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Abstract 

 
When electrons or positrons are planar channeled through a crystal, the spectrum of bound 
energy states forms and one can observe so-called channeling radiation. The intensity of 
channeling radiation depends on populations of bound energy levels. These populations change 
during projectiles motion through a crystal that, in turn, influences the CR intensity. In this 
manuscript we present theoretical model and computer codes to investigate the bound energy 
spectra of planar-channeled electrons and positrons and to obtain the initial populations of 
bound states. Solving the kinetic equations and using some approximations we explore the 
dynamics of bound state populations. In the future taking into account the dechanneling 
processes more realistic picture of evolution of bound state populations will be giving. 
 
 
 
 
 
PACS.: 61.85.+p 
 
 
 
 
 
 
 



1 INTRODUCTION 

When the charged particles moves in a crystal under small angles to the crystal planes or 
axes, the channeling motion may take place [1]. As known, interaction of light particles with a 
crystal potential under the channeling conditions forms the spectrum of bound energy states for 
projectiles [2]. The transitions between these energy levels at channeling result in channeling 
radiation (CR) [3]. The intensities of CR lines depend on populations of energy levels at the 
time of radiation. 

Hence, to estimate the line intensity, one should know the dynamic of populations for 
bound states. The behaviors of populations are described by “the kinetic equations” [4]. In this 
work we present the solutions, describing the behavior of bound state populations under 
projectile planar channeling. We are considering the range of relatively small energies (less 
than 120 MeV), when the quantum-mechanical treatment is applicable to the particle dynamics 
(the number of sub-barrier levels is about 10-20). 
 
 

2 BOUND ENERGY STATES AND WAVE FUNCTIONS 

2.1 Crystal potential 

As known the crystal potential forms as a sum of separate atomic potentials, and when a 
particle moves along a crystal plane under small glancing angle, the potential can be replaced 
by the averaged planar potential – “continuous planar potential” [2,3]. It is noteable that the 
potential averaging can be analytically performed keeping rather good agreement with 
experimentally observed data. 

Let us consider a particle moving under planar channeling. We are directing the OX axis 
transverse to the crystal plane and the orthogonal OY and OZ axes parallel to the plane; the 
origin of OX axis is in the center of a channel (see Fig. 1). In this case the planar crystal 
potential may be represented by Fourier expansion: 

 
 Upl x,y,z( )= Uky ,kz ,pl(x)exp i ky y + kzz( )[ ]

ky ,kz

∑ . (1) 

 
where ky and kz are the reciprocal lattice vectors of the plane: 
 

 
y

y

y
a

n
k

π2
= ,   

z

z
z

a

n
k

π2
= , (2) 

 
with the integer numbers ny and nz, ay and az are the distances between atoms in a plane. The 
main harmonic in expansion (1) with ny=nz=0 corresponds to the continuous planar potential 
U0,pl(x). Successfully, the functions )(, xU

zy kk  are the side harmonics amplitudes, which are 

decreasing at the numbers ny and nz increase. 
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Fig.1. Scheme of the coordinate frame. 
 

In this work we use the Moliere approximation for screened atomic potential, which, after 
averaging over all atoms in a plane and, successfully, over thermal atomic vibrations, can be 
reduced to next expressions for both continuous potential and side harmonics in expansion (2) 
[4]: 
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In these expressions x%  is the distance to the plane; the dimension of the potential is given in 
“energy” units. Here, Zcr is the number of a lattice atom, Z equals 1 for positrons and -1 for 
electrons, h  is the Planck constant, α is the fine structure constant, c is the speed of light. The 
screening radius is expressed in the following approximation 
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ab is the Bohr radius. Parameters of Moliere potential are α1=0.1, α2=0.55, α3=0.35, β1=6.0, 

β2=1.2, β3=0.3, ( )222
TF

2
,, zyikki kka

zy
++= ββ . 

The expressions (3) and (4) are written for the planes when the cell of a plane consists of 
one atom. If the cell of a plane consists of two atoms and the vector ( )

zy ρρ ,  in the plane 

defines the displacement of these atoms, the expression (3) should be multiplied by the factor 2 
and the expression (4) - by the factor ( )( )

zzyy kkf ρρ +−+= iexp1b . 

