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1 Introduction

There are many different mechanisms responsible for an emission by fast charged parti-

cles moving in a medium. As a rule, yields of such emission processes are considered

separately. Meanwhile simultaneous manifestation of two or more emission processes

may change substantially characteristics of the total emission. In well known experiment

[1] devoted to the study of Landau-Pomeranchuk-Migdal (LPM) effect in bremsstrahlung

by relativistic elections in a thin layer, observed form of the emission spectrum was dif-

ferent from that given by the theory of LPM effect in unbounded medium [2]. Later it was

shown that the mentioned difference was caused by the contribution of transition radiation

(TR) [3].

Modification of several emission processes due to the influence of TR is analyzed

in this work. Such modification can be manifested variously by: independent TR contri-

bution to total emission yield; interference of TR amplitude with that of another emission

mechanism; TR contribution to the formation of alternative emission process. TR influ-

ence tends often to new phenomena in emission processes. This paper reviews some of

these phenomena.

Section 2 is devoted to the study of density effect in a new emission mechanism

known as polarization bremsstrahlung (PB) [4,5]. Suppression of this effect due to TR

contribution to the formation of PB yield from a thin amorphous target is shown in the

paper.

Strong modification of the structure of coherent PB from relativistic electrons cross-

ing a thin crystalline target (the coherent part of PB is widely known as parametric X-ray

radiation, or PXR [6,7]), caused by diffracted TR, is considered in Section 3 in the case

that observed photons propagate to Bragg scattering direction.

The theory of PXR predicts an existence of two PXR peaks propagating along both

Bragg scattering direction and the velocity of an emitting particle. Second peak (forward

PXR) is presently the subject of intensive experimental studies [8],[9],[10]. It turns out

that TR contribution is competitive with PXR one. This circumstance may influence

substantially on the interpretation of experimental data as is shown in Section 4.

Section 5 of the paper is devoted to the description of anomalous Ter-Mikaelian

effect of dielectric suppression of bremsstrahlung from thin layer of amorphous medium.

This effect different from the ordinary Ter-Mikaelian effect is caused by the interference

between bremsstrahlung and TR emission amplitudes.

Analogous effect but due to the interference between TR and coherent bremsstrahlung

from relativistic electrons crossing an aligned crystal is considered in Section 6. Peculiar-

ities in the emission spectrum caused by the coherent azimuthal scattering of emitting
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electrons by atomic strings are studied in this Section.

Studies of this work is accomplished in an analysis of the LPM effect in the coherent

bremsstrahlung from relativistic electrons. It is shown in Section 7 of this paper that the

Migdal’s function describes correctly the spectrum of coherent bremsstrahlung in high

enough frequency range and for high enough emitting electron energy only.

Conclusions are collected in Section8.

2 Suppression of density effect for polarization bremsstrahlung in a thin target

Fast charged particle transversing medium produces polarization bremsstrahlung due to

the excitation of medium’s electrons by electromagnetic field of a projectile [4,5]. In

the case of condensed medium, the projectile field is screened due to polarization of the

medium. This effect (the density effect) causes moderation of relativistic particle ioniza-

tion energy losses (Fermi effect [11]). An analogous effect has been predicted for PB of

relativistic particles moving through an unbounded medium [12].

It is well known that the Fermi effect is suppressed in the case of a relativistic

particle crossing a sufficiently thin target [13]. The physical reason for such suppression

is very simple. The particle’s field in vacuum in front of the target is transformed to the

screened field inside the target over the emission formation length lcoh ≈ γ2/ω [14], γ is

the Lorentz factor of the projectile. Therefore, the structure of the particle field does not

change substantially in the frequency range where the inequality lcoh � L is valid (L is

the thickness of the target).

One can expect suppression of the density effect to occur as well in PB from

relativistic particle crossing a thin layer of a medium. To elucidate this question let

us consider the structure of electromagnetic field excited by a relativistic particle mov-

ing with a constant velocity V along the axes ex which is normal to a plate of amor-

phous medium with thickness L. To find the Fourier transform of the electric field

Eωk = (2π)−4
∫
dtd3reiωt−ikrE(r, t) by means of Maxwell equations, it is necessary

to determine the induced current density for medium electrons. We use the following

simple expression in this paper

J = −e2

m
A(r, t)n̂, n̂ =

∑
α

Z∑
β=1

δ(r − rα − rαβ), (1)

which is generally accepted within the framework of X-ray scattering theory [15]. For-

mula (1) is valid in the frequency range I << ω << m (I is the mean ionization potential

of an atom, m is the electron mass). These relations allow us to consider atomic electrons

as free during the emission process and to neglect the Compton shift of the frequency of
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emitted photon. It is very important that electron coordinates rαβ are approximately con-

stant during the process of relativistic particle collision with an atom. In formula (1) A is

the vector-potential of electromagnetic field, α is the index for individual atoms, while β

is the index for electrons in a given atom of atomic number Z.

