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Abstract

In this paper we apply to photoproduction total cross-section a model we have proposed
for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-
summation. We compare the predictions of our model with the HERA data as well as
with other models. When we extend the model to cosmic ray energies, our model predicts
substantially higher cross-sections at TeV energies than models based on factorization but
lower than models based on mini-jets alone, without soft gluons. We discuss the origin of
this difference and comment on the Froissart bound for photon induced processes.
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1 Introduction

Understanding the energy dependence of total hadronic cross-sections continues to be an

important issue in the study of strong interactions per se. Over the years, various descrip-

tions of this energy dependence have been given, following from the basic QCD principles

at various levels of directness. Some approaches have focused on how far one can reach

following the basic principles of analyticity, unitarity,factorisation etc., without any re-

course to the details of the particular hadron involved, whereas at the other end of the

spectrum, there are models which include the basic principles of QCD as far as possible

and then try to compute the cross-section in terms of measured properties of the particular

hadron. Of course, all descriptions have to be consistent with the requirements of analyt-

icity and unitarity. Most descriptions involve a few “soft”(non-perturbative) parameters,

which can not be determined through perturbative QCD. Again, basic symmetry, unitar-

ity and factorisation arguments may at times lead to certainrelationships among these

soft parameters for various hadrons. Often they may be determined only through fits to

the experimental data and then one may only test approximaterelations among these in-

dicated by general arguments. In short, understanding the behaviour of total hadronic

cross-section and other soft quantities such as multiplicities etc., from first principles, is

an extremely challenging problem and as stated before, one has different answers with

varying degrees of relationship to QCD.

Hadronic cross-sections for processes induced by the photon and the hadronic struc-

ture of the photon itself, have played a very interesting andimportant rôle, in furthering

the attempts to understand the theoretical issues involvedin the subject [1]. Photon-

hadron interactions offer the theorists one more laboratory to test their various ideas about

computing “soft” quantities such as purely hadronic total cross-sections from basic prin-

ciples. Historically, it is the interaction of the highly virtual photon with the hadron that

offered the first glimpse of (almost free) quarks and later provided basic evidence for

perturbative QCD being the correct dynamics to explain strong interactions in a certain

kinematic domain. However, in the present context, it is thephoton structure function

language [2] used to describe interactions of the real or quasi–real photon (invariant mass

square∼ 0), with other hadrons or photon, that is of interest. In fact,the structure function

of a quasi real photon at large values ofxγ and that of a highly virtual photon (with large

values ofP 2 where−P 2 indicates the invariant mass square of the virtual photon) for all

values ofxγ, can be computed using perturbative QED and QCD alone, for large values

of momentum transfer square,Q2 of the probe. However, equally important is the (non

perturbative) part of the real (or quasi real) photon structure function at smallxγ which is

not amenable to perturbative QCD (PQCD) computations.
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In this paper, we apply our eikonal mini-jet model augmentedby soft gluon resum-

mation, which has been successful in providing an acceptable description of thepp/pp̄

data, to the description of total cross-sections of photon induced processes. In our model

for the (purely hadronic) proton total cross-sections, we were able to compute the rel-

evant components in terms of basic QCD inputs such as the experimentally measured

parton densities, QCD subprocess cross-sections along with a few non-perturbative pa-

rameters. Given the prior success, it becomes of interest tosee how the predictions of our

model, applied to the total hadronic cross-sections of photon induced processes and using

the experimentally determined knowledge on the structure of the “real” photon, compare

with the data. We shall be mainly concerned with the issue of its energy dependence.

To recapitulate: in this paper we explore the effects of the hadronic structure of the

photon through studies of total cross-sections involving photons. While at low energy,

these cross-sections can be obtained through factorization and vector meson dominance,

we believe that the high energy range poses a different challenge. We have argued in a

number of papers [2–5] that the energy dependence of the photon induced processes do

not seem to follow from a straightforward application of factorization properties of the

total cross-sections. We shall discuss various factorization results [6–10] and compare

some of them with the HERA data [11,12] as well as with predictions of our QCD eikonal

model with resummation, hereafter referred to as the BN model [13]. The reasons for this

nomenclature will be clear as we describe the model. Some of its details are summarized

in three Appendices, so as not to overburden the reader with material published elsewhere.

2 Total cross-sections: from pp toγγ

Experimentally, all total cross-sections rise asymptotically with energy, but it is not yet

clear whether the rate of increase is the same for different processes and whether their

asymptotic behaviour satisfies or saturates the Froissart-Martin [14] bound. For any given

total hadronic cross-section, this bound says that asymptotically

σtot ≤ C(log s)2. (1)

Phenomenologically, the LEP data [15] seem to indicate thatthe slope with which the

totalγγ cross-section rises is not the same as in the proton case[4].This difference would

spoil the simplicity of the so-called Regge-Pomeron model,in which the high energy rise

is described through a single universal term [10]. Of course, all total cross-sections do

rise and to appreciate it at a glance, we show in Fig. 1 a compilation of data onpp/p̄p

[16][17], γp [11,12] andγγ [15] scattering together with expectations from the BN model

[13] to be described in the next section. Since the data span an energy range of four orders
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of magnitude, with the cross-sections in the millibarn range for proton-proton, microbarn

range for photoproduction and nanobarns for photon-photon, to plot them all on the same

scale, one needs a normalization factor. The data suggest tomultiply theγp cross-section

by a factor≈ 330 and thenγγ by (330)2, as shown in Fig. 1.

It has been known for quite time [18] that to get the photoproduction cross-section

from the proton cross-sections in the region where they are approximately constant, namely

after the initial Regge-exchange type fall and before the beginning of the high energy rise,

the multiplicative factor to apply for each photon leg in thecross-section can be obtained

from Vector Meson Dominance (VMD) (to go from a photon to a meson) and a quark

counting factor, namely

Rγ =
Nfermion lines

meson

Nfermion lines
proton

PV MD =
2

3
(

∑

V =ρ,ω,φ

PV )

=
2

3
(

∑

V =ρ,ω,φ

4πα

f 2
V

) (2)

Pρ =
e2

f 2
ρ

=
α

12

mρ

Γρ
(3)

we would obtainRγ ≈ 1/360, consistent with the value indicated in the figure.

Note that there is no a priori reason to expect the scaling factor to be energy inde-

pendent.

On the other hand, while at low energies the factorRγ can be evaluated through

VMD considerations at high energy it is likely to be different [20] due to the difference in

the quark and gluon content of photons [2] versus that of the hadrons.

The use of just a multiplicative factor to compare the photonprocesses with each

other and with the pure proton processes, is the simplest form of factorization. More

complex forms of factorization exist in the literature, as in the case of a recently proposed

formulation by Vereshkov and collaborators [21] or in the model by Block et al. (also

called Aspen model) [22] as we shall comment upon in the last section.

