)

]}
~g (21)

+ (~n · ~o)~n − ~n× ~p , (22)

2The term associated to the centrifugal force has not been included. We will comment later on the
possibility of including this type of contribution in the formalism discussed in this paper.
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where

~o =

{
1

η
− a − e−ηt

[
1

η
− a cos(2ωt) + b sin(2ωt)

]}
~v0

+

{(
1

η
− a

)
t − 1

η2
+ a2 − b2 (23)

+ e−ηt
[

1

η2
− (a2 − b2) cos(2ωt) + 2ab sin(2ωt)

]}
~g ,

~p =
{
b − e−ηt [a sin(2ωt) + b cos(2ωt)]

}
~v0

+
{
bt − 2ab + e−ηt

[
(a2 − b2) sin(2ωt) + 2ab cos(2ωt)

]}
~g .

In Fig. (2) we show the trajectory described by a falling body under the influence of Coriolis
and friction forces, at a latitude of 45◦ N. The time dependence of the component of velocity
along the x-axis for different values of latitude is shown in Fig. (3).
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Figure 2: Trajectory of a body falling under the influence of the Coriolis force and the air
friction (λ = 45◦ N). The altitude z has been multiplied by 0.01, while the x coordinate has
been amplified by a factor 500; the body is initially at rest.

We expect that after some time the motion will be dominated by the so called limit
velocity occurring in any problem characterized by a damping term due to friction, and
that is reached when the total force acting on the moving body is zero. By imposing this
condition to the case of eq. (19), we find

2 ~ω × ~v ∗ + η ~v ∗ − ~g = 0 . (24)

This is a kind of algebraic equation having the velocity vector as the unknown quantity. By
applying the method developed in this paper, we find for this equation the following formal
solution

~v ∗ =
1

η + 2ω̂
~g , (25)

and taking into account the Laplace transform identity

1

A
=

∫ ∞
0

ds e−sA , (26)
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Vx

Figure 3: Time dependence of the x-component of the velocity for different values of the
latitude.

valid also if A is an operator, we obtain the following expression for the limit velocity:

~v ∗ =

∫ ∞
0

ds e−ηs e−2sω̂ ~g

=
1

η2 + 4ω2

[
(η + 2 ω̂)~g +

4

η
(~ω · ~g) ~ω

]
. (27)

This expression yields the generalization of the limit velocity occurring in one dimensional
motions, but it also generalizes the definition of the drift velocity. In Fig. (4) we have
reported the modulus of the velocity vector as a function of the modulus of the position
vector. It is evident that after a very rapid growth, the velocity of the system reaches a limit
value consistent with eq. (27). In Fig. (5) we have reported the components of the velocity
vector as function of the time. The effect of the Coriolis force is evident from the appearence
of the components vx and vy, which have been significantly amplified to make them visible
on the same scale for the component vz.

The results obtained in the present and the previous sections are valid if the vectors
defining the VOPs do not depend on time and space coordinates. If is not the case, we have
a completely different phenomenology, that will be discussed in the next sections.

4 Field inhomogeneities and the Lorentz-type equa-

tions

Before getting into the specific details relevant to the solution of the equation of Lorentz-
type for space and/or time dependent fields, it is important to remind some important issues
regarding operational ordering problems emerging from the non-commutative nature of the
vector product.

We will illustrate the associated difficulties considering, as an example, the Lorentz equa-
tion in absence of electric field and with a magnetic field consisting of two (non parallel)
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Figure 4: The modulus of the velocity vector as a function the modulus of the position
vector; the dashed line refers to the modulus of the limit velocity vector (same parameters
of Fig. (2)). The numerical and analytical solutions yields the same result, thus proving the
correctness of the procedure.

components ~B = ~B1 + ~B2. We may wonder whether the Lorentz equation can be solved in
such a way that the solution reflects the above decomposition. The evolution operator can
be expressed in terms of the VOPs Ω̂1,2 associated with the two components of the mag-

netic field, as Û = exp [t(Ω̂1 + Ω̂2)], but, as a consequence of the non-commutative character
of the vector product, the exponential function does not possess the semi-group property
exp(A + B) = exp(A) exp(B) = exp(B) exp(A) [14]. More sophisticated disentanglement
procedures of the exponential are in order, as, for example, the Zassenhaus identity [15],
which provides a formula yielding a disentangled expression for the exponential exp(Â+ B̂)
in terms of successive commutators of Â and B̂, namely

eÂ+B̂ = eÂ eB̂ eẐ1 eẐ2 · · · (28)

with

Ẑ1 = −1

2

[
Â, B̂

]
, Ẑ2 =

1

6

(
2
[
B̂,
[
Â, B̂

]]
+
[
Â,
[
Â, B̂

]])
.