For simplicity we describe the crystal potential by a sum of potentials of two neighbor 
planes forming a channel for particle propagation. In this case the continuous potential of a 
crystal is evaluated by  

 
 )()()( pl,0pl,00 xdUxdUxU −++= , (5) 

 
and the non-zero harmonic of periodic potential – by  
 
 ( )( )plplpl,,pl,,, iexp)()()( zkykxdUdxUxU zykkkkkk zyzyzy

+−−++= , (6) 

 
the vector ( )plpl ,, zyax  defines the relative atoms disposition for two neighboring parallel 

planes, ax is the distance between planes, d=ax/2. 

2.2 Bound energy spectrum 

The total energy E of a channeled particle can be presented as a sum of longitudinal 
energy ||E  and transverse energy ε. On the first approximation, one can consider, that particle 

moves in a channel under influence of continuous potential only. The transverse energy has 
discrete values and is defined by Schrodinger-type equation [2]: 
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The longitudinal energy is E|| = m0c
2( )

2
+ p||c( )

2
− m0c

2 , || cosp p θ=  is longitudinal 

momentum, cmp 0
2 1 ⋅−= γ  is the full momentum of particle, γ =

Ekin

m0c
2 +1, Ekin is the total 

kinetic energy of particle, θ is the angle between momentum of particle and crystal planes (see 
Fig. 1), m0c

2 is the rest energy of particle (electron or positron). 
Due to the transverse periodicity of continuous potential (4), the wave functions and 

continuous potential can be presented by Fourier expansions [2]: 
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In Eqs.(7) and (8) xag /20 π=  is the reciprocal lattice vector, which is transverse to the planes, 
κ is the quasimomentum defined as: 
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momentum of channeled particle. In Eq. (7) mU ,0  are the Furrier components of continuous 

potential, 
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as seen in this expression )(0 xU  is the even function; the coefficients nC  in Eq. (8) will be 
defined later. The presented expansions are cut off on the number Nmax when the Fourier 
components mU ,0  become rather small. 

The use of Eqs.(7) and (8) in Schrodinger equation results in the following matrix 
equation: 

 
 CMC ⋅= ε . (9) 
 

The symmetric matrix M consists of the terms 
( )

22 2
0

0,0
||2ii

c ig
M U

E
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 and 

ijUM Nijij ≠= −− ,
max2)(,0 , i, j = −Nmax ;Nmax[ ]; C is the matrix with coefficients Cn, 

n = −Nmax ;Nmax[ ]. The dimension of matrix M is determined by (2Nmax+1). Hence, one can 
obtain (2Nmax+1) eigenvalues εi from Eq.(9) that defines the bound energy levels of channeled 
particles. The energy level is characterized by number i and quasimomentum κ. Thus, the 
bound energy levels form zone structure. Each zone includes the energy levels with the same 
number i but with different quasimomentum κ. Due this fact, each zone is characterized by 
specific width. Eigenvector Ci corresponds to every energy level εi and defines the wave 
function iψ  of the given bound state: 
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 ψi(x) =
1

ax

Cn

i exp i κ − ng0( )x( ),
n

∑ n = −Nmax ;Nmax[ ]. (10) 

 

The factor xa/1  is added to satisfy the normalization condition 
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In Tables 1 and 2 the bound zone structure for Ekin=80 MeV (full energy E=80.5 MeV) 

electrons and positrons channeled along (220) planes in Si crystal are presented. The top of 
potential equals zero for electrons and equals 24.4 eV for positrons. And on the contrary, the 
deep of potential equals -24.4 eV for electrons and equals zero for positrons. Only sub-burrier 
zones are presented. Parameters of Si crystal are a=5.43 Å as the lattice constant, and Zcr=14 as 
the atomic number. The location of atoms onto (220) planes is defined by distances 

( )1/ 2 2
x

a a= , 1/ 2ya a= , 
z

a a= , ( )pl 1/ 4 2y a= , pl 1/ 2z a= , and (220) plane has the 

basic ( ) ( )( ), 1/ 2 2 ,1/ 2y z a aρ ρ = . In our calculations we used Nmax=50. 

