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Abstract
Recently, many experiments have highlighted the advantageof using polycapillary optics
for x-ray fluorescence studies. We have developed a special confocal scheme for micro
x-ray fluorescence (µXRF) measurements, which enables us to obtain not only elemental
mapping of the sample but also simultaneously its own x-ray imaging. We have designed
the prototype of a compact x-ray spectrometer characterized by a spatial resolution of less
than 100µm for fluorescence and less than 10µm for imaging. A couple of polycapillary
lenses in a confocal configuration together with a silicon drift detector (SDD) allow ele-
mental studies of extended samples (∼ 3 mm) to be performed while, a charge-coupled
device (CCD) camera makes it possible to record an image of the same samples with a 6
µm spatial resolution, which is limited only by the pixel sizeof the camera. By inserting
a compound refractive lens (CRL) between the sample and the CCD camera, we hope to
develop an x-ray microscope for more enlarged images of the samples under test.

OCIS codes 340.7440, 340.7460, 180.2520,170.1790,180.1790, 040.6040

Accepted to Optics Letter at 10th of October 2008



1 Introduction

Nondestructive analysis of archaeological artifacts by micro x-ray fluorescence spectrom-

etry (µXRF) is a promising multi-elemental technique that has rapidly developed during

the last few years [1,2]. With the exception of synchrotron radiation, which is a suit-

able probe for micro spots, it is often challenging to perform table-topµXRF analysis.

However, the difficulty of producing and focusing small-size x-ray beams can limit the

feasibility of this type of analysis.

The polycapillary lenses designed for x-ray beam focusing now offer alternative

laboratory solutions[3–7]. The combination of a polycapillary lens and a fine focus x-ray

tube (with a source spot diameter less than 50µm) can provide the high-intensity radiation

flux necessary to perform elemental analysis. Compared to a pinhole or to a monocapil-

lary [8], an optimized “x-ray source-optics system” can result in a radiation density gain

of more than three orders of magnitude (by radiation densitygain we mean the ratio of

x-ray intensity at the focal spot with and without the optics) [3]. In such a way, due to

the rather high-intensity irradiation on a limited space, non-destructiveµXRF analysis

becomes possible. The most advanced way to get this result isto use a confocal config-

uration with two x-ray polycapillary lenses. One lens is responsible for the fluorescence

excitation on the sample; the other allows detection of the secondary emission from the

sample (see for instance [4]). With aµXRF instrument based on x-ray micro-focusing

by two polycapillary lenses, 3D elemental mapping can be obtained [9]. Our final aim is

to design a portable x-ray microscope to provide simultaneously on-siteµXRF mapping

analysis. To focus the x-ray beam we are actually using polycapillary optics, but in the

near future we plan to use a polycapillary lens as a concentrator and a compound refractive

lens (CRL) for the magnification [10]. Since this kind of spectroscopy is non-destructive,

we believe it could be useful in the analysis and interpretation of archaeological artefacts

and remains.

2 Experimental Setup and First Results

An experimental setup with a cabinet and an optical table wasdesigned and developed

specifically for R&D of x-ray optical systems at the Laboratori Nazionali di Frascati

(LNF) [11]. The radiation source is a 50 W Cu x-ray tube (Oxford Apogee 5000) with

a source spot size of about 50µm. There are four different detector units available:

a scintillator with an effective working area of∼ 1 square in.; two Photonic Science

charged-coupled device (CCD) cameras with the software package “Image Pro” for x-ray

rough/fine imaging; a silicon drift detector (SDD) with a 5 mm2 working area[12,13]. The
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first ccd camera (FDI 1.61:1) has a sensitive area of 4x3 mm with a 3.5x3.5µm resolution;

the second (FDI 1:1.61), an active area of 14.4x10.8 mm with aresolution of 10.4x10.4

µm.

The first microscope designed recently at LNF [14,15] was made with an x-ray

source, a CCD detector, and a semi-lens. By choosing a semi-lens we hoped to get a very

small blurring effect because of the fairly small radiationdivergence behind the optics

(without taking into account diffraction effects on the sample edges, i.e., far from a wave

zone, as well as multiple scattering radiation in matter). To evaluate the highest resolution

available, we used a sample of standard mesh: Au 1000 with a hole width of 19µm and

bar width of 6µm (Fig. 1).

Figure 1: High resolution image of a gold mesh 1000 recorded by the detector (FDI
1.61:1) placed at a distance of∼ 44 cm from the sample.

As an additional option, a second polycapillary lens inserted between the sample

and the detector made it possible to implement theµXRF unit with a prototype of an

x-ray projection microscope. Polycapillary optics (Unisantis S.A.) with a full lens shape

were used to focus the divergent beam from the x-ray Cu tube onto the sample. Another

lens in “confocal geometry” allowed detection of the samplex-ray fluorescence with a

nominal focal spot size of less than 100x100µm. In recent years a lot of reported work

has shown the advantages of this optical configuration to perform simultaneously micro-

fluorescence mapping and imaging[4,6,5]. To obtain the confocal configuration we used

two full lenses, chosen so as to have the smallest focal spot and the highest transmission.

The first lens provides a focal spot of∼90 µm and 50% transmission; the second has a

spot of∼ 100µm and 42% transmission. The prototype scheme is shown in Fig.2.

Fig. 3 reports our firstµXRF spectrum collected in 60 s on a Neolithic human
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Figure 2: Final prototype layout forµXRF and imaging: 1 - the X-ray source; 2 and 4 - the
1st and 2nd polycapillary optical elements, respectively;3 - the sample; 5 - a Compound
Refractive Lens (CRL) for Imaging; 6 - CCD detector.

bone sample in powder form where all main elements are well resolved with an excellent

collected intensity and good signal to noise ratio (Cf. [16]).
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Figure 3:µXRF spectrum of a neolithic human bone powder sample obtained in confocal
configuration.

A real mapping ofµXRF spectroscopy was obtained on standard sample of ferric

oxide (Fe2O3) [9]. The standard monophasic minerals of Fe2O3 was prepared in a 1000

class clean room at DISAT, University of Milano - Bicocca. Soas not to overlap two close

measurements, we made a scan, by a remote system, of 4x4 mm of the region with a step

movement of 200x200µm. Fig. 4 shows the image result: red represents iron (in intensity

scale of gray); the white bright pixels are manganese (contamination is probably present

so we are designing a glow box for performing measurements ina helium atmosphere).
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Figure 4:µXRF mapping spectrum Ferrum Oxide sample, deposited on a silicon wafer.
The gray pixels represents iron (in a scale of gray), while the white bright spots are man-
ganese trace. The measured area is 4x4 mm with a step sized of 200x200µm.

3 Conclusions

We have described a new prototype forµXRF analysis. We have shown that a confocal

optical scheme used with a low-power (50 W) conventional tube and high-resolution SDD

detector becomes a powerful instrument for x-ray fluorescence measurements of micro-

size spot. Polycapillary lenses in a “confocal configuration” deliver with a micro-size spot

a high photon flux on a sample, so they are ideal candidates forovercoming some of the

main problems of laboratory x-ray instruments, including signal-to-noise ratio, resolution,

mapping, and portability.

We have shown the first results both for x-ray imaging and for XRF spectroscopy.

With regard to imaging, the use of a polycapillary semi-lenshelps us get a spatial reso-

lution of about 6µm. To decrease the x-ray spot dimensions, we would like to substitute

the present polycapillary lenses with the latest generation lenses since they provide a focal

spot of a few microns in diameter. To increase the x-ray microscopy resolution, we are

planning to combine a full polycapillary lens with a compound refractive lens.
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