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Abstract 

 
The Dirac equation for both electron and positron moving under planar channeling 

condition was considered. The influence of projectile’s spin on the bound energy levels of 
transverse motion was estimated within analytical approach. The estimates show that for ultra 
relativistic projectiles and for variety of crystals the presence of a spin results in a small 
splitting of a bound energy level. This effect, in principle, can be revealed by the use of 
precise techniques.  
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1  INTRODUCTION 
As known the motion of spin particles is described by the Dirac equation1). A characteristic 
feature of the relativistic equation of motion is that the spin of the particle is built into the 
theory from the beginning. This feature provides a useful measure of the applicability of a 
particular equation of motion to the description of a particular kind of particle. Hence, for the 
spin manifestation at electron/positron channeling, the Dirac equation has to be solved under 
the channeling conditions for the projectiles. 

Generally, due to negligible small spin-related terms in the Dirac equation, solving the 
motion equation for specified particles channeled in crystals, does not need to take into 
account the spin influence to “projectile-crystal” interaction2). 

Here we consider the planar channeling, when the particles move at small angle to the 
crystal plane. It is well known that transverse-plane motion of a channeled particle is 
characterized by a set of bound energy levels; the radiation spectrum is defined by the 
transitions between various levels. Solving the Dirac equation without simplifications at the 
beginning enables to obtain the bound energy levels in presence of a particle’s spin. 

In3) the Dirac equation for ultra relativistic particles, which move in one-dimensional 
electric field under small angle to a plane orthogonal to the field, is solved. It is shown that 
one needs to solve the motion equations for two possible projections of a particle’s spin onto 
the electric field direction, i.e. 
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for a spin directed along the electric field, and 
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for a spin - opposite the electric field. Here ||E  is the longitudinal energy of a projectile, ε  is 
the energy of a bound state of the transverse motion, )(xV  is the potential energy, c  is the 
speed of light, and h  is the Planck constant. The function )(1 xf  in (1) is the 1st component of 
the 4-component Dirac spinor; and the function )(xg  in (2) is related with a 1st Dirac spinor 
component by the expression 
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Obviously, one can use these results to consider the spin manifestation for channeling 

phenomena. Below only under-barrier states are taken into account. In order to give some 
estimates we have used simple parabolic potential approximating real potential of a crystal 
plane. 
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2 POSITRON CHANNELING AT PARABOLIC POTENTIAL APPROACH 
The parabolic potential is a good approximation for interaction potential of positrons with 
crystal field near the center of plane channel between crystal planes; the positron potential 

energy can be presented as 2
2
04)( x

d
UxV = , 0U  is the depth of a potential well, and d  is the 

distance between crystal planes. Hence, Eqs.(1), (2) for a positron should be written in the 
following 
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where dxx /1 = . These equations have the solutions, which are written in terms of 
Hermitian’s polynomials, and determine the spectrum of bound energy states 
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for a spin along the electrical field of a plane, and 
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for a spin opposite directed; n = 0, ±1, ±2, ... 

 
 
 

3 ELECTRON CHANNELING FOR A MODIFIED POSCHLE-TELLER POTENTIAL 
When one deals with the channeled electrons, the modified Poschle-Teller potential is 
appropriate to describe interaction of a particle with a crystal field 

 
 )/(ch)( 2

0 bxUxV −−= ,  (8) 
 

where 0U  is the depth of a potential well and b  is the tabular parameter for given crystal 
planes. In this case the crystal plane is located in the center of a channel considered. The 
bound states are formed for the transverse electron energies within the range 00 <<− εU . 
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Substituting the potential (8) in Eqs.(1), (2), one can obtain the equations of motion: 
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where bxx /1 = . Eq.(10) has an analytical solution4) while analytical solution of Eq.(9) is 
unknown. 

The 2nd term in (9) presents the influence of electron spin to energy levels and wave 
functions; estimating it5), one can conclude that this term is small in comparison with other 
terms. It should be underlined that this term is proportional to the strength of crystal electric 
field 11 /)( xxV ∂∂ . Therefore, the influence of electron spin is greater near the center of a 
channel (for electrons it coincides with crystal plane); thus, we have to consider the behaviour 
of wave functions near the center of a channel. 