 
Table 1. Sub-barrier zone structure for 80 MeV electrons channeled along (220) Si planes. 

Zone number Down limit of 
zone, eV 

Width of zone, 
eV 

Top limit of 
zone, eV 

Gap between the 
top limit of this 
zone and the 
down limit of the 
next zone, eV 

1 -21.3 <<0.1 -21.3 5.6 
2 -15.7 <<0.1 -15.7 4.3 
3 -11.4 <<0.1 -11.4 3.1 
4 -8.3 <<0.1 -8.3 2.4 
5 -5.9 <<0.1 -5.9 2.0 
6 -3.9 <<0.1 -3.9 1.6 
7 -2.3 <<0.1 -2.3 1.1 
8 -1.1 <0.1 -1.1 0.8 
9 -0.3 0.3 0.0 0.3 
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Table 2. Sub-barrier zone structure for 80 MeV positrons channeled along (220) Si planes. 
Zone number Down limit of 

zone, eV 
Width of zone, 
eV 

Top limit of 
zone, eV 

Gap between the 
top limit of this 
zone and the 
down limit of the 
next zone, eV 

1 0.6 <<0.1 0.6 1.3 
2 1.9 <<0.1 1.9 1.4 
3 3.3 <<0.1 3.3 1.4 
4 4.7 <<0.1 4.7 1.4 
5 6.1 <<0.1 6.1 1.4 
6 7.5 <<0.1 7.5 1.4 
7 9.0 <<0.1 9.0 1.5 
8 10.6 <<0.1 10.6 1.6 
9 12.2 <<0.1 12.2 1.6 
10 13.8 <<0.1 13.8 1.7 
11 15.5 <0.1 15.5 1.8 
12 17.3 <0.1 17.3 1.7 
13 19.0 0.1 19.1 1.6 
14 20.7 0.3 21.0 1.4 
15 22.4 0.5 22.9 1.1 
16 24.0 0.9 24.9 0.7 

 
 

3 POPULATIONS OF BOUND STATES 

3.1 Initial populations 

The initial distribution of channeled particles over transverse energy states is formed 
when particles penetrate to a crystal. Let us describe the transverse motion of a free particle by 
the plane wave 
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The probability P0,i of particle capture into the i-th zone defines by the expression: 
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It is notable that only elastic captures have been considered, i.e. the transverse momentum of a 
free particle corresponds to its quasimomentum in the bound state. 
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In Figs. 2 and 3 the initial populations of bound energy states for Ekin=80 MeV electrons 
and positrons channeled in Si (220) crystal are presented. The projectiles penetrate into the 
crystal under the glancing angle θ=2’’ (about 10 µrad) to the (220) planes. 
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Fig.2. Initial populations of bound states for 80 MeV electrons channeled along 
(220) Si planes. Angle between momentum of electron and (220) planes is θ=2’’. 
We have chosen non zero incidence angle in order to have the even zones 
populated. 
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Fig.3. Initial populations of bound energy states for 80 MeV electrons channeled 
along (220) Si planes. Angle between momentum of positron and (220) planes is 
θ=2’’. 
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3.2 Dynamics of bound states populations 

At particle motion in a crystal, a particle can change its transverse energy under the 
influence of periodic part of crystal potential. The periodic part of a potential can be considered 
as perturbation. When kinetic energy of a particle is not large (<120 MeV), the number of sub-
barrier energy levels is not very large (about 10-20) and to describe the evolution of bound state 
populations Pi one can use a system of the kinetic equations in the form [2]: 

 

 ∑ Γ−=
j

iijij

i PPw
dt

dP
 (12) 

 
Here jiw  is the transition probability from i-th state to j-th state at the unit of time, ∑=Γ

j

jii w  

is the full probability to leave i-th energy state. Let us calculate the quantities jiw . 