The above points to the need for a description of high energy photon interactions

where reliable predictions can be made based on the quark-parton structure of the photon.

As stated earlier, we have developed such a model for purely hadronic processes [13,23–

25] and shall extend and apply it to photoproduction processes in the next section.
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Figure 1: Proton [17] and photon [11,12,15] normalized total cross-sections with a typical
curve expected from our BN model [13] forpp.

3 The Bloch-Nordsieck model (BN)

This model is based on the eikonal representation for the total cross-section [26], and,

in the eikonal, it incorporates QCD inputs such as parton-parton cross-sections, parton

densities extracted from perturbative QCD fits to the data, actual kinematics, and soft

gluon resummation. In detail, we use:

1. QCD mini-jets to drive the rise of the total cross-sectionin the QCD asymptotic

freedom regime;

2. the eikonal representation for the total cross-section with the real part of the eikonal

approximated to zero and the imaginary part obtained through mini-jet QCD cross-

sections;

3. an impact parameter distribution, as input to the eikonalrepresentation, obtained as

the Fourier transform of the re-summed soft gluon transverse momentum distribu-

tion;
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4. resummation of soft gluon emission down to zero momentum to soften the rise due

to the increasing number of gluon-gluon collisions betweenlow-x, but still hard

perturbative, gluons.

While the eikonal representation with the mini-jet input has long been in use, our model

differs from other existing eikonal models, in that the impact parameter distribution is

energy dependent and derived from soft gluonkt-resummation, which gives the model its

name.

The BN model was applied to proton-proton scattering, obtaining a total cross-

section at LHCσ(
√

s = 14 TeV ) = 100 ± 12 mb, where the error reflects various

uncertainties such as in the choice of parton densities for the proton, minimum parton

pt cut-off, calledptmin, and the infrared behaviour of soft gluon coupling. Thus, the

model has a number of parameters, some of which have a physical meaning associated

with confinement. As such we do not know how and if to change them as one goes from

protons to photons. We shall try to vary them by no more than 5-10% from their proton

case values: whenever a stronger variation is required, we shall discuss it. The model

predictions are obviously dependent on the parton densities in the photon: as in the case

of the proton, we shall try different available sets, obtained by fits to the data on the photon

structure functionF γ
2 , and see how best to describe the available data without changing

much the parameters of our model. Application to photons however requires an additional

insight: the eikonal representation calls for atranslationof the hadronic language to the

photon. One first needs the probability,Phad, that a photon behaves like a hadron and one

can then use the eikonal representation, as in Refs. [27,28]:

σγp
tot = 2Phad

∫

d2~b[1 − e−nγp(b,s)/2] (4)

where the real part of the eikonal has been approximated to zero and the imaginary part is

obtained from the average number of inelastic collisions for a given impact parameterb,

nγp(b, s), at a given c.m. energy
√

s. Following our BN model for protons, we distinguish

between collisions calculable as QCD mini-jets, and everything else, writing the average

number of collisions as

nγp(b, s) = nγp
soft(b, s) + nγp

hard(b, s)

= nγp
soft(b, s) + A(b, s)σγp

jet(s)/Phad (5)

with nhard including all outgoing parton processes withpt > ptmin. In Eq.5 the impact

parameter dependence has been factored out, averaging overdensities in a manner similar

to what was done for the case of the proton in [24]. Because thejet cross-sections are
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calculated using actual photon densities, which themselves give the probability of finding

a given quark or gluon in a photon,Phad needs to be canceled out innhard. As for its value,

Phad ≈ PV MD. Phad is not the same numerical factorRγ used in Fig. 1 to normalize all

the cross-sections at low energy, but it can be connected to it by making an expansion of

the eikonal in the low energy region, whereσjet ≈ 0, as shown at the end of this section.

Also, whilePhad can be factored out in some models, as we shall see later, thisdoes not

happen in the BN model.

The mini-jet cross-section is obtained by integrating the standard QCD inclusive jet

cross-section, using a lower cutoffptmin as described in Appendix A.

The mini-jet cross-sections are to be calculated using parton densities (PDFs) for

the proton and photon determined from perturbative QCD analysis of the data onF p
2 , F γ

2

as well as a variety of other data on hard processes for the proton. Common ones for the

proton are GRV [29], MRST [30], CTEQ [31], whereas those for the photon are GRV[32],

GRS [33], CJKL [34]. These densities are available both at leading order (LO) or higher,

but in our model we use only the LO ones, as part of the NLO effects are described by

soft gluon resummation and the use of NLO would result in somedouble counting. Of

course, in using densities and parton-parton cross-sections only at Leading Order but with

resummation of soft gluons, our model lacks the non-infrared part of the NLO corrections.

Since we consider the resummation effects in the infrared region to be the most important

for saturation and these are easily incorporated in our model, we have opted for LO den-

sities, and thus also tree level parton-parton cross-sections and one loopαs. We show in

Figure 2 the energy dependence of the mini-jet cross-sections forγp collisions, for two

different sets of parton densities for the photon, GRS and CJKL. We have used different

values of the cut-off, namelyptmin = 1.2, 1.3, 1.4 GeV for GRS densities, higher values

for the case of CJKL densities, which give jet cross-sections which rise faster with energy

than those calculated using GRS [35]. As for the proton densities, we have done all the

model calculations using GRV94.

These cross-sections grow very rapidly as the energy increases, reflecting the infi-

nite range of QCD theory. Since the finiteness of strong interactions is reflected by the

finite spatial extension of hadrons, one could hope that the eikonal representation would

check such growth through the impact parameter distribution which appears in Eq. 4. A

frequently used distribution is obtained as a convolution of the form factors of the collid-

ing hadrons [36], namely

AAB
FF (b) =

∫

d2~q

(2π)2
FA(q)FB(q)ei~q·~b. (6)

However, it was noted already in case of proton cross-section [24] , that, without the

inclusion of additional parameters, this choice is unable to reproduce both the early rise
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Figure 2: Left panel: Photon-proton jet cross-sections fordifferent densities and a range of
ptmin values. Right panel: average value of the maximum transverse momentum allowed
for single initial state soft gluon emission, inγp scattering.

and the expected, Froissart -like, subsequent leveling offat high energies. Apart from this

purely phenomenological consideration, the form factor description becomes undefined

when dealing with photons. For photons, such models, which we label Form Factor (FF)

models, depend on how one defines the photon form factor. In the literature, the first

attempts to apply the mini-jet eikonalized expression to the photon cross-sections [27]

used a monopole expression for the photon ( as in the pion case) and the usual dipole

expression for the proton form factor withν2 = 0.71 GeV 2, obtaining

Aγp =
1

4π

ν2k2
0

k2
0 − ν2

[νbK1(νb)

− 2ν2

k2
0 − ν2

(K0(νb) −K0(k0b))] (7)

with k2
0 = 0.44 GeV 2 . The above expression can be adapted to photon data by varying

the parameterk0, and in such case the pion form factor expression for the photon can be

understood to represent an intrinsic transverse momentum [37,38]. In the Aspen model

[22] there is still another possibility, namely the overlapfunction is parametrized as the

Fourier transform of a dipole form factor

W (b, µ) =
µ2

96π
(µb)3K3(µb) (8)

with three different scaling parameters for the three termsin which the eikonal is split,

quark-quark, quark-gluon or gluon-gluon scattering. In the Aspen model one uses a single
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functional expression for the b-distributions in hadron-hadron, hadron-photon or photon-

photon scattering, but the difference between these different processes is entered in the

parameterµ’s which scale among the various processes according to the additive quark

model. A similar modelling is also present in another QCD inspired model like the one

of ref. [39]. More fundamental attempts to obtain the photonimpact factor in the context

of perturbative QCD can be found in [40] and references therein.