The evolution operator containing the sum of two non parallel VOPs cannot be näıvely
disentangled and, accordingly, the associated dynamics cannot be simply expressed as two
successive R. r.. The identity (28) can be applied and we will illustrate its usefulness by
keeping only the Ẑ1 correction

Ẑ1 = −t
2

2

[
Ω̂1, Ω̂2

]
= −t2 ~Ω1 × ~Ω2 ,

9



Figure 5: The components of the velocity vector as a function of time (same parameters of
Fig. (4)).

and, thus, writing the evolution operator as follows3

et(Ω̂1+Ω̂2) ' etΩ̂1 etΩ̂2 e−t
2(~Ω1×~Ω2) . (29)

The truncation of the Zassenhaus formula at the first commutator holds for quasi-parallel
vectors and/or for small times, i.e. when the following inequality is satisfied

t2|~Ω1 × ~Ω2| � 1 , (30)

and, therefore, the approximate solution for the velocity vector can be written as

~v(t) ' etΩ̂1 etΩ̂2 ~v ′(t) (31)

where, on account of the condition (30) and eq. (5), ~v ′ can be written as

~v ′(t) ' e−t
2(~Ω1×~Ω2) ~v0 ' ~v0 − ωc,1 ωc,2 t

2 (~n1 × ~n2)× ~v0 , (32)

with

ωc,k =
eBk

m
, ~nk =

~Bk

Bk

(k = 1, 2) . (33)

The successive action of the exponential operators is that of providing two consecutive R. r.
of the vector ~v ′.

For example, if we consider the motion of a charged particle under the action of the
terrestrial magnetic field, gravity and Coriolis force, we should write the equations of motion
as

m
d

dt
~v = −(e ~BT + 2m~ω)× ~v + m~g , (34)

3The symmetric split disentanglement exp[t(Ω̂1 + Ω̂2)] ' exp( t
2 Ω̂1) exp(t Ω̂2) exp( t

2 Ω̂1) yields an inte-
gration more accurate than that provided by eq. (29) because it is of the order O(t3). The inclusion of
further orders in the Zassenhaus expansion may gives a better approximation. The symmetric split provides
an easier interpretation in geometrical terms, since it can be understood as three successive R. r.
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where ~BT denotes the terrestrial magnetic field. According to the previous discussion, the
above equation can be solved by introducing a kind of equivalent magnetic field vector given
by

~B∗ = ~BT + 2
m

e
~ω , (35)

thus getting for the associated drift velocity the expression

~vd =
m

e

~g × ~B∗

B∗2
, (36)

that give rise to a current flow orthogonal to the gravity force line and to the direction of the
equivalent magnetic force (35). However, if we are interested to disentangle the magnetic and
Coriolis components we can follow the just outlined procedure. By assuming that Coriolis
and Lorentz force vectors are quasi-parallel, i.e. ~BT × ~ω ' 0, we obtain a first correction
induced by the combined action of the fields given by (see eq. (32))

|~v ′ − ~v0|
v0

' ωc,T ω t
2 sinλ sinχ , (37)

where ωc,T is the cyclotron frequency associated to ~BT , λ is the angle between the vectors
~BT and ~ω, and χ the angle between the vector ~BT × ~ω and the initial velocity ~v0.

Let us now assume that the magnetic field is not homogeneous, i.e. it exhibits a depen-
dence on the transverse coordinates. This modifies the dynamics of the charge undergoing
the Lorentz force effect since during its motion the particle experiences space regions with
different magnetic field intensity and orientation. Furthermore, by assuming that we can
choose a (small) finite time integration step δ during which the fields remains constant,
the velocity and position vectors can be followed, step by step, by means of the following
equations (see eqs. (11, 12) with ~Q = 0)

~vk+1 = cos(Ωk δ)~vk + [~nk · ~̀k(δ)]~nk − ~nk × ~mk(δ) ,

~rk+1 = ~rk +
sin(Ωk δ)

Ωk

~vk + [~nk · ~ok(δ)]~nk −
1

Ωk

~nk × ~̀k(δ) , (38)

where the index k corresponds to successive integration steps, and

~̀
k(δ) = [1− cos(Ωk δ)] ~vk ~ok(δ) =

[
δ − sin(Ωk δ)

Ωk

]
~vk

~Bk = ~B(~rk) , ~Ωk =
e

m
~Bk .

We report in Figs. (6, 7) an example of motion in a non homogeneous magnetic field, where
is evident that the main effect of such a coordinate dependence is the appearance of a drift
velocity contribution [16].

The physical origin of the drift is in the fact that an increase or a reduction of the magnetic
field implies a corresponding reduction or increase of the Larmor radius, and, therefore, in
one period the orbit described by the particle is no more closed and the particle, according to

11



Figure 6: Electron motion in a smoothly varying magnetic field lying in the (x, y) plane;
~B = B0(x,−y, 0), ~v0 = v0(0, 1, 0).

Figure 7: Projection of the motion of Fig. (6) in: (z, x) plane (left), (y, z) plane (middle)
and (x, y) plane (right). The scales are not same (the y-coordinates have been reduced by a
factor 100) to evidentiate the displacement effect.

the sign of its charge, drifts along the varying field direction. A well known, straightforward,
calculation allows the evaluation of the drift force under the assumption that the field does
not vary significantly over a Larmor radius. The magnetic field dependence on the vector
position yields

~B(~r0 + δ~r) = eδ~r·
~∇ ~B(~r0) ' ~B0 + (δ~r · ~∇) ~B0 ( ~B0 = ~B(~r0)) . (39)

The extra-contribution to the Lorentz force is

~F = −e < (δ~r · ~∇) ~B0 × ~v > , (40)

where the average is taken over one cyclotron period. In the case ~B0 ⊥ ~v0, and assuming
~B ' ~B0, from eqs. (11, 12) one obtains

~F ' − eB0

2

[
(~n× ~rL) · ~∇

]
~vT , ~vT = ~n× ~v0 , (41)
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and the associated drift velocity is evaluated according to eq. (15). Other types of drift can
be included, but the procedure remains the same.