The probability of transition from i-th state to j-th state is generally a time-dependent 
function [4], i.e. 
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where t is the time of particle motion in a crystal. The frequency of transition is 

( ) h/ijji εεω −=  and Vji is the sum of the matrix elements 
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zy kkU ,  are fast 

decreasing at ny and nz increase, in the first approximation, our consideration can be limited by 
the term with ( )1,1 == zy nn . 

Let the angle between longitudinal momentum ||p  and OY axis be equal to φ. 

Successfully we can turn OY and OZ axes over the angle φ in order to get OY axis direted 
along ||p  (see Fig. 1). In new frame coordinates we can define ||y v t′ =  and 0=′z . Using the 

relations ϕϕ sincos zyy ′+′=  and ϕϕ cossin zyz ′−′=  one can obtain that on the particle’s 

trajectory ( ) ( ) ||exp i exp i cos sin
y z y z
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Here ( ) ||cos sin
y z

k k vω ϕ ϕ= +  is the frequency of particle interaction with the crystal field, 

and, thus, in relations (2) the only element with ( )1,1 == zy nn  should be taken into account. 

After integration in (13), we obtain the following expression 
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Finally, the transition probability at the unit of time is 
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The condition to have the transition probablity ijw  positive requires considering only absolute 

value of ( )sin
ji

tω ω+ . 

Calculating the integrals ijG , we have to underline that the wave functions presented by 

the expansions (10) have chosen only for elastic transitions. Hence, 
 

 ( )( )∑ ∫
−= −

−=
max

max,
0, cos)(

N

Nmn

d

d

kk

j

m

i

nij xgjixUCCG
zy

. (17) 

 
Therefore, we obtain that the system (12) contains a lot of time-dependent periodic terms with 
different frequencies. To solve this system, it should be noted that energies of transition 
between mostly populated sub-barrier and lowest above-barrier levels are about 10-100 eV. It 
means that the frequencies jiω  have the values 65 105.1105.1 ⋅÷⋅  c-1, while characteristic 

frequencies of crystal field are about 108 c-1 for the given particle energies and the lattice 
constant (~10-8 cm). Hence, 
 
 ωωω ≈+ ji .  

 
Within this approximation the system (12) is reduced to 
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Obviously, the system (18) is determined by two terms (each term, indeed, represents a 
system): the first term corresponds to 0sin ≥tω , and the second - to 0sin ≤tω . 
The first system (when 0sin ≥tω ) 
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has a general solution ( )tAP ii ωλ cosexp=  at the initial conditions iP ,0 , which are defined by 

the integrals (11). When general solution is substituted into Eq.(19), one obtains 
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The system (20) defines (2Nmax+1) eigenvalues λj  of symmetrical matrix. This matrix has non-
diagonal elements, which equal ω/ijB− , and diagonal elements, which equal ( )1/ −ωiB . Each 

eigenvalue λj corresponds to eigenvector ijA ; the first index numerates the level’s number, 

and the second index numerates the eigenvalue. Hence, as the eigenvectors ijA  are defined 

with constant multiplier jµ accuracy, the general solution should be rewritten in the form 
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The initial condition gives: 
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Constants jµ  are defined from linear non-homogeneous system (22). 

The second system (when 0sin ≤tω ) is 
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It has the same general solution, as the first system: ( )tAP iii ωλ cosexp ′′= , but the initial time 

moment in this case is defined by πω =t . The initial condition should match the solutions of 
both systems: 
 
 ( )∑ −=′

j

jijji AP λµ exp,0 . (23) 

 
Substituting a general solution into Eq.(19), we obtain 
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Comparing Eqs.(20) and (24) one can consider that the system (24) defines (2Nmax+1) values 

jλ ′ , where jj λλ −=′ , ijij AA =′ . Similarly, general solution must be rewritten in the form 

 
 ( )∑ −′=

j

jijji tAP ωλµ cosexp , (25) 

 
where the constants jµ ′  are defined from the initial condition (23): 
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Finally, populations of bound states depend on time as follows: 
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Figs. 4-7 demonstrate the change of populations for some bound states during one period 

