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Abstract 
 

Numerical simulations have shown that a recently proposed “crabbed waist” scheme of 
beam-beam collisions can substantially increase the luminosity of a collider. In this paper we 
give a qualitative explanation why this scheme works. For this purpose we use simple 
geometrical considerations and analyze peculiar properties of vertical motion modulations by 
synchrotron and horizontal betatron oscillations. It is shown that in the "crabbed waist" 
scheme these modulations, which are the main sources of beam-beam resonances excitation, 
are significantly suppressed. Some numerical examples demonstrating the effect of the 
crabbed waist collisions are also given. 
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1 LUMINOSITY CONSIDERATIONS 
 

The recently proposed Crabbed Waist (CW) scheme1) of beam-beam collisions can 
substantially increase collider luminosity since it combines several potentially advantageous 
ideas. The first one is large Piwinski’s angle. For collisions under a horizontal crossing angle 
θ (flat beams) the luminosity L, the horizontal ξx and the vertical ξy tune shifts scale as2): 
 
 

(1) 
 
 
Here Piwinski’s angle φ  (see Fig.1) is defined as: 
 

(2) 
 
 
 
where σx,y,z are the r.m.s. bunch sizes, �y is the vertical beta-function at the IP, εx is the 
horizontal betatron emittance, N is the number of particles per bunch. 
 
 
 
 

 
 
 
 
 
 
 

FIG.1:. Scheme of collision with a crossing angle. 
 
As it is seen from (2), there are four possibilities of increasing Piwinski’s angle: 
 

1) Increasing the bunch length σz. According to (1-2) this allows to increase N 
proportionally to (1+φ2)1/2. In this case ξy remains constant, ξx decreases and L 
increases proportionally to N. The overlap area of colliding bunches does not change. 

 
2) Increasing the crossing angle θ (but in assumption it remains to be << 1). The 

consequences are actually the same as in the previous case, but the overlap area of 
colliding bunches decreases as 1/θ. 

 
3) Decreasing the horizontal emittance εx and, therefore, the horizontal beam size σx. In 

this case, if φ >>1, we should keep the same N, so that all the values ξx, ξy, L do not 
change. The only effect is that the overlap area of colliding bunches decreases. 
However, if we go from small φ � 1 to large values, we need to decrease N in order to 
keep the ξ values, so the luminosity even drops slightly. On the other hand, if one (or 
both) of the 1–2 possibilities were also exploited (ξx decreased), we can afford some 
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ξx increase due to εx change, while ξy can be controlled by the betatron coupling, so 
we can keep N and L unchanged. 

 

4) Decreasing the horizontal beta-function �x and, therefore, the horizontal beam size σx. 
In this case, if N is increased proportionally to (1+φ2), ξx will not change, but ξy will 
grow proportionally to N (assuming that σx · (1+φ2)1/2 = const, for φ >>1). Or, if we 
do not change N, it simply results in ξx decrease. 

 

As usual, ξy is more “flexible” parameter as it can be controlled by the coupling (change 
of σy), so the main limit on the beam current N is set by the horizontal tune shift ξx. On the 
other hand, using the 1-2) and 4) features we can decrease ξx significantly, far below the 
beam-beam limit, while the coupling cannot be changed too much: very small values are 
difficult to achieve, big values result in the vertical aperture (in units of σy) decrease. Thus, 
we can conclude that the 1) and 2) features easily allow the N and L increase proportionally 
to (1+φ2)1/2, while 3) and 4) can allow some N and L increase, but it is more questionable and 
requires the coupling increase, shrinking the vertical aperture (in units of σy). So, the main 
advantages of the 3) and 4) features are the overlapping area decrease, plus ξx decrease by 4). 
In the proposed CW scheme3,4) the crossing angle is increased, but not significantly – by a 
factor of 2-3 as compared to the currently working meson factories (DAFNE and KEKB). The 
main accent is made on the significant σx decrease. Thus we do not get very essential 
luminosity gain when only increasing the Piwinski’s angle, but it opens the possibility for the 
next step (second idea): significant �y decrease. 
 

It is well known that decreasing �y at the IP is very profitable for the luminosity (see 
Eq.1). In assumption that we should have the same beam-beam tune shift ξy, the �y decrease 
allows the N increase as 1/�y

1/2  (if ξx allows, that is just the case for large Piwinski’s angles), 
so the luminosity goes up as 1/�y

3/2. But in order to get all these advantages we (usually) need 
to keep the bunch length not larger than �y. So, in ordinary IR concepts the main limitation on 
further �y decrease is set by the lower limit on the achievable bunch length σz. But more 
precisely, the condition is that �y should be comparable to the overlapping area, not the bunch 
length! Usually (head-on or small φ) these two are comparable, but with large Piwinski’s 
angle the overlapping area becomes much smaller than σz, allowing significant �y decrease: 
 

(3) 
 
And this can give us very significant gain in the luminosity! The additional advantages of 
such collision scheme are: 
 

• There is no need to decrease the bunch length to increase the luminosity as proposed 
in standard upgrade plans for B- and Φ- factories5,6,7). This will certainly ease the 
problems of HOM heating, coherent synchrotron radiation of short bunches, excessive 
power consumption, etc. 