5 Time-dependent fields and Lorentz-type equations

The electric and magnetic fields in the Lorentz equation of motion may be time-dependent.
The solution of the problem in the most general cases presents various difficulties associated
to the fact that the field vectors evolve in time and may not be parallel to themselves at
different times. This situation is reminescent of what occurs in quantum mechanics when the
hamiltonian is time-dependent and, thus, does not commute with itself at different times.
In this case the solution of the problem demands for the use of the ordering methods, which
can also be exploited for the present problem.

However, let us start with the case in which the fields are time-dependent but their evolu-
tion implies only a variation in the modulus but not in the direction. Under this hyphotesis
time-ordering techniques are not necessary, but the problem deserves some comments re-
ported below. We will indeed solve the Lorentz equation of motion for a charge moving in
two mutually orthogonal electric and magnetic fields, with a sinusoidal time dependence, i.e.
we assume4

~E = E0 sin(ωt+ ϕ)~ex , ~B = B0 sin(ωt+ ϕ)~ey . (42)

According to eq. (42) the field vectors remain mutually orthogonal and parallel to them-
selves at any time and, therefore, the solution of the equation is given by eq. (7) with the
evolution operator

Û(t) = eΦ̂(t) (43)

where
~Φ(t) =

1

ω
[cos(ωt+ ϕ) − cosϕ] ~Ω0

(
~Ω0 =

e

m
B0 ~ey

)
.

Albeit trivial from the mathematical point of view, we report the solution in the simplified
case ~E = 0 because it presents some aspects useful for next developments (~n = ~Ω0/Ω0):

~v(t) = cos(Φ(t))~v0 + [1 − cos(Φ(t))] (~n · ~v0)~n − sin(Φ(t))~n× ~v0 . (44)

By assuming ϕ = π/2, ~n · ~v0 = 0, and using the Jacobi-Anger expansion [17], one obtains

cos(x sin θ) = J0(x) + 2
∞∑
n=1

cos(2nθ) J2n(x) ,

sin(x sin θ) = 2
∞∑
n=0

sin[(2n+ 1)θ] J2n+1(x) , (45)

4With this choice the Lorentz equation we are going to study are relevant for the motion of a charged
particle in the field of an electromagnetic wave. We have not used the wave-like form sin(kz − ωt) because
if we limit the analysis to the non-relativistic case, kz � ωt (see also ref. [6]).

13



we obtain, from eq. (44), the following expression for the velocity (ζ = Ω0/ω)

~v(t) = J0(ζ)~v0 − 2 J1(ζ) sin(ωt)~n× ~v0

+ 2
∞∑
n=1

{cos(2nωt) J2n(ζ)~v0 − sin[(2n+ 1)ωt] J2n+1(ζ)~n× ~v0} , (46)

which shows the interplay between the cyclotron frequency and the frequency of the oscil-
lating magnetic field.

The inclusion of the electric field implies some additional computational problems. Again
in the case ϕ = π/2, we write the inhomogeneous term of the solution as follows

~w(t) = eΦ̂(t)

∫ t

0

dt′ e−Φ̂(t′) ~Q(t′)

= e− sin(ωt) ζ̂

∫ t

0

dt′ esin(ωt′) ζ̂ cos(ωt′) ~Q0

(
~Q0 =

eE0

m
~ex

)
. (47)

This integral can be treated in different ways, and, to have an idea of the mathematical
problem one may face with, we choose to carry out the integration using the Bessel function
expansion of eq. (45). We get:

~w(t) =
t

2

∞∑
k=−∞

∞∑
n=−∞

exp

(
ı
n+ 2k

2
ωt

)
Fn(t) ~Jk,n (48)

where

Fn(t) = eıωt/2 sinc

(
n+ 1

2
ωt

)
+ e−ıωt/2 sinc

(
n− 1

2
ωt

)
.

and
~Jk,n = Jk(ıζ̂) Jn(−ıζ̂) ~Q0 . (49)

The last vector can be specified either in terms of the series expansion for the Bessel func-
tions5 or by the use of the integral representation [17]

Jn(x) =
1

2π

∫ π

−π
dθ eı(x sin θ−nθ) (50)

that allows to write

~Jk,n =
1

4π2

∫ π

−π
dθ

∫ π

−π
dχ e−ı(kθ+nχ) e−(sin θ−sinχ) ζ̂ ~Q0 . (51)

We have mentioned this specific problem to give a very first idea of the problems associ-
ated with the solution of equations of the type (10), where the torque and inhomogeneous
vector are explicitly dependent on the integration variation, but also because it has inter-
esting implications for the understanding of the role played by the Poynting vector in the
dynamics of charged particles moving under the combined action of mutually time dependent
orthogonal fields. The method of solution we have proposed, having an intrinsic vector na-
ture, can be ideally suited to treat the question addressed in [6] and clarify the link between
the Poynting vector and the drift velocity term given in eq. (13). This aspect of the problem
will be treated elsewhere.