In this paper we opt for a different procedure, following thesame strategy used in

case of the proton cross-sectons. For hard collisions, we use mini-jets and soft gluon

resummation and usenhard given by:

nhard(b, s) =
AAB

BN (b, s)σjet

Phad

(9)

with

AAB
BN (b, s) = N

∫

d2
K⊥

d2P (K⊥)

d2K⊥
e−iK⊥·b

=
e−h(b,qmax)

∫

d2be−h(b,qmax)
≡ AAB

BN (b, qmax(s)). (10)

The functionAAB
BN is normalized to 1 and is obtained from the Fourier transformof the

soft gluon resummed transverse momentum distribution, whose structure we discuss in

the next subsection, with further details in Appendix B for the convenience of the reader.

To complete the calculation ofnhard for γp, one has to specify the value ofPhad,

which in eikonal models [22,28] indicates the probability that a photon behaves like a

hadron and is defined by the low energy part of the cross-section. At low energy, namely

for
√

s ≈ 5 ÷ 10 GeV , the mini-jet cross-section is indeed very small andn(b, s) ≈
nsoft(b, s). This part of the cross-section is outside the range of the perturbative QCD

model we have described so far. Using Eq. 4, we find that we can get a good description

of the low energyγp data for the total cross-section with

nγp
soft(b, s) =

2

3
npp

soft(b, s) (11)

wherenpp
soft(b, s) is the same function we have used for our description of proton-proton

collision in ref. [25] andPhad = 1/240, a result consistent with Eq. 2.

4 The impact parameter distribution and the saturation parameters

The distributionABN is energy dependent through the quantityqmax(s), which represents

the average maximum transverse momentum allowed to a singlesoft gluon emitted in
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the initial state in a given hadronic collision. This quantity is the input to the kernel

h(b, qmax), which describes the exponentiated, infrared safe, numberof single soft gluons

of all allowed momenta and is given by,

h(b, qmax(s)) =
16

3

∫ qmax(s)

0

dkt

kt

αs(k
2
t )

π

×
(

log
2qmax(s)

kt

)

[1 − J0(ktb)] (12)

We shall discuss the physical meaning of this integral and how it controls the saturation of

the cross-section through its limits of integration in the next subsections. Before doing so,

we can anticipate that, in our model, saturation is obtainedthrough soft gluon emission

and is regulated by a constant infrared parameterp and the energy dependent momentum

functionqmax as follows:

1. the energy dependent momentum saturation parameterqmax(s) depends on the en-

ergy behaviour of the density functions of colliding partons and onptmin, the mini-

jet cut-off,

2. the infrared parameterp, to be specified shortly, defines the infrared behaviour of

αs(k
2
t ). The closer its value is to 1, the more the mini-jet cross-sections will be

quenched at any given energy.

4.1 The momentum saturation parameterqmax(s)

For any given parton parton collision,qmax(s) can be defined by kinematics. We intro-

duced this quantity for the first time in [24] to represent themaximum transverse mo-

mentum carried by a single gluon, averaged over the basic scattering cross-section with a

procedure described in Appendix C for the convenience of thereader.

To highlight the physical meaning ofqmax(s), let us define the saturation parameter

κ̂ =
√

ŝ−
√

ŝjets√
ŝ/2

for each parton pair of c.m. sub energyŝ which scatters into a final parton

pair of c.m. energy
√

ŝjets. Let us now use the kinematics of the process

parton(x1) + parton(x2) → gluon(kt) + jet1 + jet2 (13)

to write the maximum transverse momentum of the emitted gluon, in the case of limited

energy loss as [41]

ktmax =

√
ŝ

2
(1 − ŝjets

ŝ
) ≈

√
ŝ

2
κ̂ (14)

This quantity plays a major role in our model. As the available c.m. energy in-

creases, it starts increasing, depending upon the probability of producing a parton pair
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scattering into a given final state. It thus depends upon the densities and the parton-parton

cross-section. As it increases, more and more acollinearity is introduced in the scattering

and the stronger is then the reduction in the growth of the mini-jet cross-section.

Notice that now there appear two different scales and both low-x perturbative gluons

as well as soft gluons. We stress the distinction between them: low-x gluons participate

in the hard parton-parton scattering described by the mini-jet cross-section discussed in

the previous section, for which

ptout ≡ pjet
t ≥ ptmin ≈ 1 ÷ 2 GeV (15)

These low-x perturbative gluons interact with a strength proportional toαs(p
2
tout), while

soft gluons are those emitted, from the initial state, in anygiven parton-parton process

with transverse momentum

kt ≤ ktmax ≈ 10 ÷ 20% ptout (16)

This scale,ktmax defines the single soft gluons, whose number can be indefinite. These

soft gluons need to be re-summed through the procedure whichresults in the exponenti-

ated factor of Eq. 10.

In a model such as ours, which is not a Monte Carlo simulation of the processes

involved, we have opted for averaging these effects, embodying them in a factorized ex-

pression like the one given by Eq. 10, withktmax averaged out to obtainqmax, as shown

in Appendix C. The expression forqmax(s) depends both on the parton densities and the

value ofptmin. The resulting quantity is energy dependent since the densities are energy

dependent through the applied DGLAP evolution. The averaging process done in this

model includes only quark densities as the source of the leading acollinearity effect. We

consider the leading effect to arise because of soft gluon emission from the external legs

of the scattering process, valence quarks for the proton beam and all flavours of quarks

for the photons. An improvement of the model could include soft gluon emission also

from the low-x perturbative gluons, as we shall discuss in a forthcoming paper. In the

right-hand panel of Fig. 2 we show the dependence ofqmax(s) upon the c.m. energy

of the colliding particles, for the same densities andptmin values used in the mini-jet

cross-sections shown in the left panel.