2 /T π ω= . Calculations were performed by solving the systems (19) and (21) for Ekin=80 MeV 
electron and positron planar channeling in Si (220) crystal. The angle between momentum of 
projectiles and (220) planes is θ=2’’. The angle between longitudinal momentum and <110> 
axis is φ=45o. 
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Fig.4. The deviation of population of the 2-nd state from its initial value 
(0.000709894) as the function of penetration depth. (220) Si planar channeling, 
kinetic energy of electron - 80 MeV, the angle between momentum of electron 
and (220) planes - θ=2’’, the angle between longitudinal momentum and <110> 
axis - φ=45o. 
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Fig.5. The deviation of population of the 6-th state from its value at 1.5 Å 
(0.000748645) as the function of penetration depth. (220) Si planar channeling, 
kinetic energy of electron - 80 MeV, the angle between momentum of electron and 
(220) planes - θ=2’’, the angle between longitudinal momentum and <110> axis - 
φ=45o. 
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Fig.6. The deviation of population of the 12-th state from its value at 1.5 Å 
(0.00617700) as the function of penetration depth. (220) Si planar channeling, 
kinetic energy of positron - 80 MeV, the angle between momentum of positron 
and (220) planes - θ=2’’, the angle between longitudinal momentum and <110> 
axis - φ=45o. 
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Fig.7. The deviation of population of the 14-th state from its initial value 
(0.0077015) as the function of penetration depth. (220) Si planar channeling, kinetic 
energy of positron - 80 MeV, the angle between momentum of positron and (220) 
planes - θ=2’’, the angle between longitudinal momentum and <110> axis - φ=45o. 
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4 DISCUSSION AND CONCLUSION 

In this work we analyzed the bound energy spectra and populations for channeled 
electrons and positrons. We described the algorithms for both constructing bound energies and 
obtaining the initial populations of the states. We suggested the mathematical model to explore 
the change of populations during the motion of projectiles through the crystal. The simple 
approximations used allow analytical solutions of kinetic equations to be obtained. 

Presented models have been applied to describe the planar channeling of 80 MeV 
electrons and positrons along (220) planes in Si crystal. 
The bound zone energy structures for these projectiles are defined. For instance, we have 
shown that electrons have nine sub-barrier zones. The results proved the fact that the width of a 
zone becomes larger, and the energy gap between neighboring zones decreases, when a zone 
number increases. For positrons we find sixteen sub-barrier zones. Similar to the case of 
electrons, the width of zone increases together with the increase of a zone number. But 
dependence of the gap between neighboring zones has extremum. The gap grows for bottom 
zones and then gap decreases after 11-th zone. In both cases, for electrons and positrons, the 
bottom zones are very narrow. 

We have evaluated initial populations of sub-barrier energy states for considered 
projectiles. The initial populations of even states are much less than initial populations of odd 
states. The dependence of even states populations on zone number is growing for both electrons 
and positrons, while for odd states populations it is decreasing for positrons and has extremums 
for electrons. We assumed that the capture of projectiles onto energy state is elastic process. 
Hence, the particle may be trapped only by the state in a zone where transverse momentum of 
free particle corresponds to its quasimomentum. In [6] the problem of inelastic capture of 
projectile was discussed. It was shown, that the account of inelastic capture might change the 
initial populations of bound energy zones. Nevertheless, inelastic effects are small and might be 
omitted for simplicity. 

We have defined the dynamics of energy states populations; the results of calculations for 
some sub-barrier states are shown in Figs.4-7. All figures have demonstrated negligible change 
in populations during the motion of projectiles. Moreover, the change in populations of bottom 
states is not meaningful, but populations of top states might depend significantly on above-
barrier states, which are not included into presented model. Perhaps, to take into account 
dechanneling processes will change the populations dynamics. Indeed, when particles penetrate 
into crystal, they populate favorable bound energy levels; transitions between these levels are 
less probable while the amount of particles is constant (without dechanneling). When 
projectiles leave the sub-barrier states, other sub-barrier particles may occupy that states 
(particle exchange between the levels), resulting in such a way in complicated picture for 
population dynamics. Hence, the model needs improvement and presented results may be 
considered as previous results only. 
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