Substituting (1) into the Maxwell equations permits us to obtain the following equa-

tion for the transverse component of the electrical field Etr
ωk =

∑2
λ=1 eλkEλk:

(k2 − ω2)Eλk +
∫

d3k′
2∑

λ′=1

eλ′k′eλkG(k′ − k)Eλ′k′ =
iωe

2π2
exeλkδ

(
kx − ω

V

)
,

G =
e2

2π2m

∑
α

Z∑
β=1

exp [i(k′ − k)(rα + rαβ)], (2)

where eλk are the polarization vectors, keλk = 0.

The function G(k′ − k) describes both reflecting and scattering properties of the

target. Considering PB as being due to the scattering of total electromagnetic field asso-

ciated with penetration of a fast particle consisting of the primary projectile field and the

generated transition radiation field on the fluctuations of the target electron density, one

may separate the average and random quantities in Eq.(2),

Eλk ≡ Ēλk + Ẽλk, G(k′ − k) ≡ Ḡ(k′ − k) + G̃(k′ − k),

Ḡ = 〈G〉 =
4e2n0

m
F (k′ − k)δ(k′

|| − k||)
sin(k′

x − kx)L/2

k′
x − kx

. (3)

Here the brackets 〈〉 mean averaging over the coordinates rα and rαβ, n0 is the atomic

density of the medium, F (k′ − k) is the formfactor of an atom, k|| is the k component

parallel to the target surface.

To find PB field Ẽλk in a vacuum behind the target one should solve the system (2),

(3) and corresponding equations outside the target. This task has been solved earlier [16],

where the general expression for PB spectral-angular distributions has been obtained in

the form

ω
dN

dωdΩ
= ω

dNPB

dωdΩ
+ ω

dNSTR

dωdΩ
+ ω

dN INT

dωdΩ
, (4)

where the first item describes the ordinary PB caused by the scattering of the fast particle

Coulomb field, the second item corresponds to scattered transition radiation field and last

one is interference term. Very simple formula may be obtained for ω dNPB

dωdΩ
in the range of

observation angles Θ

γ−2 +
ω2

0

ω2
, Θ2 � 1

γ2ω2
0R

2
� 1, (5)

where ω0 is the plasma frequency, R is the screening radius in the statistical model of

the atom. On condition (5) the contribution of transition radiation and bremsstrahlung is
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Figure 1: The influence of density effect on ordinary polarization bremsstrahlung in an
unbounded medium (x = ω/γω0). ωdNPB/dωd2Θ = N0F

PB, N0 = Z2e6n0L/πm2,
ω0R = 5ω−3. 1: without taking into account the density effect; 2: taking into account the
density effect.

small relative do that of PB and coherent part of PB from a single atom, proportional to

Z2 dominates. The formula

ω
dNPB

dωd2Θ
=

Z2e6n0L

πm2

[
ln

(
1

ω2
0R

2(1 + ω2/γ2ω2
0)

)
− 2

]
, (6)

takes into account the density effect, which is illustrated by the curves presented in Fig.1.

Formula for ω dNSTR

dωdΩ
, obtained in the same conditions has the form

ω
dNSTR

dωd2Θ
=

Z2e6n0L

πm2

[(
1 + 2

ω2

γ2ω2
0

)
ln

(
1 +

γ2ω2
0

ω2

)
− 2

]
. (7)

In contrast to the broad spectrum (6) due to scattering of the spectrally wide pro-

jectile Coulomb field, the spectrum (7) is concentrated within the narrow frequency range

ω ≤ γω0 corresponding to the TR spectrum.

It should be noted that in the frequency range ω � γω0, where the ordinary PB

saturates due to the density effect, the sum of (6) and (7) is given by the expression

ω
dN

dωd2Θ
� Z2e6n0L

πm2

(
γ2

ω2R2

)
, (8)

which coincides with the distribution (6) for ordinary PB without taking into account the

density effect, that is to say, the density effect is suppressed in PB from relativistic particle
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crossing a thin layer of a medium. To explain this result it should be noted that in the fre-

quency range ω � γω0 the screened field of penetrating particle is suppressed, but the TR

field becomes similar to the vacuum field of a particle. Therefore, the main contribution

to total emission yield determined by the scattered TR field becomes comparable to that

due to the scattering of fast particle Coulomb field in vacuum. Obviously, nature of the

effect considered is the same as that in atomic K-shell ionization by relativistic electrons

crossing a thin layer of a dense medium [17].