5Jn(z) =
∑∞

k=0
(−)k

k!(n+k)! (z/2)n+2k .
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5.1 Operational Methods and time ordering techniques

Before considering problems requiring time ordered products, we will present a method
of solution involving an elaboration of the Heaviside operational method [18]. To better
appreciate the usefulness of the procedure we consider the case in which the particle is
initially at rest and only the electric field is a function of time while the magnetic field is
static. We can write the formal solution of eq. (10) in the following way

~v(t) =

(
d

dt
+ Ω̂

)−1

~Q(t) , (52)

and the use of the Laplace transform methods leads to

~v(t) =

∫ ∞
0

ds exp

{
−s
(

d

dt
+ Ω̂

)}
~Q(t) . (53)

In this integral the exponential can be straightforwardly disentangled because the VOP and
derivative operators appearing in its argument commute between them. Therefore, from eq.
(11), under the further assumption that the electric field differs from zero only for t > 0, one

has (~n = ~Ω/Ω)

~v(t) =

∫ t

0

dt′ e(t′−t)Ω̂ ~Q(t′) = ~c + (~n · ~f )~n + ~n× ~s , (54)

with

~c =

∫ t

0

dt′ cos [Ω(t′ − t)] ~Q(t′) , ~s =

∫ t

0

dt′ sin [Ω(t′ − t)] ~Q(t′) ,

~f =

∫ t

0

dt′ {1 − cos [Ω(t′ − t)]} ~Q(t′) . (55)

The case in which the vector ~Ω varies with time, not only in modulus but also in direction,
in such a way that

~Ω(t1) × ~Ω(t2) 6= 0 , (56)

implies that the VOPs associated at different times do not commute. The solution of our
problem cannot be obtained using a straightforward integration of the time dependent part,
i.e. it will not be sufficient replace in the Rodrigues rotation t Ω̂ with

∫ t
0

dτ Ω̂(τ).

From the geometrical point of view the condition (56) states that the torque vector
is no more parallel to itself at different times, or that the corresponding matrix equation
is expressed in terms of an explicitly time-dependent matrix, not commuting with itself
at different times. The situation is clearly reminiscent of what is occurring in quantum
mechanics where the solution of Schrödinger problems requires a time ordered expansion
of the evolution operator, like the Dyson [19] or Magnus [20] expansion. We will treat the
problem by exploiting the theory of path ordered exponential [21].

From the mathematical point of view the path ordered exponential function is defined
in non commutative fields and is equivalent to the exponential function in a commutative
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field. We define, therefore, the following ordered exponential with respect to the ordering
parameter t:

oe[T̂ ](t) =

(
exp

{∫ t

0

dt′ T̂ (t′)

})
+

(57)

where the symbol ()+ denotes the Dyson time ordering operator for the element T̂ (t) of an
algebra with a non commutative product ◦. The ordered exponential can be defined in many
different ways. Here we use the differential equation

d

dt
oe[T̂ ](t) = T̂ (t) ◦ oe[T̂ ](t) , (oe[T̂ ](0) = 1̂) . (58)

The solution of eq. (58) can be written in terms of the following series

oe[T̂ ](t) = 1̂ +
∞∑
n=1

oen[T̂ ](t) (59)

with

oen[T̂ ](t) =
1

n!

∫ t

0

dt′ T̂ (t′) ◦ oen−1[T̂ ](t′) , oe0[T̂ ](t) = 1̂ .

The above solution is clearly recognized as an ordinary Dyson expansion [19], which is not
fully satisfactory because it is a perturbative series which does not ensure properties, e.g.
the conservation of the norm of a vector, holding also for time-dependent vectors. Different
expansions, preserving at any order the norm, can be employed as, for example, the already
quoted Magnus expansion (see also ref. [21]), which can be written as follows

oe[T̂ ](t) = exp

{∫ t

0

dt′ T̂ (t′) +
1

2

∫ t

0

dt1

∫ t1

0

dt2

[
T̂ (t1), T̂ (t2)

]
+ · · ·

}
, (60)

where the dots refer to higher order commutators, not reported here. Let us note that in
the case of Lorentz equation the non commutative product is the vector product (◦ ≡ ×),
and, therefore [

T̂ (t1), T̂ (t2)
]

= 2 ~T (t1) ◦ ~T (t2) . (61)

According to this result, the solution of the Lorentz equation (10) with ~Ω and ~Q depending
on time is given by eq. () with the evolution operator

Û(t) = e−Γ̂(t)+∆̂(t) , (62)

where the following notation has been introduced

Γ̂(t) =

∫ t

0

dτ Ω̂(τ) , ∆̂(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2

[
Ω̂(t1), Ω̂(t2)

]
+ · · · (63)

As for the correction ∆̂(t), if we assume that the modulus of the vector ~Ω remains
constant, one has [

Ω̂(t1), Ω̂(t2)
]

= 2 Ω2 sin θ12 ~u , (64)
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where θ12 is the angle formed by the two vectors and ~u is the versor pointing in the direction
orthogonal to the plane defined by ~Ω(t1) and ~Ω(t2). For sufficiently small time differences
and for adiabatic changes, we expect that θ12 = ω(t2 − t1)� 1, and therefore

∆̂(t) ' 1

6
Ω2 ω t3 ~u . (65)

Higher orders corrections can also be included but calculations becomes more and more
cumbersome.