As qmax increases with energy, the growth of the total cross-section due to mini jets

is tempered by soft gluon emission, through the exponentialdamping factore−h(b,qmax).

However, there is an equilibrium between the increase ofqmax and the rate of increase

of the mini-jet cross-section since one reflects the quark density and the other the gluon

densities. The distribution of these partons at high energyfollows the parton sum rules
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and one is not independent of the other. From the right hand panel of Fig. 2 we see

that qmax, for both GRS and CJKL densities, will reach some sort of saturation at high

energies, which reflects in the total cross-sections reaching a stable slope.

The saturation momentum parameterqmax is not the only quantity which gives rise

to saturation, the infrared limit ofαs also plays a major role. We shall discuss this in the

next subsection.

4.2 A phenomenological approach to the infrared limit ofαs

To complete the calculation of the impact parameter distribution for hard processes in

γp collisions, we need to discuss the lower limit of integration in Eq.12. Usually, the

soft gluon resummation formula extends the soft gluon momenta to an infrared cut-off

taken to correspond to the intrinsic transverse momentum scale of the scattering hadrons

[42,43]. Instead, in our model, we extend the integration down to the zero momentum

modes. To do so, we need therefore to make an ansätz as to the behaviour of the strong

coupling constant in the infrared region, where the usual asymptotic freedom expression

for αs(Q
2) cannot be used. One possibility is to use an expression whichwould go to a

constant asQ2 → 0 as in

αs(Q
2) =

12π

33 − 2Nf

1

log[a + Q2

Λ2 ]
(17)

with a ≈ 2 [44–46] andΛ = ΛQCD. This expression is often referred to as thefrozen

αs case. Another possibility is to take inspiration from the Richardson potential for

quarkonium, which uses a singularαs, namelya = 1, so that

αR
s (Q2) ≈ 1

Q2
Q2 → 0 (18)

The Richardson potential has been shown to give good resultsto describe charmonium

states [47], but cannot be used here because the integral over the soft gluon modes would

diverge. The reason it works in quarkonium applications is that in this case one never

actually reaches values corresponding toQ2 = 0, since the potential binds the two quarks

in a finite region of space. In order to be able to use the Richardson-likeαR
s we soften

this singularity with the proposal that in the infrared limit, one can phenomenologically

use the expression

αs(kt) = constant ×
(

Λ

kt

)2p

kt → 0 (19)

whereΛ is a cut-off of order 100 MeV, andp is a parameter which embodies the infrared

behavior, withp < 1 so that the soft gluon integrals converge. For the time being, we
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consider the above expression as a phenomenological ansätz . The constant in front of

Eq. 19 should be chosen to provide a smooth extrapolation to the perturbative expression

for αs. Our choice for the interpolating function is

αs =
12π

33 − 2Nf

p

ln[1 + p(kt

Λ
)2p]

(20)

This expression was also introduced to describe the intrinsic transverse momentum of

Drell-Yan, with the choiceΛ = 100 MeV [48] andp = 5/6. This choice for the infrared

behaviour (zero momentum gluons) was motivated [13] by an argument due to Polyakov

[49]. It is clear that the closerp is to 1, the bigger the soft gluon integralh(b, qmax(s)) is

and the stronger the saturation effects will be.

We shall show the results for the totalγp cross section for this and other models in

the next section.

5 Total γp cross-section at accelerator energies

We shall examineγp scattering data both at low and HERA energies and compare them

with model predictions. We have also included some cosmic ray data [50] in this energy

range and an extrapolation toQ2
γ = 0 of a set ofγ∗p data obtained with the ZEUS Beam

Pipe Calorimeter (BPC)[51–53].

Let us start with the BN model for photons as described in the previous section.

We have used GRV densities for the protons [29] and have varied the photon densities,

using both GRS and CJKL. We show the result of the model and thedependence upon the

model parameters in Figs. 3,4. In Fig.3 we have variedptmin and the densities to describe

the high energy data from HERA in addition to the most acceptable description of the

beginning of the rise, while keeping the parameterp in a range close to thepp/p̄p case.

In Fig. 4 we have allowed for a larger variation in the value ofthe infrared parameterp,

fixing the PDF set and a range of appropriate values forptmin.

In order to obtain a good model description, we shall focus not only the HERA

data, but also on the beginning of the rise, as this signals the onset of the contribution

of QCD processes and is strongly dependent uponptmin. We can see from Fig. 2 that,

for the range ofptmin values of interest, the mini-jet cross-sections calculated with CJKL

densities rise faster than those calculated with GRS. It follows that, to describe the same

HERA data, one will need to use different values ofptmin depending upon the PDF set

used. Thus CJKL densities call for a largerptmin than GRS densities. In Fig. 3 the

infrared parameterp has been kept around the value determined from thepp/p̄p cross-

section, namelyp ≈ 0.7 ÷ 0.8. We see that the range of acceptableptmin values for GRS
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densities is not far from those used in thepp/p̄p case, whereptmin ≈ 1.1÷1.25 GeV , but

it is higher for CJKL.

To summarize the results of these figures, the latest HERA data are well described

for a range of parametersp = 0.75 ÷ 0.8 andptmin = 1.2 ÷ 1.3 GeV , to be compared

with thepp andp̄p case where the range was very similar, with our central valuep = 0.75

andptmin = 1.15 GeV for GRV densities. A good description is also obtained with CJKL

densities, but then one needs a different{p, ptmin} set, as one reads from the second panel

in Fig. 3. To quench the higher rise in the CJKL case, one can either use a largerptmin or

a larger value of the parameterp. The dependence from this parameter can be appreciated

from Fig. 4. Notice that to catch the early rise, around
√

s = 20 GeV , one needs a small

ptmin, but then this requires a largerp-value in order to quench the rise and not overshoot

the HERA data points.

All in all, we can say that the model adequately describes thephoton-proton cross-

section data and we can try to extend it to higher energies so as to make predictions for

cosmic ray energies to be reached by the AUGER experiment [54,55]. We turn to this

problem in the next section. But before this, we address the question of factorization:

is a photon like the proton just multiplied by a constant factor? From what we have

seen so far, one could describeγp total cross-section up to HERA energies either through

a microscopic model such as our BN model, with quarks and gluons, or through other

approaches based on various forms of factorization. In particular, the Aspen model also

gives a good description as do other approaches, based on multiplying the result of fitting

pp/p̄p data with a constant factor. We shall discuss this point in the coming subsection.