Very important is the presence of interference term in a general formula (4)

ω
dN INT

dωd2Θ
=

Z2e6n0L

πm2

[(
1 + 2

ω2

γ2ω2
0

)
sin(η)

η
+ cos (η) +

(
η − 2

σ

ω3

γ3ω3
0

)
si(η)

− 2
ω2

γ2ω2
0

ci(η) +
2

σ

ω3

γ3ω3
0

(
cos

(
ω2

0L

2ω

)
si

(
ωL

2γ2

)
+ sin

(
ω2

0L

2ω

)
ci

(
ωL

2γ2

))]
, (9)

where η = σ
(

ω
γω0

+ γω0

ω

)
, σ = ω0L/2γ. This term is responsible for the dependence

of discussed effect on the target thickness. Such dependence has been illustrated by the

curves presented in Fig.2, where the thickness dependence of the PB spectrum is shown.

In accordance with Fig.2 suppression of the density effect in PB process takes place for

rather thin targets only, when the thickness L is less than the maximum value of the

emission formation length (lcoh)max = 2γ/ω0.

Figure 2: The spectrum of total polarization bremsstrahlung versus the target thickness
L. 1: F PB without the density effect; 2: F PB + F STR + F INT for y = ω0L/2γ = 0.1; 3:
F PB + F STR + F INT for y = 1.
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3 Modification of parametric X-ray angular distribution due to the contribution of
diffracted transition radiation

As above mentioned, PB from crystalline medium has a coherent part known as paramet-

ric X-rays or PXR [6,7]. In the case of relativistic emitting particles, PXR is observed

as an intense X-ray peak with very small spectral and angular width. It is important to

keep in mind that a zeroth-order electromagnetic field associated with relativistic particle,

penetrating a target with a finite thickness, consists not only of the Coulomb field, but of

the TR field as well. Obviously, the contribution of TR diffracted by the same system of

crystalline atomic planes that are responsible for the PXR generation, may be substan-

tial. Strong modification of the PXR angular distribution caused by the contribution of

diffracted transition radiation (DTR) has been predicted in [18] and confirmed in further

theoretical [19,20] and experimental [21] works.

Traditionally, the total emission amplitude describing the coherent emission from

relativistic particle moving in a crystal is not separated into PXR and DTR parts. Mean-

while, such separation allows one to elucidate the relative contributions of above emission

mechanisms to total emission yield [19,20]. This circumstance is of particular importance

for the case when the DTR contribution dominates [21].

To demonstrate strong modification of the PXR angular distribution at the condition

of substantial DTR contribution let us consider the emission from relativistic electrons

crossing a boundary of a semi-infinite absorbing crystal with reflecting crystallographic

plane parallel to the surface of a crystal (see Fig.2).

The equations for electromagnetic field excited in a crystal Etr
ωk may be obtained

from (2) with account of regularity of the crystalline lattice. Within the frame of typical

for PXR description two-wave approximation of the dynamical diffraction theory these

equations have the form

(k2 − ω2(1 + χ0))Eλk − ω2χ−gαλEλk+g =
iωe

2π2
eλkVδ(ω − kV)

((k + g)2 − ω2(1 + χ0))Eλk+g − ω2χgαλEλk = 0, (10)

where g is the reciprocal lattice vector, e1k ∼ [k, g], e2k ∼ [k, e1k], dielectric suscepti-

bilities χ0 and χg are determined as

χ0 = −ω2
0

ω2
+ iχ′′

0, χg ≡ −ω2
0

ω2
+ iχ′′

g , (11)

where ω2
g = ω2

0(F (g)/Z(S(g)/N0))e
−1

2
g2u2

T , F (g) is the atom form-factor, Z is the

number of electrons in an atom, S(g) is the structure factor of elementary cell containing
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N0 atoms, uT is the mean square amplitude of thermal vibrations of atoms, α1 = 1,

α2 = (k,k + g)/k|k + g|.
The task considered is well known [20,21], and we present here the final results

only. The spectral-angular distribution of total emission has the form

ω
dNλ

dωd2θ
=
〈∣∣∣APXR

λ + ADTR
λ

∣∣∣2〉 ,

APXR
λ =

e

π
δλ

Ωλ

γ−2 + γ−2∗ + Ω2

1

ξ + sign(ξ − δλκλ)f ′
λ − σ − if ′′

λ

,

ADTR
λ =

e

π
δλΩλ

(
1

γ−2 + Ω2
− 1

γ−2 + γ−2∗ + Ω2

)
1

ξ + sign(ξ − δλκλ)f ′
λ − i(η + f ′′

λ )
,

(12)

where δλ = ω2
gαλ/ω

2
0 ∼ 1, Ω1 = Θ⊥ − Ψ⊥, Ω2 = 2Θ′ + Θ‖ + Ψ‖, Ω2 = Ω2

1 + Ω2
2,

the angle Θ = Θ⊥ + Θ‖ describes the emission angular distribution, the angle Ψ =

Ψ⊥ + Ψ‖ describes the angular speed in emitting electron beam, θ ′ is the orientation

angle describing a possible turning of the crystal by goniometer (see Fig.3), γ∗ = ω/ω0 ≈
ωB/ω0, ωB = g/2 sin(ϕ/2) is the Bragg frequency in the vicinity of which the emission

spectrum is concentrated, η = ω2χ′′
0/ω

2
0, κλ = χ′′

gαλ/χ
′′
0, σ = γ2

∗(γ
−2 + γ−2

∗ + Ω2),

the brackets 〈〉 mean averaging over the angles Ψ⊥ and Ψ‖, the very important quantities