In order to resolve a problem analytically, a crystal potential V(x1) can be expanded into 
the Taylor series near the channel center; we have used the expressions with the terms of the 
2nd order including. In this area the crystal potential could be expanded into the Taylor 
expansion. The crystal potential )( 1xV  has been expanded to the second term. Furthermore, as 
the 2nd order term is small in comparison with the potential depth value, the 1st term in the 
expansion for 11 /)( xxV ∂∂  has been only taken into account. Substitution of these 
approximations gives us the equations 
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The solutions of Eqs.(11) and (12) are similar to those for Eqs.(4) and (5), respectively. 
Hence, one can written the bound energy spectra replacing the corresponding terms of Eqs.(6) 
and (7). Thus, we obtain the following expressions 
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for a spin along the electrical field of a crystal plane, and 

 ( ) 0

2/1

2
||

0 12
2

Un
bE

Ucn −+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=↓ hε   (14) 

 
for a spin directed opposite the field. 
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4 ESTIMATES AND DISCUSSIONS 
As shown3), energy spectrum of ultra relativistic channeled particles in parabolic potential 

2)( kxxV = , when its spin is neglected, defined by the expression 
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As in the case of positron channeling 2

0 /4 dUk = , the expression for bound energies of a 
“spinless” positron is written as follows 
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Let us estimate the influence of a particle’s spin to its motion at planar channeling. One 

can compare the distance between spin-related components of (6) and (7) with the distance 
between neighbour energy levels (16). 

From (16) valid for spinless particles the distance between two neighbour levels n and n+1 
is constant for every n and defined as 
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Presence of a spin results in the level splitting with a gap 
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To evaluate the influence of a projectile spin to observable effects, let calculate the 

quantity δn/Δn : 
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If the quantity (19) is equal or almost equal to 1, the spin of a particle should be taken into 

account at simulation. And vice versa, if this quantity is rather small, 1/ <<Δnnδ , the 
influence of a spin is negligible. 
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For estimations the depth of a potential well for planar channeling can be taken as 200 ≈U  
eV, and the distance between atomic planes as 2≈d Å. Hence, the term 2

0 /4 dU  is about 
17102 ⋅  eV/cm2. It should be noticed that for ultra relativistic energies 50|| >E  MeV the 

quantity 1)2/( 23
||0

22 <<dEUc h . Therefore, the 1st term in (19) can be considered as negligible 
small. 

Moreover, it should be underlined, that the 1st term in (19), which includes the dependence 
on the level number n, may be indeed considered as zero. Successfully, the energy splitting is 
defined by the 2nd term of Eq. (19), i.e., it is constant for all energy levels at the fixed 
projectile energy ||E . 

Then, we obtain from (19): 
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Thus, for positrons we have 111092.4/ −⋅≈Δnnδ  at 1|| =E  GeV; 10104.1 −⋅  at 500|| =E  MeV; 

and 9104 −⋅  at 50|| =E MeV. All estimates show that influence of a positron’s spin can be 
omitted for considered projectile energy range 50|| >E  MeV. Of course, there is a special 
interest to evaluate (19) for the energies less than 50 MeV; however, for that interval the 
developed method for solving the Dirac equation becomes inapplicable. 

Above one obtained that for very wide range of projectile energies ||E  the influence of a 
spin can be omitted. But this effect may be observable for some very specific crystals. For 
positron energy 500 MeV and typical crystals we have 
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If one would like to observe the effect for such a positron under planar channeling 
conditions that may correspond to the value of 05.0/ 00 ≈Δδ , the coefficient 2

0 /4 dU  should 
be equal 1031 eV/cm2. This quantity requires both very deep potential well 10 >U  MeV and 
very small distances between crystal planes 1<d  pm. These parameters are rather distant 
from the parameters of existing crystals. 

Similar estimates can be given for a channeled electron, for which bound states are defined 
by the expressions (13), and (14). The energy spectrum of a “spinless” electron is defined as 
in (16): 
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For most of the crystals the parameter b is about the distance between crystal planes6). It 
means that the estimates done for positrons are valid for electrons, too. 
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Finally, it is of theoretical interest to obtain the spin-related energy as a small correction to 
the energy of spinless particle. Above one obtained that the parameter 1)2/( 23

||0
22 <<dEUc h  

in (6). Hence, one can use the Taylor expansion in the expression (6) for positron levels: 
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The first term in (23) is the energy levels of a spinless particle (16), and both the second and 
third terms are spin-related ones. The first term is proportional to h , the second term is 
proportional to 2h  and the third term - to 3h . The second term does not depend on level’s 
number n and related with a spin only. The third term depends on both the spin and energy 
level number. Hence, one can see obviously that spin-related energy is a small correction to 
the positron’s energy obtained when the spin of a positron has been omitted. 

 
  

 5 CONCLUSIONS 
It is known that the energy levels of a particle in parabolic potential are equidistant. Above it 
was obtained that influence of a projectile’s spin results in splitting each energy level into two 
sublevels, which correspond to two possible spin projections onto the direction of electrical 
field. The distance between spin-related sublevels is almost the same for all levels. 

One could observe two lines (with a small shift) in radiation spectra of particles, but the 
even modern experimental equipment does not able to separate these lines. Moreover, the 
broadening of levels due to various processes of scattering prevents observing of a “fine 
structure” of the levels near the peak of a potential well. 
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