5.1 Factorization: a hadron-like photon

In the previous section, we have applied our model to the total γp cross-section, using

available photon densities, going through the various steps defining our model, namely

calculation of mini-jet cross-sections, evaluation of theenergy dependence saturation pa-

rameters, determination of the energy dependent impact parameter function from soft

gluon resummationABN (b, qmax(s)) and finally eikonalization. In this approach, at high

energy, the photon is an independent entity from a hadron, with the rising behaviour of

the cross-section and the b-distribution of theγp collision determined independently from

otherhadron − hadron collisions such as pp. This is different from other models, for

instance from the Aspen model [22], where the photon properties are obtained through

scaling factors inspired by the additive quark model. As a consequence, in the Aspen

model for photons, one can prove a factorization property [7] which would then allow to

14



0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

10 10
2

√s ( GeV )

σ to
tγp

(m
b)

ZEUS BPC 95

Photoproduction data before HERA

ZEUS 96

H1 94

Vereshkov 03

GRS(γ) GRV94(p) with BN resummation

 Soft from pp soft eikonal times 2/3

p=0.75 and ptmin=1.2,1.3,1.4 GeV

p=0.8 and ptmin=1.2,1.3 GeV

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

10 10
2

√s ( GeV )

σ to
tγp

(m
b)

ZEUS BPC 95

Photoproduction data before HERA

ZEUS 96

H1 94

Vereshkov 03

CJKL(γ) GRV94(p) with BN resummation

Soft from pp soft eikonal times 2/3

p=0.75 and ptmin=1.6,1.7,1.8 GeV

p=0.8 and ptmin=1.6,1.7,1.8 GeV

Figure 3: Totalγp cross-section with a range of parameter values close to the proton
case, GRV densities for the proton and GRS or CJKL densities for the photon. Data from
HERA are from Zeus [12], H1 [11] and a set of data from the ZEUS BPC extrapolated
from Q2 6= 0 [52,53].
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for a spread ofp values.

extract theγγ cross-section simply as [6]

σγγ
tot =

(σγn
tot)

2

σnn
tot

(21)

with σn to indicate the nucleon cross-sections. We shall discuss the γγ cross-sections

within our BN model for photons in a separate paper, however we notice that such factor-

ization is not to be expected in the model we present here.

Other types of factorization models are based on the Regge-Pomeron exchange,

keeping a constant universal behaviour of the rising part ofthe cross-section with coeffi-

cients based on the factorization of the residues at the poles in the elastic amplitude, so

that

σnn
tot = Xnns

−η + Ynns
ǫ (22)

σγn
tot = Xγns−η + Yγnsǫ (23)

σγγ
tot =

(Xγn)2

Xnn
s−η +

(Yγn)
2

Ynn
sǫ (24)

with ǫ ≈ 0.08 ÷ 0.09. This type of factorization is of course different from the one

in Eq.21, but it still implies the idea that there is a universal behaviour of the energy

dependence, not only at low energy, where one can confidentlyassume that the hadronic

interactions of the photons are those of a vector meson, but also at high energy.
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Such a description of the photon, i.e, that the photon is always hadron-like, could

be reflected in our model by simply scaling the BN cross-section for protons, as

σγp
tot = Rγσ

pp
tot = Rγ 2

∫

d2~b[1 − e−npp(b,s)/2] (25)

Present accelerator data forγp are consistent with factorization models, including an ap-

plication as given in Eq. 25, but as we shall see in the next section, at higher energies,

expectations will differ.

6 Extrapolation to very high energies and the Froissart bound

In this section we extend our calculation beyond present accelerator energies and compare

our predictions with other approaches. We start with the simplest factorization model of

Eq. 25 and multiply the band of results obtained in ref. [25] for proton-proton total

cross-section with a constant factor. This is similar to what we did in Fig. 1, except

that we use the full band from Fig. 2 of ref.[25]. Let us indicate these predictions as

BNF = BNprotons/330 (F for factorization). We then compare this band with the results

obtained using the BN model with photon densities, GRS and CJKL, namely the curves

shown in Fig. 3, extended to
√

sγp = 20 TeV . This comparison is shown in Fig. 5.

We see that, at energies around and through the TeV region, the band obtained fromσpp
tot

falls short of what the BN model for photons (BNγ) predicts. Other models, which enjoy

factorization like the Aspen model, also remain lower than our curves. While at moderate,

HERA like energies, all the three models, Aspen,BNγ or BNF give acceptable fits to the

data, there is a difference of almost 50% among their high energy extrapolations. Thus,

the first interesting conclusion from this exploration of the very high energy region is

that there is a distinct difference between predictions from our BN model and those from

the QCD inspired model of Block et al. (Aspen) [22], as well asfrom a straightforward

multiplication of our band of predictions for the proton times a normalization factor.

The next interesting result from this extrapolation appears when one compares our

model predictions with the fit to HERA data by Block and Halzenbased on low energy

parametrization ofγp resonances joined with Finite Energy Sum Rules (FESR) and Frois-

sart bound saturation [56]. Fig. 6 shows a band corresponding to the predictions of our

model for photons (upper band) compared toBNF (lower band), the Block and Halzen

fit [56], the Aspen model of [22], and an eikonal mini-jet curve which uses the proton

and pion form factors for the impact parameter distribution(FF model). The central (full)

curve in the upper band corresponds to theBNγ model withptmin = 1.3 GeV, p = 0.75

and GRS densities.
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Fig. 6 deserves some comment. For the curves shown in this figure, the parameters

have been chosen so as to reproduce the highest available accelerator data (throughptmin

andp values for the BN model, and throughptmin for the FF model) and the low energy

data, the latter throughPhad andσ0. As the c.m. energy increases, the model results

show noticeable differences between thehadron-likemodels, Aspen andBNF , and the

photon-density modelBNγ, and much more between all of them and the eikonal mini-jet

(EMM) Form Factor model. Neglecting the FF model, which we think is incomplete,

we nonetheless have a remarkable difference in the very highenergy range,10 TeV and

beyond. Because these prediction may impact strongly on thephoton content of high

energy cosmic rays [54,55], this difference does matter.

We notice that the curve, labelled Block-Halzen (BH), from [56] lies within the

band of theBNγ model. The BH curve is based on a best fit to low energyγp data, joined

smoothly with a fit of high energy accelerator [11,12] and cosmic ray data [50] of the

form

σγp = c0 + c1 log(ν/m) + c2 log2(ν/m) + βP ′/
√

ν/m (26)

whereν s the laboratory photon energy. In ref. [56], the results of this fit indicate sat-

uration of the Froissart bound. There is a noticeable difference between the slope in the

rising part of the cross-section between the Aspen model andthe BH fit, as there is be-

tween the modelling content between all these descriptions. In our model the rise is based
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on the gluon densities entering the calculation of the QCD mini-jets cross-sections and on

the soft gluon resummation ansätz for the impact parameterdistribution. The calculation

of these inputs relies on realistic PDF distributions and actual, LO, parton parton cross-

section. Then, the very high energy (in the TeV region) agreement between the BH best

fit based on an analytic expression and our results is an independent check of the correct

physics content of the BN model. This fit confirms the inherentinterest of our approach

based on QCD mini-jets and soft gluon resummation.