ξ, f ′
λ and f ′′

λ are defined by the formulae

ξ =
g2

2ω2
0

(
1 − ω

ω′
B

)
, ω′

B = ωB

[
1 + (θ′ + θ‖) cot

ϕ

2

]
,

f ′
λ

,′′ =
1√
2

√√
(ξ2 − δ2

λ)
2 + 4η2(ξ − δλκλ)2 ± (ξ2 − δ2

λ). (13)

In accordance with the expression for PXR amplitude this emission appears due to

the scattering of screened Coulomb field of emitting particle. As a consequence, the max-

imum in PXR angular distribution is located at the point ΘPXR
max ≈

√
γ−2 + γ−2∗ (without

account of multiple scattering), corresponding to the maximum in the angular distribution

of screened transverse component of fast electron’s Coulomb field. On the other hand,

DTR angular distribution coincides practically with that of TR, therefore the maximum

in DTR angular distribution is located at the point ΘDTR
max ≈ γ−1 < ΘPXR

max . Thus, DTR

contribution leads to effective narrowing of the angular distribution of total emission.

This effect depends strongly on two parameters: γ/γ∗ and η/δλ. Obviously, DTR

contribution is negligible as well as TR one if γ < γ∗ (see the expression for ADTR
λ in

(12)). Within the range γ � γ∗ relative contribution of PXR and DTR depends strongly

on the parameter η/δλ which is approximately equal to the ratio lext/lab (lext ∼ ω/ω2
g is
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Figure 3: PXR for Bragg geometry. e1 and e2 are the axes of emitting electron beam and
X-ray detector respectively, Θ′ is the orientation angle, describing the possible turning of
the crystal by goniometer.

the extinction length, on which DTR is formed, PXR is formed at the distance of the order

of absorption length lab ∼ 1/ωχ′′
?).

Let us consider the orientation dependence of a strongly collimated photon flux

(collimation angle ∆Θ < γ−1) emitted from an electron beam with a small divergence

(∆Ψ < γ−1). Assuming X-ray detector to be placed in the plane Θ⊥ = 0 (π-polarization

contributes mainly at specified conditions) and neglecting the Bormann effect (κλ = 0)

from (12) after integration over photon energies ω one can obtain the following expression

dN

d2Θ
=

2e2ω2
gγ

2 cos(ϕ)

π2g2
Φ(2γθ′, γ/γ∗, η/δ2), Φ = ΦPXR + ΦDTR + ΦINT . (14)

The functions (14) calculated for great values of the parameter γ/γ∗, when maxima

in PXR and DTR orientational dependencies differ substantially, are presented in Figs.4

and 5. In accordance with presented figures the form of rocking curves can be changed

dramatically at various photoabsorption coefficient values because of corresponding change

of relative PXR and DTR contributions. It should be underlined that PXR angular distri-

butions with one and two maxima have been observed experimentally [22].

4 Dynamical diffraction effect in TR from a thin crystal

PXR along the Bragg scattering direction has been considered in section3. The theory

predicts an existence of additional PXR flux propagating along the velocity of emitting
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Figure 4: Dependence of the total emission on orientation. The functions Φ, ΦDTR, ΦPXR

and ΦINT are determined by Eq.14

electron [23]. This PXR flux known as the forward PXR was intensively studied theoreti-

cally and experimentally during more than 30 years, but the problem of the forward PXR

observation has been solved recently [9,10].

The experimental observation of the forward PXR is complicated mainly due to a

small width of PXR spectrum compared to a typical energy resolution of X-ray detec-

tors (∆ω ≥ 150eV ) that results in efficient averaging of the forward PXR against the

background of broadband bremsstrahlung and TR. TR contribution can be suppressed by

using a negative interference between TR waves emitted from in and out surfaces of the

target. But it is in this case TR can make the contribution as a very intense and narrow

peak located at the same with the forward PXR angular and spectral region [24]. To show

this let us consider an emission from relativistic electrons crossing a single crystal with

a reflecting crystallographic plane arranged perpendicular to in and out surfaces of the

target, so that the normal to the crystal surface lies in this plane. Assuming the velocity

of emitting particle to be oriented at angle ϕ/2 relative to the reflecting plane and using

equations analogous to (10) one can obtain the solution of discussed task in terms close to

that obtained in previous section of this paper. Particularly, the general formula describing

the total emission spectral-angular distribution has the form

ω
dNλ

dωd2θ
=
〈∣∣∣APXR

λ + ATR
λ

∣∣∣2〉 , (15)

close to (12). TR emission amplitude ATR
λ we are interesting in is determined by the
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Figure 5: The same but for different values of the parameter η/δ⊥.