The previous discussion has been developed on purely mathematical grounds. As an
example of application, we can consider the motion of a particle under the influence of a
magnetic field with a slowly varying component along the z-axis and a constant y-component,
i.e. the magnetic vector changes its direction and it is not parallel to itself at any time. The
lowest order corrections in the Magnus expansion allow the inclusion of the effect of the
slow field evolution. If we assume that the variation is adiabatic over one gyration period,
the correction can be evaluated by means of eq. (65), with a frequency ω, assumed to be
constant during this time, given by

ω =
ByḂz

B2
. (66)

6 Second order Lorentz equation

Before entering the specific topic of this section we will discuss the application of the oper-
ational method developed in the previous sections to the solution of the following evolution
equation

d

dt
~S = ~T × ~S + λ ~T ×

(
~T × ~S

)
, S̄|t=0 = ~S0 , (67)

which is an evolution-type vector equation, with a further contribution associated with a
double vector product of the torque vector. The associated evolution operator writes

Û(t) = et T̂ +λ t T̂ 2

(68)

which involves linear and quadratic VOPs. It resembles the generating function of two
variable Hermite polynomials Hn(a, b) [23] and can be therefore expanded in series according
to the identity

ea ξ+ b ξ2 =
∞∑
n=0

ξn

n!
Hn(a, b) Hn(a, b) = n!

[n/2]∑
k=0

1

(n− 2k)! k!
an−2k bk . (69)

The use of the operator T̂ as expansion parameter yields the following series for the evolution
operator

Û(t) =
∞∑
n=0

1

n!
Hn(t, λt) T̂ n . (70)
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Even though slightly more complicated than an ordinary exponential expansion, we can
again take advantage from the cyclic properties of the vector product to reduce it to a kind
of Rodrigues rotation, by defining the following cos- and sin-like functions

Ch(t) =
∞∑
n=0

(−)n

(2n)!
T 2nH2n(t, λt) , Sh(t) =

∞∑
n=0

(−)n

(2n+ 1)!
T 2n+1 H2n+1(t, λt) . (71)

The form of the solution is therefore exactly that given in eq. (5) with the replacements
cos→ Ch, sin→ Sh. In the case in which the evolution operator

Û(t) = exp

{
p∑

k=1

λk t T̂
k

}
(72)

we can exploit the same procedure involving higher orders Hermite polynomials, as we will
discuss in the concluding section.

Let us now discuss the inclusion of radiation correction effects, which are usually incor-
porated in the classical Lorentz equation by means of a second order time derivative term,
according to the following expression [4](

− τ d2

dt2
+

d

dt
+ Ω̂

)
~v = ~Q(t) (73)

where

~v(0) = ~v0
d

dt
~v|t=0 = ~a0 , τ =

2

3

r0

c
, r0 =

e2

mc2
.

In this case equation we have the contribution of an extra term that acts as a an anti-
damping giving rise to the so called runaway solutions. The physical content of this equa-
tion is well known and will not be commented here. We will limit our analysis to its math-
ematical aspects, which have some elements of interest, since this equation represents a
non-homogeneous second order differential vector equation and we can use an extension of
the previously outlined method to write the relevant solution. For future convenience we
factorize the operator acting on the velocity vector as follows(

d

dt
− Â+

) (
d

dt
− Â−

)
~v = −1

τ
~Q (74)

where

Â± =
1

2τ
(1 ± α̂) ,

(
α̂ =

√
1 + 4τ Ω̂

)
.

In the hypothesis that ~v0 = ~a0 = 0, we can write the formal solution of eq. (73) using a
generalization of eq. (52), namely

~v(t) = −1

τ

[(
d

dt
− Â+

) (
d

dt
− Â−

)]−1

~Q(t)

= − 1

τ(Â+ − Â−)

{(
d

dt
− Â+

)−1

−
(

d

dt
− Â−

)−1
}

~Q(t) , (75)
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from which, by using the Laplace transform identity (26) and assuming that ~Q = 0 for t < 0,
we obtain

~v(t) = − 1

α̂

[
et Â+

∫ t

0

dξ e−ξ Â+ ~Q(ξ) − et Â−
∫ t

0

dξ e−ξ Â− ~Q(ξ)

]
. (76)

We note that
1

α̂
=

1√
π

∫ ∞
0

ds
e−s (1 + 4 τ Ω̂)

√
s

, (77)

and, using the Newton series expansion for the operator Â±, we get for the exponential
operators:

etÂ± = exp

{
t

2τ

[
1 ±

∞∑
k=0

(
1/2

k

)
(4 τ Ω̂)k

]}
, (78)

which can be written in terms of a Rodrigues rotation involving the previously quoted sin-
and cos-like functions expressed in terms of the higher orders Hermite polynomials (see eq.
(71)).