 
• The problem of parasitic collisions (PC) is automatically solved since with higher 

crossing angle and smaller horizontal beam size the beams separation at the PC is very 
large in terms of σx. 
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On the other hand, such a scheme of collision induces strong X-Y betatron resonances, 
which may cause troubles in making choice of the working point, and lower the achievable 
luminosity. Fortunately, a very attractive and simple solution was proposed recently1), which 
solves this problem – the Crabbed Waist (CW). One of the reasons it was proposed for is the 
geometrical luminosity increase, but calculations8) showed that for the typical beam 
parameters the gain in luminosity is relatively small, of the order of 5-10%. So, the main 
profit of the CW comes from the beam dynamics considerations – the betatron resonances 
suppression. This is the third idea accomplishing the new concept of the IR design. 
 
 
2 BEAM DYNAMICS CONSIDERATIONS 
 

Here we qualitatively consider the main features of different collision schemes 
concerning beam-beam interaction, in particular how the vertical particle’s motion is affected 
by the synchrotron and horizontal betatron oscillations. The “luminosity” aspect is not 
considered here. What is important in the “old concept” (φ � 1): where the particle meets the 
center of the opposite bunch. This is what we call CP (Collision Point), while the IP 
(Interaction Point) is the nominal CP for an equilibrium particle. The main features of the old 
concept are: 
 

a) The X-Y betatron resonances appear due to the vertical beam-beam kick’s dependence 
on the horizontal particle’s coordinate (amplitude modulation), see Fig.2. The horizontal 
kick also depends on the vertical coordinate, but for the flat beams this dependence is 
much weaker. 

 

b) Without crossing angle the SB resonances appear by two reasons. The first one is the 
betatron phase advance modulation from IP to CP, especially for the vertical betatron 
motion (assuming �y is small, flat beams). The second one is the �y increase at the CP 
(that is an amplitude modulation), when shifted longitudinally from IP, due to the hour-
glass effect, see Fig.3 (red line). 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIG. 2: Vertical kick vs. X/σx  for  4 different Y/σy: 0.5, 1.0, 1.5, 2.0. 
 Bassetti-Erskine formula, σx /σy = 100. 
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FIG. 3:  Synchrotron modulation of �y, qualitative picture. Two lines 
correspond to head-on collisions: flat beams (red) and round beams (blue). 

Green line corresponds to the crossing angle collisions, flat beams. 
 
With crossing angle (horizontal, small Piwinski’s angle, see Fig. 4) we have: 
 

c) Horizontal coordinate of the test particle in CP (in the strong bunch’s coordinate frame) 
depends mainly on the particle’s longitudinal coordinate, that results in a strong 
amplitude modulation of both horizontal and vertical beam-beam kicks by the 
synchrotron oscillations. This can excite strong synchro-betatron resonances, both 
horizontal and vertical. 

 

d) Particles with non-zero X-coordinate have the CP shifted longitudinally. This is similar 
with the effect of synchrotron oscillations, but induces X-Y betatron resonances instead 
of synchro-betatron ones. However, this effect is rather small for φ � 1, since the 
longitudinal shift of CP due to X-oscillations is not significant, much smaller than �y. 

 

e) �y decreases at the CP (when shifted longitudinally from IP) due to horizontal 
separation, see Fig.3. Although the �y decreasing could seem better than increasing, it is 
in any case an amplitude modulation and results in synchro-betatron resonances 
excitation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIG. 4: Collision with a crossing angle, φ � 1. 
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In the “new concept” (large Piwinski’s angle) the situation is rather different. The 

center of the opposite bunch is not so important and can be not seen at all (due to large 
horizontal separation) by the particles with large longitudinal displacements. So, the CP has 
to be defined in a different way: now it is the point where the test particle crosses the 
longitudinal axis (i.e. trajectory of the equilibrium particle) of the opposite beam, see Fig. 5. 
The main features of the new concept (step by step) are: 
 
2.1 Large Piwinski’s angle (small overlapping area, but still �y ∼∼∼∼ σσσσz) 
 

1) Particle interacts with a small part of the opposite bunch, near the IP. When 
considering the vertical beam-beam kick, the rest of the bunch is not seen due to large 
horizontal separation. The horizontal kick, however, is more “long-distance”. Indeed, 
for large horizontal separations the horizontal kick strength drops as 1/r, while the 
vertical one – as 1/r2. But in general, as our main concern is the vertical motion, and 
since the overlapping area (OA) is much smaller than �y, we can consider CP 
coincides with the nominal IP. Since the particle’s betatron phase and the opposite 
beam’s parameters at the CP do not depend on the particle’s longitudinal and 
horizontal coordinates, the effects of (b) and (d) vanish. 