formula

ATR
λ =

e

2π
Θλ

(
1

γ−2 + Θ2
− 1

γ−2 + Θ2 + ω2
0/ω

2

)

1 +

ξ√
ξ2 + δ2

λ


(1 − e−iσ−

)

+


1 − ξ√

ξ2 + δ2
λ


(1 − e−iσ+

) ,

σ± =
ωL

2 cos(ϕ/2)

[
γ−2 + Θ2 +

ω2
0

ω2

(
1 + ξ ±

√
ξ2 + δ2

λ

)]
, (16)

where Θ1 = Θ⊥, Θ2 = Θ‖, Θ2 = Θ2
⊥ + Θ2

‖, the quantity ξ coincides with that in Eq.(13),

but it is well to bear in mind that ω ′
B = ωB(1 − Θ‖cot(ϕ/2)). An influence of multiple

scattering and a photoabsorption has been neglected in (16) for simplicity.

It should be noted that there are two different dependencies of TR amplitude on

the emitted photon energy ω and the observation angle Θ. The ”fast dependence” is

concentrated in the function ξ(ω, Θ‖) and has the characteristic scales ∆Θ ∼ ∆ω/ω ∼
ω2

0/g
2 � 1. This dependence manifests in the narrow vicinity of the Bragg frequency

ωB, or |ξ| ≤ δλ ≈ 1 due to dynamical scattering of TR wave emitted from in surface of

the target by the same crystallographic plane which is responsible for PXR generation.

Obviously, the ”slow dependence” is realized in the range |ξ| � δλ, or far from the Bragg

frequency where TR amplitude (16) takes the simple form

ATR
λ → e

π
Θλ

(
1

γ−2 + Θ2
− 1

γ−2 + Θ2 + ω2
0/ω

2

)
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Figure 6: TR peak caused by dynamical diffraction effects. The presented curves have
been calculated for fixed values of the parameters σ = 2π and δλ = 0.9. 1: p = 3; 2:
p = 8.

×
[
1 − exp

(
− iωL

2 cos(ϕ/2)
(γ−2 + Θ2 + ω2

0/ω
2)

)]
, (17)

coinciding with the well-known emission amplitude for the ordinary TR emitted by a rela-

tivistic particle crossing a layer of amorphous medium [25]. Dynamical diffraction effects

manifest in the close vicinity to the Bragg frequency only, where the TR contribution can

be presented by the formula

ω
dNTR

dωd2Θ
=

e2

π2
Θ2

λ

(
1

γ−2 + Θ2
− 1

γ−2 + Θ2 + ω2
0/ω

2

)2

×

(cos(σ + pξ) − cos(p

√
ξ2 + δ2

λ)
)2

+


sin(σ + pξ) − ξ√

ξ2 + δ2
λ

sin(p
√

ξ2 + δ2
λ)




2

 ,

(18)

following from (15) and (16). Here σ = ωL
2 cos(ϕ/2)

(γ−2 + Θ2 + ω2
0/ω

2), p =
ω2

0L

2ω cos(ϕ/2)
.

Obviously, in the range |ξ(ω, Θ‖)| ≤ 1 the energy of emitted photon ω and the

observation angle Θ may be assumed to be constant in the formula (18) with the exception

of the ”fast variable” ξ(ω, Θ‖).
Let us consider the expression in square brackets (18) T (ξ, σ, p, δλ) as a function of

ξ. It is easy to see in the limit |ξ| � δλ ≈ 1 (far from the vicinity of Bragg frequency) the

function T is described by the formula

T → 2(1 − cos(σ)). (19)
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In accordance with (19) the function T (ξ) appears as an isolated peak, if σ = 2πk.

But this condition corresponds to negative interference between TR waves emitted from in

and out surfaces of the target (see formula (17)). The form of this peak depends strongly

on the value of coefficient p as may be seen from Fig.6. Its natural spectral width ∆ω ≈
ω(2ω2

0/g
2) � ω corresponds to the scale of Darwin table [15].

Since the peak considered appears in the frequency range where the forward PXR

peak manifests, its existence must be taken into account in experimental studies of the

forward PXR.

5 Anomalous Ter-Mikaelian effect in bremsstrahlung from relativistic electrons

Above considered emission processes are based on emission mechanisms corresponding

to the scattering of a fast particle equilibrium electromagnetic field (the particle velocity

change is not of principle). The modification of bremsstrahlung properties due to the

contribution of TR is considered in this section.