According to the previously outlined steps we know how to handle the formal expression
given in eq. (78) to get an explicit solution for our problem. Let us now consider only the
homogeneous part of eq. (73), whose formal solution reads

~v(t) = et Â+ ~c1 + et Â− ~c2 , (79)

where ~c1,2 are constant vectors linked to the initial vectors by the relations

(Â+ − Â−)~c1 = −Â− ~v0 + ~a0

(Â+ − Â−)~c2 = Â+ ~v0 − ~a0 . (80)

The action of the exponential operators on the constant vectors can be defined according to
the previous prescriptions.

Since eq. (73) is a second order equation, we can cast it in the form of a matrix equation
as follows

d

dt
Z = M̂ Z + K , (81)

where

Z =

(
~v
~a

)
, M̂ =

1

τ

(
0 τ

Ω̂ 1

)
, K = −1

τ

(
0
~Q

)
. (82)

The evolution operator et M̂ associated to this equation is given by the exponential of a
2 × 2 matrix. Since the matrix M̂ does not depend on time, standard means, e.g. the
Cayley-Hamilton theorem [22], can be used to cast it in the form reported below (σ = t/2τ)

Û(t) = et M̂ = eσ
(
− 1
α̂

sinh(σ α̂) + cosh(σ α̂) 2 τ
α̂

sinh(σ α̂)

2 Ω̂
α̂

sinh(σ α̂) 1
α̂

sinh(σ α̂) + cosh(σ α̂)

)
, (83)

and, thus (Z0 = Z|t=0)

Z = Û(t)Z0 +

∫ t

0

dt′ Û−1(t′)K , (84)
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that is the same solution as before, written in matrix notation.

The structure of the previous formalism may rises some confusion. As an example, let
us consider the definition of the norm of Z:

|Z|2 = (~v ~a) ·
(
~v
~a

)
(85)

where the dot represents an ordinary scalar product. It is evident that, according to such
a definition, the norm is not preserved. This is due to the rotation matrix, which is not
norm-preserving, and to the runaway mechanism, associated with the anti-damping term eσ.
Such a term is, from the mathematical point of view, not particularly significant and can
always be eliminated by means of a Liouville transformation [17].

Let us consider again the following second order vector equation

d2

dt2
~s + Â

d

dt
~s + B̂ ~s = 0 (86)

where Â and ~B are VOPs. An equation of this type is met in physics in the study of Coriolis
problems, including the effects of the centrifugal forces, and presents an extra difficulty
associated with the presence of the vector operator in the damping term. Eq. (86) can be
reduced to a Liouville standard form by setting

~s(t) = exp

(
− t

2
Â

)
~u(t) (87)

and, if [ ~A, ~B] = 0, we can write the equation for the vector ~u as follows

d2

dt2
~u +

(
B̂ − 1

4
Â2

)
~u = 0 . (88)

The transformation provided by eq. (87) is geometrically interpreted as a R. r. of the vector
~u, induced by the torque vector associated with the VOP Â. The solution of eq. (88) can
be obtained using the procedure illustrated before.

The previous results (see also the first paper in Ref. [1]) can be exploited to develop a
numerical code for the motion of bodies under the influence of gravity, Coriolis and centrifugal
forces.

7 Relativistic effects

In the previous sections we have discussed the motion of charged particles in electric and
magnetic field without considering any relativistic correction. This can be easily accounted
for by rewriting the Lorentz equation in the form

m0
d

dt
(γ ~v) = e

(
− ~B × ~v + ~E

)
(89)
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where m0 is the electron rest mass and γ is the relativistic factor. The integration of this
equation appears problematic, even for constant and homogeneous fields, since ~E induces a
non conservation of the modulus of the velocity. The relativistic factor γ is no more constant
and a further equation, specifying its time dependence, should be coupled to eq. (89). By

introducing the vector ~Λ = γ~v, eq. (89) can be rewritten as (with the usual means for the

vectors ~Ω and ~Q)
d

dt
~Λ = −1

γ
~Ω× ~Λ + ~Q , (90)

By multiplying both sides of this equation by the velocity, we obtain

~Λ · d

dt
~Λ = ~Λ · ~Q . (91)

and, thus (~Λ0 = ~Λ(t = 0))

Λ2(t) − Λ2
0 = 2

∫ t

0

dt′ ~Q · ~Λ(t′) , (92)

that provides the relativistic kinetic energy variation due to the interaction of the charge with
the electric field. As already stressed, the presence of the relativistic factor prevents us from
the possibility of finding an analytical solution using the tools developed so far. However, a
fairly straightforward integration scheme can be used adopting the same iterative procedure
described in sec. 4 (see eqs. (38)). In this case the solution is obtained at each time
step in terms of eqs. (11), in which Ω is replaced by Ω/γn−1. An example of solution of the
relativistic problem is shown in Fig. (8) where we have plotted the modulus of the velocity as
function of time using the solution given in eqs. (11) and including the relativistic correction.
It is evident that for low initial velocities the two solutions are undistinguishable, while the
differences becomes significant with increasing values of v0. The oscillations in the velocity
are due to the combined effect of electric and magnetic fields, but in the relativistic case the
oscillation period becomes larger, in agreement with the fact that the cyclotron frequency
decreases with increasing γ.