 

2) The vertical beam-beam kick’s dependence on the particle’s X-coordinate becomes 
much smaller than in the ordinary IR design, – almost negligible, since the particle 
shifted horizontally crosses the opposite bunch in the point slightly shifted 
longitudinally, but with actually the same density, and the geometry of collision will 
be the same as for the equilibrium particle, thus eliminating the (a) effect. This makes 
the X-Y betatron resonances much weaker than even in the ordinary head-on 
collisions! So, the beam-beam interaction can be considered, in some sense, as one-
dimensional. 

 

3) The synchrotron motion still affects the beam-beam interaction through the 
modulation of the density of the opposite bunch at the CP: the particle shifted 
longitudinally will meet at the IP the other part of the opposite bunch, also shifted 
longitudinally, and therefore having the different density. This is the only modulation 
remaining. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 5: Collision with a crossing angle, φ  >> 1. 
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4) On the other hand, the betatron phase advance over the OA is small, so a particle fills 

a “solid” kick in a constant phase. This makes the beam-beam interaction even 
stronger as compared to the normal situation, where the betatron phase averaging 
during the interaction makes the beam-beam kick “smoother”. 

 
2.2 Small �y at the IP (to fit the OA) 
 

5) The vertical betatron phase advance from IP to CP becomes significant again. So, the 
betatron phase modulation appears again and becomes much stronger than in (d) case, 
since the longitudinal shift of CP due to horizontal betatron oscillations is comparable 
now with �y, see Fig. 6. 

 

6) Amplitude modulation of the vertical beam-beam kick (i.e. �y) by the horizontal 
betatron oscillations also appears, and has two sources: �y of the “weak” beam in the 
numerator and σy (that is proportional to �y

1/2 ) of the “strong” beam in denominator. 
 

7) The phase averaging over the interaction region appears again, smoothing the beam-
beam kick. This leads also to a strong suppression of the vertical synchro-betatron 
resonances9). 

 
 
 
 
 
 
 
 
 
 
 
 

FIG. 6: Small �y, collision with a crossing angle, φ  >> 1. 
 
 
2.3 Crabed waist (see Fig.7) 
 

8) When applied to the “weak” beam, it removes the betatron phase modulation at the CP 
(see explanations in the next chapter). Besides, the amplitude modulation also 
changes: �y of the “weak” beam in CP (�y numerator) is not modulated anymore, but 
modulation of σy (“strong” beam, �y denominator) still remains. 

 

9) When applied to the “strong” beam, it somehow affects the beam-beam kick’s 
dependence on the particle coordinates, so that Bassetti-Erskine formulae cannot be 
used more. It is not clear yet how it could affect the beam-beam resonances, whether it 
is profitable or not, but we believe it is much less significant than suppression of the 
betatron phase modulation. 
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FIG.7: Collision in a “Crabbed Waist” scheme. 
 

3 BETATRON RESONANCES SUPPRESSION BY THE CRABBED WAIST 
 

Let us consider in more details how the Crabbed Waist (CW) works. According to the 
definition, it means that for the particles shifted horizontally (betatron X-coordinate is not 
zero) the minimum of the vertical beta-function (i.e. the vertical waist) is shifted 
longitudinally. The necessary nonlinear transformation can be provided by two sextupoles 
placed on both sides of the IP. The horizontal and vertical phase advances between the 
sextupoles and the IP must satisfy the following conditions: 
 
 

(4) 
 
where m, n are integers. The required sextupole strength is: 
 
 

K =                                                                                            (5) 
 
 
where “*” denotes the beta-functions at the IP, without “*” – at the sextupole location. The 
two sextupoles must have the different polarity. If the (4) conditions are satisfied, they 
exactly compensate each other, so all the perturbations induced by them become local. In 
these conditions we can say that between the sextupoles �y is a function of the horizontal 
betatron coordinate X. So, for a particle with any given X-coordinate we can consider the 
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sextupoles as additional linear lenses, as if they are a part of linear lattice. What is very 
important: in such a lattice the condition (4) for ��y is valid for the phase advance between 
the sextupoles and the CP (not IP)! Indeed, the transport matrix M (see Fig. 7) from the 
entrance of the first sextupole to the CP (vertical betatron motion only) can be written as: 
 
 

(6) 
 
 
where the first matrix corresponds to the drift space from IP to CP, L being the drift length, 
the last matrix corresponds to the sextupole, considered here as a thin linear lens, and in the 
middle is the unperturbed matrix m from the sextupole location to the IP. It is important to 
note that m22 = 0, since �y = 0 at the IP and ��y = �/2. As a result, for M we get this matrix 
element equals to zero too: M22 = 0. On the other hand, considering the “new” lattice 
(sextupoles included) we can write the standard formula for M22: 
 