Let us consider emission from relativistic electrons crossing a thin amorphous target

near parallel to the normal e to its surface. Defining the unit vector n to the direction of

emitted photon observation and the time-dependent velocity of emitting electron Vt by

angular variables Θ and Ψ

n = e
(
1 − 1

2
Θ2
)

+ Θ, (e,Θ) = 0,Vt = e
(
1 − 1

2
γ−2 − 1

2
Ψ2

t

)
+ Ψ, (e,Ψ) = 0,

(20)

one can obtain within the frame of well-known approach [25] the following expression

[20] for the total emission amplitude

Atot = ABS + ATR,

ABS =
e

π

L∫
0

dt exp


 iω

2

t∫
0

dτ(γ−2
s + u2

τ )


 d

dt

ut

γ−2
s + u2

t

,

ATR = −e

π

[
ui

(
1

γ−2 + u2
i

− 1

γ−2
s + u2

i

)
− uf

(
1

γ−2 + u2
f

− 1

γ−2
s + u2

f

)

× exp


 iω

2

L∫
0

dt(γ−2
s + u2

t )




 , (21)

where γ−2
s = γ−2 + ω2

0/ω
2, ut = Ψt − Θ, ui and uf are initial and final values of ut

respectively. ABS in (21) is the bremsstrahlung amplitude. Obviously, ABS = 0 for

the particle moving with a constant velocity. The quantity ATR describes TR emission

amplitude. It is easy to see that ATR → 0 in the limit ω0 → 0.
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Formulae (21) allow to elucidate the problem of Ter-Mikaelian effect manifesta-

tion in bremsstrahlung from relativistic electrons crossing a thin layer of medium. Ter-

Mikaelian effect in the bremsstrahlung generated in an unbounded medium appears as

suppression of the bremsstrahlung yield in the frequency range ω < γω0 due to the change

of emitted photon phase velocity because of the polarization of medium electrons [14].

On the other hand, bremsstrahlung emitted from very thin layer of a medium is not sup-

pressed by Ter-Mikaelian effect in accordance with the analysis performed in [25]. It

is clear that there is bound to be the intermediate region of thickness where one should

expect an existence of peculiarities in the manifestation of Ter-Mikaelian effect.

Using the general expressions (21) let us consider the spectral-angular distribution

of total emission in the frequency range ω ∼ γω0, where Ter-Mikaelian effect mani-

fests. Since TR can change very substantially characteristics of the total emission, the

contribution of TR must be suppressed in the experiment devoted to observation of Ter-

Mikaelian effect in bremsstrahlung. This problem can be solved by the collimation of

emitted photon flux, because TR angular distribution has a dip gap in the range of ob-

servation angles Θ < γ−1 (it is clear that this property can be used under condition of

weak multiple scattering only, when γ2Ψ2
L = L/LSc � 1, LSc = (e2/4π)LR, LR is the

radiation length). Assuming the thickness of the target L to be small enough, so that the

shift of the photon phase (ω/2)
L∫
0

dtΨ2
t caused by multiple scattering is much less than

unity ((ω/2)〈
L∫
0

dtΨ2
t 〉 = 1

2
(L/LSc)(L/lcoh), lcoh = 2γ2/ω), one can obtain from (21) the

following expression for the spectrum of strongly collimated radiation:

ω
dN

dωdΩ
=

e2γ2

π2

{
2γ2Ψ2

0

1 − cos(y(x + x−1))

(1 + x2)2

+
L

LSc

[
1 − 2x2

(1 + x2)2

(
1 − sin(y(x + x−1))

y(x + x−1)

)]}
, (22)

where Ψ0 is the initial angular spread of emitting electron beam, y = ω0L/2γ is the ratio

of the thickness of the target to the maximum possible value of the emission formation

length, x = ω/γω0.

The first term in (22) describes TR contribution appearing due to electron beam

divergence, the second one, proportional to L/LSc corresponds to the contribution of

bremsstrahlung, TR (this TR contribution is due to multiple scattering only) and an in-

terference term. It is this contribution describes the modification of Ter-Mikaelian effect

being considered. The function in square brackets in (22) is presented in Fig.7. Presented

spectral curves (22) calculated for different values of the parameter y differ substantially
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from that following from both Ter-Mikaelian theory [14] for unbounded medium (curve

1) and Garibian, Yang theory [25] for thin layer of a medium (curve 2).

In order to explain the unexpected shape of presented spectral curves it should be

noted that in the case of very thin target with the thickness L less than the effective for-

mation length leff ≈ 2γ/ω0 what is the same as y � 1, the equilibrium electromagnetic

field of emitting electron is not changed substantially in the target. As a consequence, the

emitted field in must be close to the ordinary bremsstrahlung field generated in a vacuum.