We do not include further examples because the goal of this section was just show-
ing that the analytical solutions could straightforwardly be implemented into a numerical
scheme yielding the relativistic treatment. These effects will be thoroughly discussed in a
forthcoming paper.

8 Bremsstrahlung effects

The radiation emitted by an accelerated charge can be evaluated from the Lienard-Wiechert
integral [4] which yields the energy radiated per unit solid angle and unit frequency as

d2

dΩ dω
I =

e2ω2

4π2c
S2 (93)

with S modulus of the vector

~S =

∫ T

0

dt ~q × (~q × ~β) exp

{
ı ω

(
t− ~q · ~r

c

)}
, (94)
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Figure 8: Modulus of the velocity as function of time: comparison between the non relativistic
(left) and the relativistic (right) case for ~v0 = v0(1, 0, 0); ~B = B0(0, 0, 1); ~E = E0(0,−1, 0).

where ~q denotes the unit vector of the direction along which the emitted radiation is observed
(see Fig. (9)), ~v = ~βc is the velocity of the charge, and T is the time during which the charge
effectively experiences the acceleration due to the fields. By assuming that the motion occurs
in absence of electric field and under the influence of a constant magnetic field, by using eq.
(12) (with (~r0 = 0) it is easy to show that:

exp

{
ı ω

(
t− ~q · ~r

c

)}
= exp

{
ı
ω

Ω
c1

}
exp {ı ω c2 t}

exp
{
ı
ω

Ω
[c3 sin(Ωt) − c1 cos(Ωt)]

}
, (95)

where (~n = ~B/B, ~β0 = ~v0/c)

c1 = ~q · (~n× ~β0) , c2 =
[
1− (~n · ~β0) (~q · ~n)

]
, c3 = (~n · ~β0) (~q · ~n) − ~q · ~β0 ,
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Figure 9: Reference frame definition for eq. (94). The magnetic field is directed along the
z-axis.

and, according to the Jacobi-Anger expansion [17]6

exp
{
ı
ω

Ω
[c3 sin(Ωt) − c2 cos(Ωt)]

}
=

∞∑
k=−∞

eıkΩtBk

(ω
Ω
c3,−ı

ω

Ω
c2

)
(96)

=
∞∑

k=−∞

eıkΩt

∞∑
m=−∞

Jk−m

(ω
Ω
c3

)
Im

(
−ı ω

Ω
c2

)
.

Moreover, it turns out

~q × (~q × ~β) = ~a1 + ~bc cos(Ω t) + ~bs sin(Ω t) , (97)

where we introduced the following vectors

~a = (~n · ~β0) [(~q · ~n) ~q − ~n] ,

~bc = (~q · ~β0) ~q − ~β0 − ~a , (98)

~bs = ~q · (~n× ~β0) − (~n× ~β0) .

Inserting these results in eq. (93), one obtains (for notation semplicity we have omitted to
indicate the argument of the B-functions)

~S =
T

2
exp

{
ı
ω

Ω
c1

} ∞∑
r=−∞

[
2~aBr + ~bBr−1 + ~b∗Br+1

]
exp

{
ı
φr
2
T

}
sinc

(
φr
2
T

)
, (99)

6The functions Bk can be written in terms of the cylindrical Bessel functions by exploiting the identity
In(ı x) = ın Jn(x) and the Graf addition theorem [17], which yields

Bn(x, ı y) =
(

x + ı y

x− ı y

)n/2

Jn(
√

x2 + y2) .
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where

~b = ~bc + ı~bs , φr = rΩ + ω c2 .

According to the previous equation, the spectrum of ~S presents a series of harmonics with
frequency

ωr =
rΩ

1− (~q · ~n) (~n · ~β0)
. (100)

In the case of a relativistic electron, we have

Ω =
eB

γ m0

=
ωc,0
γ

, (101)

and we can treat the solenoid as an undulator with period

λc = γ λc,0 = γ
2πc

ωc,0
. (102)

If ~n = ~q and the initial motion is mainly in the same direction of the field, we find

λr '
λc

2 r γ2
. (103)

If we limit ourselves to the non relativistic case, the inclusion of the electric field does
not imply any particular computational problem for the radiation integral. A significant
difference is associated with the lineshape which is not simply the square of the sinc-function
appearing in eq. (99), but is now given by the square modulus of the function

Fr =

∫ T

0

dt exp

(
φr t − ω

~Q · ~q
c

t2

)
. (104)

Fig. (10) shows the shift and broadening of the spectral line of the radiation emitted by
electrons moving in the field of a solenoid.