For possible use, we report in table 1, the numerical values obtained in our model

for the cross-sections shown in Fig. 6.

Table 1: Values (inmb) for total cross-section forγp scattering evaluated in the c.m.
energy of colliding particles, corresponding to the bands shown in Fig. 6.

√
s EMM with Form BNγ model BNγ model BNproton/330 BNproton/330

GeV Factors,GRS (upper curve) (lower curve) (upper curve) (lower curve)
ptmin = 1.5 GeV top band top band lower band lower band

5 0.116 0.116 0.116 0.118 0.119
10 0.115 0.116

11.46 0.114 0.115 0.114
48.93 0.122 0.130 0.121

50 0.131 0.129
100 0.15 0.143

112.14 0.139 0.155 0.140
478.74 0.238 0.228 0.203

500 0.199 0.182
1000 0.221 0.199

1097.3 0.352 0.279 0.250
4684.6 0.635 0.384 0.338
5000 0.280 0.240
9000 0.310 0.255

10736.8 0.829 0.449 0.390
14000 0.335 0.266
20000 0.985 0.499 0.429

6.1 About the Froissart bound

What do we know, on general grounds, about total cross-sections at very high energies?

A crucial information comes from the Froissart-Martin bound [14] : we have shown in

[25] that the BN model in the proton case gives predictions consistent with saturation of

the Froissart bound, namelyσtot ≈ log2s ass becomes large. However Fig.6 indicates a

difference for photons, as already highlighted in the Introduction. This can be understood

because the Froissart bound is related to the analyticity properties of the elastic amplitude

in the complexz = cos θ plane and is based on convergence within the so called Lehman

ellipse, which crosses the real axis at

z0 = 1 +
2µ2

s
(27)
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whereµ is the mass of the lowest hadron. This tells us that the Froissart bound is related

to a finite range of the strong interactions, namely to confinement, withµ typically the

pion mass, and we can expect the Froissart limit to be satisfied in hadronic collisions such

aspp/p̄p or πp. However, for the photon the situation is clearly different. While at low

energy, the photon in its interactions with hadrons behaveslike a vector meson, into which

it can easily fluctuate, when we extrapolate the cross-section to energies of10−100 TeV

in theγp c.m., one is too far from the hadronic scale and the photon cannot any longer be

considered a vector meson. At this point we still expect somesaturation effects but not as

strong as in the proton case. This, in our opinion explains why the curves forpp/p̄p and

γp differ in their asymptotic behaviour.

From a numerical point of view, the curves for the BN model forprotons and pho-

tons differ because the b-distributions for protons or photons obtained in our model from

ABN (qmax(s), b) differ, and they differ because the maximum momentum allowed to in-

dividual soft gluons is different. This quantity for the hard part is obtained through the

kinematic constraint averaged over the quark densities andthe latter are of course differ-

ent for protons and photons. This is apparent from a comparison ofqmax(s) for pp [25,57]

andγp : for comparable c.m. energiesqmax(s) for pp rises to higher values than the one

for γp, resulting in more saturation forpp. These differences are due to the quark densi-

ties entering the averaging process definingqmax(s): densities are a phenomenologically

extracted quantity and as such it is to be expected that they reflect the different structure of

the interacting particles, namely the difference between valence quarks bound in a proton

and quark pairs in which the photon will split and their respective evolution.

7 Conclusions

We have applied toγp scattering an eikonal mini-jet model with soft gluon resummation

developed for the proton total cross-section. The model relies on the parton structure of

protons and photons and indicates a different high energy behaviour forγp relative to

pp and p̄p. We suggest that this different behaviour may be due to the different parton

structure and high energy evolution properties of quarks inthe proton and quarks in the

photon. Furthermore, this result strengthens our confidence in the BN model as a good

approximation to a QCD description of hadronic interactions in minimum bias processes.
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Appendix A: The mini-jet cross-section

The QCD jet cross-section for the process

hadronA + hadronB → X + jet (A1)

is obtained by embedding the parton-parton subprocess cross-section with the given par-

ton densities and integrating over all values of incoming parton momenta and outgoing

parton transverse momentumpt, according to the expression

σAB
jet (s, ptmin) =

∫

√
s/2

ptmin

dpt

∫ 1

4p2

t /s

dx1

∫ 1

4p2

t /(x1s)

dx2

×
∑

i,j,k,l

fi|A(x1, p
2
t )fj|B(x2, p

2
t )

dσ̂kl
ij (ŝ)

dpt
(A2)

whereA andB are the colliding hadrons or photons, in this caseA − proton, B − γ. By

construction, this cross-section depends on the particular parametrization of the DGLAP

[58] evoluted parton densities, some of which do extend to very low x-values but not too

high p2
t values. This cross-section strongly depends on the lowestpt value on which one

integrates. The termmini-jet was introduced long ago [59,60] to indicate all those low

pt processes which one can still expect to be QCD calculable butwhich are actually not

observed as hard jets.pt being the scale at which to evaluateαs in the mini-jet cross-

section calculation, one can haveptmin ≈ 1 ÷ 2 GeV .

Appendix B: Soft gluon transverse momentum distribution

The soft gluon resummation formula in the transverse momentum variable has been

known for a long time and reads [42,43,61]:

d2P (K⊥) = d2
K⊥

∫

d2
b

(2π)2
eiK⊥·b−h(b,qmax(s)) (B1)

with

h(b, qmax(s)) =

∫ qmax(s)

0

d3n̄(k)[1 − e−kt·b] (B2)
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whereqmax(s) is the maximum transverse momentum allowed to single emission by a

parton pair. While in QEDd3n̄(k) ∝ α log( 2qmax

melectron
) and resummation in transverse mo-

mentum variable is well approximated by first order expansion in α, in QCD this formula

brings in a non-trivial complication, namely the impossibility to extend the asymptotic

freedom expression down tokt = 0. What is usually done, is to separate the integral

into two regions, one where one can use the asymptotic freedom expression forαs, and

the other region giving a constant term, the so calledintrinsic transverse momentumof

the hadron. The functionh(b, s) to input the relative transverse momentum distribution

induced by soft gluon emission from a pair of, initially collinear, colliding partons at LO,

reads as

h(b, E) = c0(µ, b, E) +
16

3

∫ E

µ

αs(kt)

π

dkt

kt

ln
2E

kt

, (B3)

where the integration only extends down to a scaleµ. The last integral can be performed

and is equal to

32

33 − 2Nf

{

ln(
2E

Λ
)

[

ln(ln(
E

Λ
)) − ln(ln(

µ

Λ
))

]

− ln(
E

µ
)

}

. (B4)

This expression however fails to reproduce the entire rangeof the energy dependence of

low energy transverse momentum effects and we suggest to useit with its full integration

range, proposing, as described in the text, a phenomenological approach to the zero-

momentum soft gluons. This allows us to extend the integral to the minimum allowed

value zero.