Such ”vacuum bremsstrahlung” appears in (21) due to the strong interference between

bremsstrahlung ABS ≈ e
π
γ2
s ΨL and transition radiation ATR ≈ e

π
(γ2 − γ2

s )ΨL taking

place with the proviso that y � 1. Thus, a Garibian-Yang theory is valid, if y � 1.

In the case y > 1 the electron’s electromagnetic field is screened in the target and,

therefore, the bremsstrahlung contribution is suppressed in the frequency range ω ≤ γω0

due to Ter-Mikaelian effect. Since TR contribution decreases quickly in the range ω ≥
γω0 and the interference between TR and bremsstrahlung is negligible due to phase oscil-

lations in (21) [20,26], the total emission yield is suppressed in the vicinity of ω = γω0

(see Fig.7).

Figure 7: The emission spectrum under condition of anomalous Ter-Mikaelian effect.
ωdN/dωdΩ = (e2γ2/π2)(L/LSc)T (x, y). The curve 1 describes Ter-Mikaelian effect for
unbounded medium (T1 = x4/(1 + x2)2). The curve 2 corresponds to Garibian-Yang
theory (T2 = 1). 3: y = 1; 4: y = 2.

On the other hand, ABS ∼ ω2/ω2
0 � γ2 ∼ ATR as is clear from (21) (ATR ≈

e
π
γ2ΨL exp

(
− iω2

0L

2ω

)
in the frequency range ω � γω0) and the spectrum of strongly

collimated emission increases in the range ω � γω0 due to the scattering of TR photons
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to the range of small observation angles.

It is significant that the discussed anomalous Ter-Mikaelian effect has been observed

experimentally [27].

6 Interference between TR and coherent bremsstrahlung from relativistic elec-
trons in aligned crystals

It should be noted that the target’s atomic structure is not fixed in the general formula

(21), therefore we can use this formula for estimations of both incoherent bremsstrahlung

in amorphous media and coherent bremsstrahlung in crystals.

Starting from (20) and (21), let us consider the total coherent emission from rel-

ativistic electrons crossing a thin aligned crystal, assuming the axis of a set of parallel

atomic strings to be parallel to the normal e to the crystal surface, so the scattering angle

Ψt is simultaneously the orientational angle of the emitting particle velocity V(t) to the

string axis.

Since the velocity V(t) might be changed substantially during small time intervals

only, corresponding to collisions of this electron with atomic strings, one can represent

the total emission amplitude as a sum of elementary amplitudes describing the emission

on different strings. Within the small frequency range

ωR

2γ2
sΨ

� 1, (23)

when the emission formation length lcoh exceeds essentially the effective electron path

in a string’s potential R/Ψ (R is the screening radius in Fermi-Thomas atom model,

R determines the effective transverse size of an atomic string) and, as a consequence,

the emission appearing in k-th collision of the emitting electron with a single string, is

determined by the scattering angle Ψk+1 − Ψk only (Ψk+1 and Ψk are the values of the

angle Ψt after and before k-th collision, respectively) the total amplitude (21) reduced to

Atot =
e

π

[
ui

(
1

γ−2 + u2
i

− 1

γ−2
s + u2

i

)
− uf

(
1

γ−2 + u2
f

− 1

γ−2
s + u2

f

)

× exp

(
iω

2

∑
k

(γ−2
s + u2

k)τk

)
−∑

k

(
uk

γ−2
s + u2

k

− uk−1

γ−2
s + u2

k−1

)
×

× exp


iω

2

∑
j≤k

(γ−2
s + u2

j)τj


], (24)

where τk is the interval between k − 1-th and k-th collisions.
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The averaging of the general formula for the emission spectral-angular distribu-

tion ωdN/dωd2Θ = 〈|Atot|2〉 must be performed over accidental quantities τk and Ψk.

Taking into account an independence of different quantities τk and using the distribution

function f(τ) = (1/τ̄) exp(−τ/τ̄ ) (τ̄ = l̄⊥/Ψ, l̄⊥ = 1/
√

n0d, n0 is the density of atoms,

d is the distance between neighboring atoms in the string), one can obtain the formula

〈exp
(

iω

2
(γ−2

s + u2
k)τk

)
〉 =

1

1 − iω
2
τ̄(γ−2

s + u2
k)

, (25)

which will be used in further calculations.