9 Quantum mechanical aspects and concluding remarks

The final topic we will treat is the extension of these methods to quantum mechanics. To
this aim we consider again the Hamiltonian given in eq. (8), but in absence of any electric
field. If we assume that the magnetic field is directed along the z-axis, we can write the
explicit form the Hamiltonian as follows7

Ĥ =
1

2m

(
−ı ~ ~∇ − e ~A

)2

=
1

2m

{
−~2∇2 + e2B2 (x2 + y2) − ı ~ eB (x∂y − y∂x)

}
, (105)

7Note that in the static symmetric gauge (cfr eq. (9)), ~∇ · ~A = 0.
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Figure 10: Comparison of the emitted radiation lineshape between the case with only the
solenoid (a) and the case where also an electric field is present (b).

which can be more conveniently cast in the form (see also [5] and references therein)

Ĥ = − ~2

2m
∂2
z +

1

2m
ω2
c r

2
L

(
Γ̂2

1 + Γ̂2
2

)
(106)

where

Γ̂1 =
1√
2

(ı ∂ξ + η) Γ̂2 =
1√
2

(ı ∂η − ξ) ξ =
x

xL
η =

y

rL
. (107)

The operators Γ̂1,2 satisfies the commutation rule[
Γ̂1, Γ̂2

]
= − ı , (108)

and (T̂ = Γ̂1Γ̂2)[
Γ̂2

1, Γ̂2
2

]
= −4 ı T̂ + 2 ,

[
T̂ , Γ̂2

k

]
= (−)k+1 2 ı Γ̂2

k (k = 1, 2) , (109)

i.e. they exhibit the commutator properties of SU(1,1). The relevant Heisenberg equations
write in the form of a vector torque equation of the same type of eq. (1) and the time-
dependent solution of the associated Schrödinger problem can be obtained using the standard
Wei-Norman ordering procedures [24].

A different way of treating the quantum evolution problem consists in introducing a
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suitable transform as follows (~ζ = (ζ1, ζ2, ζ3))

Û(t) = exp

{
− ıt

2m~
(ı ~ ~∇+ e ~A)2

}
(110)

=
1

(2π)3/2

∫ ∞
−∞

d~ζ e−ζ
2

exp

{
2 ı

√
ıt

2m~

[
~ζ · (ı ~ ~∇+ e ~A)

]}
,

where, from eq. (9)

(ı ~ ~∇+ e ~A)1 = ı ~ ∂x −
e

2
B y ,

(ı ~ ~∇+ e ~A)2 = ı ~ ∂y +
e

2
B x , (111)

(ı ~ ~∇+ e ~A)3 = ı ~ ∂z .

In eq. (110), by ordering the exponential in the integrand, for the wave function at later
time we obtain

Ψ(~r, t) = Û(t) Ψ(~r)

=
1

(2π)3/2

∫ ∞
−∞

d~ζ exp

{
−ζ2 + ωc t ζ1 ζ2 − ı

√
ım t

2 ~
ωc (y ζ1 − x ζ2)

}

Ψ(~r −
√
ı 2 ~ t
m

~ζ ) . (112)

This relation is a generalization of the Gauss-Weierstrass transform and the study of its
consequences will be discussed elsewhere.

It is worth stressing that the case where the direction of the magnetic field is arbitrary
implies only a slightly more complicated integral transform. Even the inclusion of the electric
field is not particularly tricky. Assuming that the electric field lies in the (x, y)-plane ( ~E =
(Ex, Ey, 0)), we can recast the Hamiltonian operator in the form

Ĥ =
1

2m

(
−ı ~ ~∇ − e ~A

)2

− e ~E · ~r

=
1

2m

{
−~2∇2 +

e2B2

4

[
(x− αx)2 + (y − αy)2

]
− ı ~

eB

2
[(x− αx) ∂y − (y − αy) ∂x]

}
− 1

2
m$2 (α2

x + α2
y) + ı ~

$

2
(αx ∂x + αy ∂y) , (113)

where

αx,y =
4mEx,y
eB2

$ =
eB

2m
=

ωc
2
.

This Hamiltonian is that of a multidimensional harmonic oscillator with shifted coordinates.
The constant term 1

2
m$2 (α2

x + α2
y) is just the vacuum field energy redefinition associated

26



with the transformation used to move to the shifted coordinate representation. The term
proportional to (αx ∂x + αy ∂y) is the quantum counterpart of the drift motion.

In the paper we have stressed the analogy between Coriolis and Lorentz forces. This
is more than a formal analogy and the previous considerations can be extended to the so
called quantum Coriolis states [25], that are similar to the Landau quantum states [26]
entering in the analysis of the motion of a quantum electron in a classical magnetic field.
Some aspects of the problem and the possibility of studying them within the context of the
present formalism, will be the argument of a forthcoming investigation.

The methods we have developed are flexible, fairly simple and easily amenable for nu-
merical computation. Their use can also extended to non linear equations like the Landau-
Lifshitz-Gilbert equation describing the precessional motion of the vector magnetization ~M
in solids [27]. Without entering in details, we remind that such equation, in our notation,
writes

∂t ~M = −(α + β ~M×) ( ~M × ~H) . (114)

The quadratic non-linearity creates noticeable difficulties and the equation can be viewed
as a kind of Riccati vector equation. Assuming however that the conditions of the problem
allow the definition of a time step in which the variations of the vector ~M are not large, we
can use the following solution scheme

∂t ~Mn = ~P × ~Mn , ~P = (α + β ~Mn−1×) ~H , (115)

where the vector ~P , containing the vector ~M at the previous integration step, is treated as a
constant torque with the inclusion of an anti-damping term. The solution is essentially that
provided in eq. (20), and the evolution should be followed by successive steps.

The points in these concluding remarks have briefly treated just to show the flexibility
of the method we have proposed and the number of topics which it allows to treat. Most of
them deserves a deeper analysis, that we will develop in a forthcoming investigation.
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