Appendix C: The calculation of qmax(s)

Simple kinematics can give the maximum transverse momentumallowed to single gluon

emission in a process like

parton1(x1) + parton2(x2) → gluon(k) + X(Q) (C1)

namely

M(x1, x2, Q
2) =

√
ŝ

2
(1 − Q2

ŝ
) (C2)

with ŝ = sx1x2. If X represents two jets from the outgoing parton-antiparton pair, one

can useQ2 ≈ 4p2
t . The calculation is simplified by introducing an average over the parton

parton cross-section and integrate over allx values [41] obtaining

qmax(s) =

√

s

2

∫

(dx1dx2)
∫ 1

zmin
dz

√
x1x2(1 − z)D(x1, x2)

∫

(dx1dx2)
∫ 1

zmin
dzD(x1, x2)

(C3)
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wherezmin = 4p2
tmin/s, D denotes the usual quark density expression

D(x1, x2) =
∑

i,j

[fi(x1)/x1][fj(x2)/x2] (C4)

and we have also assumed that the parton-parton cross-section, appearing at both numer-

ator and denominator, can be evaluated at its maximum value,pt = ptmin, thus dropping

out of the calculation.

References

[1] For a recent review, see M. Block, Phys.Rept.436 (2006) 71-215. e-Print: hep-

ph/0606215, and references therein; M. M. Block and F. Halzen, Phys. Rev. D73
(2006) 054022 [arXiv:hep-ph/0510238];

[2] For reviews see, for example, M. Drees and R. M. Godbole, J. Phys. G21 (1995)

1559 [arXiv:hep-ph/9508221]; M. Krawczyk, A. Zembrzuski and M. Staszel, Phys.

Rep.345(2001) 265 [arXiv:hep-ph/0011083].

[3] A. Corsetti, R. M. Godbole and G. Pancheri, Phys. Lett. B435 (1998) 441

[arXiv:hep-ph/9807236].

[4] R. M. Godbole, A. De Roeck, A. Grau and G. Pancheri, JHEP0306 (2003) 061

[arXiv:hep-ph/0305071].

[5] R. M. Godbole and G. Pancheri, Eur. Phys. J. C19 (2001) 129 [arXiv:hep-

ph/0010104].

[6] V. N. Gribov, J. Exp. The. Phys. (USSR) vol.41 (1961) p. 667. English translation

JETP vol.14 (1962) 478; V. N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Lett. 8
(1962) 343.

[7] M. Block and K.Kang, Int. J. Mod. Phys.A20 (2005) 27812794. e-Print: hep-

ph/0302146; M.M. Block and A.B. Kaidalov, Phys. Rev .D64 (2001) 076002, e-

print: hep-ph/0012365.

[8] J.R. Cudell, E. Martynov, G. Soyez, Nucl.Phys.B682 (2004):391 [arXiv: hep-

ph/0207196]; J. R. Cudell and O. V. Selyugin, Phys.Lett.B662 (2008) 417 [

arXiv:hep-ph/0612046].

[9] C. Bourrely, J. Soffer and T.T. Wu, Mod. Phys. Lett.A15 (2000), 9-13. [arXiv: hep-

ph/9903438]

24



[10] A. Donnachie and P. V. Landshoff, Phys. Lett. B296 (1992) 227 [arXiv:hep-

ph/9209205]; A. Donnachie and P. V. Landshoff, Phys. Lett. B595(2004) 393

[arXiv:hep-ph/0402081].

[11] H1 Collaboration, S. Aid et al., Zeit. Phys.C69 (1995) 27, hep-ex/9509001.

[12] ZEUS collaboration, S. Chekanov et al., Nucl. Phys.B627 (2002) 3, hep-

ex/0202034.

[13] R. M. Godbole, A. Grau, G. Pancheri and Y. N. Srivastava,Phys. Rev. D72 (2005)

076001 [arXiv:hep-ph/0408355].

[14] M. Froissart, Phys. Rev.123(1961) 1053.

A. Martin, Phys. Rev.129(1963) 1432; Nuovo Cimento42 (1966) 930.

[15] L3 Collaboration, M. Acciarri, et al,CERN-EP/2001-012, Phys. Lett.B519(2001)

33 , hep-ex/0102025; OPAL Collaboration. G. Abbiendi et al., Eur. Phys. J.C14
(2000) 199 .

[16] W.-M. Yaoet al.Particle Data Group, J. Phys. G33 (2006) 1.

[17] G. Arnisonet al., UA1 Collaboration, Phys. Lett.128B (1983) 336 ; R. Battiston

et al. UA4 Collaboration, Phys. Lett.B117 (1982) 126; C. Augieret al. UA4/2
Collaboration, Phys. Lett.B344 (1995) 451 ; M. Bozzoet al. UA4 Collaboration,

Phys. Lett.147B (1984) 392 ; G.J. Alneret al. UA5 Collaboration, Z. Phys.C32
(1986) 153 ; N. Amoset. al., E710Collaboration, Phys. Rev. Lett.68 (1992) 2433

; C. Avila et. al., E811Collaboration, Phys. Lett.B445 (1999) 419; F. Abeet. al.,

CDF Collaboration, Phys. Rev.D50 (1994) 5550.

[18] J.C. Collins and G.A. Ladinsky, Phys. Rev.D43 (1991) 2847.

[19] C. Amsleret al., The Review of Particle Physics, Phys. Lett.B667(2008) 1.

[20] ECFA/DESY LC Physics Working Group (E. Accomando et al.), Phys. Rep.299
(1998) 1 [arXiv: hep-ph/9705442].

[21] Y. Novoseltsev, R. Novoseltseva, G. Vereshkov, e-Print: arXiv:0802.0956 [hep-ph].

[22] M. Block, E. Gregores, F. Halzen and G. Pancheri, Phys. Rev.D60 (1999) 054024,

e-Print: hep-ph/9809403.

[23] A. Grau, G. Pancheri and Y. N. Srivastava, Phys. Rev. D60 (1999) 114020

[arXiv:hep-ph/9905228].

25



[24] A. Corsetti, A. Grau, G. Pancheri and Y. N. Srivastava, Phys. Lett. B382(1996) 282

[arXiv:hep-ph/9605314].

[25] A. Achilli, R. M. Godbole, A. Grau, R. Hegde, G. Pancheriand Y. Srivastava, Phys.

Lett. B 659(2008) 137 [arXiv:0708.3626 (hep-ph)].

[26] C. Bourrely, J. Soffer , T. T. Wu, Phys. Rev. D19 (1979) 3249.

[27] Raj Gandhi, Ina Sarcevic, Phys. Rev.D44 (1991) 10-14.

[28] R.S. Fletcher, T.K. Gaisser and F. Halzen, Phys. Lett.B298 (1993) 442; Phys. Rev.