(7) 
 
where �1y and �1y are the beta- and alpha-functions at the CP. Since it is the waist at the CP, 
�1y must be equal to zero, so we get cos(��1y)= 0, resulting in ��1y = �/2, that is exactly what 
we wanted. In the other words, the vertical betatron phase advance from the first sextupole to 
CP and then from CP to the second sextupole remains to be �/2 for all the particles 
independently on their X-coordinate, thus eliminating the vertical betatron phase modulation 
by the horizontal betatron oscillations. 
 

Now let us consider amplitude modulation of the vertical beam-beam kick caused by 
the �y modulation at the CP. The vertical tune shift depends on both “weak” and “strong” 
betas, as follows: 

 
(8) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 8:  In CW scheme the “weak” �y at the CP’s is always in the minimum and does not 
depend on X-coordinate, but the “strong” �y goes up when CP is shifted from the nominal IP. 
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Here in the numerator we have “weak” �y, and in the denominator – “strong” beam size. 
Without Crabbed Waist both betas at the CP are actually the same, the difference is negligible 
when � << 1. It means that �y scales as (�ys)1/2. In the Crabbed Waist scheme �yw = const at the 
CP, so �y scales as (�ys)–1/2, that is inverse dependence of the one without CW, see Fig. 8. This 
means that if the waist rotation is smaller than the nominal value, the amplitude modulation 
should decrease while some phase modulation appears again. From here we can conclude that 
there is some “optimum” angle of the waist rotation – as a compromise between amplitude 
and phase modulations, which should depend on the other parameters (�, φ, etc.). Usually the 
optimum lies somewhere in the range of 0.6 to 0.8 of the nominal value, see Fig. 9. 
 
 
 
 
 
 
 
 
 
 
 

FIG. 9: Luminosity and beam tails for SIDDHARTA3) vs. waist rotation. 
 

In simulations, however, we can exclude the �ys modulation very easily: increase �ys by 
a factor of, say, 100 and decrease the “strong” vertical emittance εy by the same factor. In this 
case the optimum waist rotation must be shifted to the nominal value 1.0, that is exactly what 
we obtained in our simulations, see Fig.10. The second row in the table corresponds to 1.5 
times higher tune shift (“strong” bunch current). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

FIG. 10: Luminosity in some units and beam tails for SuperB4) vs. waist rotation. The 
“strong”  �y  is larger and εy is smaller by a factor of 100, so there is no �y modulation. 
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                       Crab ON => 0.6/�                                                  Crab OFF 

   Lmax = 2.97x1033 cm-2s-1                                         Lmax = 1.74x1033 cm-2s-1 
   Lmin = 2.52x1032 cm-2s-1                                         Lmin = 2.78x1031 cm-2s-1 

 
FIG. 11: SIDDHARTA luminosity scan3). Red colour corresponds to  

the maximum luminosity, blue – to the minimum. 
 

The effect of the betatron resonances suppression by the CW becomes the most obvious 
when looking at the luminosity scan vs. betatron tunes, see Fig.11. As one can see, with the 
Crabbed Waist many X-Y betatron resonances disappear or become much weaker, so the 
good working area enlarged significantly, plus the maximum luminosity increased by a factor 
of about 2. One more example is presented on Fig. 12, where the SuperB4) parameters were 
used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Lmax = 1.21x1036 cm-2s-1      Lmin = 2.25x1034 cm-2s-1 
 

FIG. 12: SuperB luminosity scan4) with CW, �s=0.02. 
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The only strong resonances remaining are the horizontal synchro-betatron ones (satellites of 
half-integer resonance). In Fig.11 such resonances (satellites of integer) are not visible, since 
the scan area there was from 0.05 to 0.20. The vertical synchro-betatron resonances are 
suppressed, that is in good agreement with9). And we do not see any strong betatron 
resonances on Fig.12, in contrast with Fig.11, where we can see some. The reason is that the 
Piwinski’s angle for SIDDHARTA is not so big and the CW mechanism is working not in full 
strength. 
 
 
4 CONCLUSIONS 
 

The main features of the Crabbed Waist scheme of collision can be summarized in three 
items: 
 

1) Large Piwinski’s angle  –  to decrease the overlapping area. 
 

2) Low �y to fit the overlapping area  –  this is the main source of the luminosity increase. 
 

3) Crabbed Waist – to suppress the betatron resonances, allows significant �y and 
luminosity increase. 

 

It is worth to note that the modulations in CW scheme become significantly smaller as 
compared to head-on collision scheme, thus the beam-beam limit �y increases by a factor of 
about 2-3! 
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