D45 (1992) 377-381, Erratum-ibid.D45 (1992) 3279.

[29] M. Glück, E. Reya, and A. Vogt, Z. Phys.C53(1992) 127; Z. Phys.C67 (1995) 433;

Eur. Phys. J.C 5 (1998) 461.

[30] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Phys. Lett.B531
(2002) 216.

[31] H.L. Lai, J. Botts, J. Huston, J.G. Morfin, J.F. Owens, Jian-wei Qiu, W.K. Tung, H.

Weerts, Phys.Rev.D51 (1995) 4763.

[32] M. Glück, E. Reya and A. Vogt, Phys. Rev.D 46 (1992) 1973.

[33] M. Glück, E. Reya and I. Schienbein, Phys. Rev.D 60 (1999) 054019; Erratum, ibid

D 62 (2000) 019902.

[34] F. Cornet, P. Jankowski, M. Krawczyk and A. Lorca, Phys.Rev.D 68(2003) 014010.

[35] R.M. Godbole, A. Grau, G. Pancheri and Y.N. Srivastava,to be published in the

Proceedings of the International Conference on the Structure and Interactions of

the Photon and the 17th International Workshop on Photon-Photon Collisions and

International Workshop on High Energy Photon Linear Colliders, Paris, France,

9-13 Jul 2007. e-Print: arXiv:0802.3367 [hep-ph]

[36] L. Durand, H. Pi, Phys.Rev.D40 (1989) 1436.

[37] R. M. Godbole , G. Pancheri, Eur.Phys.J.C 19 (2001) 129, e-Print: hep-ph/0010104.

[38] Photon total cross-sections, R.M. Godbole, A. Grau , G. Pancheri, Y.N. Srivastava,

Nucl. Phys. Proc. Suppl.126(2004) 94-99. Also inFrascati 2003, The structure and

interactions of the photon, p.94-99 e-Print: hep-ph/0311211.

26



[39] E.G.S. Luna, Phys. Lett.B641 (2006) 171-176. e-Print: hep-ph/0608091, and ref-

erences therein; E.G.S. Luna and A.A. Natale, Phys. Rev.D 73 (2006) 074019,

hep-ph/0602181.

[40] J. Bartels, D. Colferai, S. Gieseke, A. Kyrieleis, Phys.Rev.D66 (2002) 094017. e-

Print: hep-ph/0208130; J. Bartels, S. Gieseke and C.F. Qiao, Phys. Rev.D63 (2001)

056014, Erratum-ibid.D65 (2002)079902, e-Print: hep-ph/0009102.

[41] M. Greco and P.Chiappetta, Nucl. Phys.B221(1983) 269.

[42] Y. I. Dokshitzer, D.I. Dyakonov and S.I. Troyan, Phys. Lett.79B (1978) 269.

[43] G. Parisi and R. Petronzio, Nucl.Phys.B154(1979) 427.

[44] F.J. Yndurain, Lectures given at 17th Autumn School:QCD: Perturbative or Non-

perturbative? (AUTUMN 99), Lisbon, Portugal, 29 Sep - 4 Oct 1999. Published

in Lisbon 1999, QCD: Perturbative or nonperturbative?p.97-129 e-Print: hep-

ph/9910399.

[45] F. Halzen, A. D. Martin, D.M. Scott, M.P. Tuite, Z. Phys.C14 (1982) 351.

[46] G. Altarelli, R.K. Ellis, M. Greco, G. Martinelli, Nucl.Phys.B246(1984) 12.

[47] J. L. Richardson, Phys. Lett.B82 (1979) 272. For an application to deep inelastic

scattering, see K. Adel, F. Barreiro and F. J. Yndurain, Nucl. Phys.B495(1997) 221.

[48] A. Nakamura, G. Pancheri, Y.N. Srivastava, Z. Phys.C21 (1984) 243.

[49] A.M. Polyakov, JETP Lett.20 (1974) 194.

[50] G.M. Vereshkov, O.D. Lalakulich, Yu.F. Novoseltsev, R.V. Novoseltseva, Prepared

for 3rd International Conference on Non accelerator New Physics (NANP 01),

Dubna, Moscow Region Russia, 19-23 Jun 2001. Published in Phys.Atom.Nucl.66
(2003) 565-574, Yad.Fiz.66 (2003) 591-600.

[51] D. Haidt ,The transition fromσ(γ∗p) to σ(γp), Prepared for 9th International Work-

shop on Deep Inelastic Scattering (DIS 2001), Bologna, Italy, 27 Apr - 1 May 2001.

Published inBologna 2001, Deep inelastic scattering287-290, and refs. therein.

[52] B. Surrow, DESY-THESIS-1998-004; A. Bornheim, in theProceedings of the

LISHEP International School on High Energy Physics, Brazil, 1998, hep-

ph/9806021.

27



[53] ZEUS Collaboration, J. Breitweg et al., EPJC7 (1999) 609, DESY-98-121, hep-

ex/9809005v1.

[54] M. Ave, J.A. Hinton, R.A. Vazquez, A.A. Watson, E. Zas, Phys. Rev.D67 (2003)

043005. e-Print: astro-ph/0208228; M. Ave, J.A. Hinton, R.A. Vazquez , A.A. Wat-

son, E. Zas, Phys. Rev.D65 (2002) 063007. e-Print: astro-ph/0110613.

[55] Pierre Auger Collaboration (J. Abraham et al.). FERMILAB-PUB-07-736-A, Dec

2007. 28pp. Astropart.Phys.29 (2008) e-Print: arXiv:0712.1147 [astro-ph].

[56] M. Block and F. Halzen, Phys.Rev.D70 (2004) 091901. e-Print: hep-ph/0405174;

ibidem Phys. Rev.D72 (2005) 036006, Erratum-ibid.D72 (2005)039902. e-Print:

hep-ph/0506031.

[57] G. Pancheri, R.M. Godbole, A. Grau, Y.N. Srivastava, Acta Phys. Polon. B38(2007)

2979 [arXiv:hep-ph/0703174].

[58] Y. L. Dokshitzer, Sov. Phys. JETP46 (1977) 641 [Zh. Eksp. Teor. Fiz.73 (1977)

1216]; V. N. Gribov and L. N. Lipatov, Yad. Fiz.15 (1972) 781 [Sov. J. Nucl. Phys.

15 (1972) 438]; G. Altarelli and G. Parisi, Nucl. Phys.B126(1977) 298.

[59] R. Horgan and M. Jacob, Nucl. Phys.B179(1981) 441.

[60] G. Pancheri and C. Rubbia, Nucl. Phys.A (1984) 418:117C-138C.

[61] G. Pancheri-Srivastava and Y.N. Srivastava, Phys.Rev. D15 (1977) 2915.

28