When averaging over Ψk one should take into account the unique property of elec-

tron coherent scattering by the average potential of atomic string consisting in the conser-

vation law: Ψ2
k = Ψ2

k+1 = Ψ2. It is well known that only azimuthal angle χt of the vector

Ψt is changed due to electron collision with atomic string. Therefore,

Ψk = Ψ (ex cos χk + ey sin χk) , χk = χi +
∑
j≤k

∆χj, (26)

where ∆χj is the change of azimuthal angle χt in j-th i collision. It is clear that all

∆χj are independent accidental quantities. To average the expression for the emission

spectral-angular distribution over ∆χj one should use the following formula

〈cos χk〉 = 〈cos ∆χ〉k, 〈sin χk〉 = 0,

〈cos ∆χ〉 =
2

l⊥

∫ ∞

0
db cos (∆χ(b)), ∆χ = π − 2b

∫ ∞

ρ0

dρ

ρ2

√
1 − b2

ρ2 +
Ψ2

ch

Ψ2 f(ρ)

, (27)

where 1− b2

ρ2
0
+ Ψ2

c

Ψ2 f(ρ0) = 0, b is the impact parameter of electron collision with a string,

the string potential is defined as ϕ(ρ) = ϕ0f(ρ), f(0) = 1, Ψ2
ch = 2eϕ0

mγ
.

It should be noted that the procedure of averaging is very complicated in general

case. Such procedure can be performed completely within the frame of dipole approxi-

mation of the emission theory (the scattering angle achievable at the distance of the order

of lcoh must be small relative to characteristic emission angle γ−1). In the case being

considered the corresponding condition can be presented as

γ2〈(∆Ψcoh)2〉 = 2γ2Ψ2[1 − 〈cos ∆χ〉 lcoh
τ̄ ]

≈ 2γ2Ψ2

[
1 − exp

(
−1 − 〈cos ∆χ〉

τ̄
lcoh

)]
� 1. (28)

Assuming that the condition (28) is fulfilled let us consider an interference between TR

and coherent bremsstrahlung. Performing the necessary expansion in (24) one can obtain
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the following expression for the spectral-angular distribution of coherent bremsstrahlung:

ω
dNBS

dωΘ̃dΘ̃
=

4e2Ψ2

π

γ−4
s + Θ̃4

(γSs−2 + Θ̃2)4
(1 − 〈cos ∆χ〉) ω2

ω2 + ω2
s(Θ̃)

L

τ̄
, (29)

where Θ̃ = Θ −Ψi, the very important quantity ωS(Θ̃) is defined by the formula

ωs(Θ̃) =
2

τ̄

1 − 〈cos ∆χ〉
γ−2

s + Θ̃2
. (30)

Two effects are responsible for the emission yield suppression in small frequency range,

as it is evident from (29) and (30). The well known Ter-Mikaelian effect of dielec-

tric suppression is manifested within the frequency range ω < γω0. More unexpected

suppression effect appears in the frequency range ω < ωs(Θ̃) (obviously, the condition

ωs(Θ̃) � γω0 must be fulfilled for real observation of this suppression effect).

The nature of this effect consists in a limitation by the value of emitting electron

scattering angle achievable in the process coherent azimuthal scattering by atomic strings

[28,29].

Spectral-angular distribution of TR is described by the formula

ω
dNTR

dωΘ̃dΘ̃
=

4e2

π

(
1

γ−2 + Θ̃2
− 1

γ−2
s + Θ̃2

)2

×
[
Θ̃2
(
1 − cos

ωL

2
(γ−2

s + Θ̃2)
)

+ Ψ2(1 − 〈cos ∆χ〉L
τ̄ )
]
. (31)

Where the first form in the brackets proportional to Θ̃2 corresponds to the ordinary TR

from relativistic electron moving with a constant velocity. The second one describes an

influence of coherent azimuthal multiple scattering of emitting electron.

To estimate the influence of azimuthal scattering on the total emission properties it is

necessary to take into account an interference between TR and coherent bremsstrahlung.

The corresponding interference term following from the general formula (24) is very com-

plicated and therefore is not presented here (see [30]). But in conditions analogous to that

considered in the previous Section (strong collimation of emitted photon flux and small

value of the averaged azimuthal scattering angle, achievable in a single collision with

atomic string, or 〈cos ∆χ〉 � 1− 1
2
〈∆2χ〉, the condition ∆χ � 1 is fulfilled if Ψ2 � Ψ2

ch)

the formula describing the total emission yield including coherent bremsstrahlung, TR

and interference term has the simple form

ω
dN tot

dωΘ̃dΘ̃
=

4e2

π
γ2Ψ2G(x, y, z),
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G = yz
x4

(1 + x2)2 + z2x2
+
(
1 − e−yz

) 1

(1 + x2)2
+

(
1 − e−yz

) z2x2(1 + cos y(x + x−1)) − zx(1 + x2) sin y(x + x−1)

(1 + x2)2 + z2x2
, (32)

where the parameters x and y were determined in (??) and the new parameter z is de-

termined as z = γ〈∆2χ〉/ωpτ̄ . The physical meaning of this parameter follows from the

formula
ωs(0)

γω0
= z

x2

1 + x2
≤ z. (33)

As outlined above, the field of existence of the effect coherent bremsstrahlung sup-

pression due to azimuthal multiple scattering of emitting electrons is determined by in-

equalities γω0 < ω < ωs(Θ̃) ≤ ω∗, so that the discussed effect manifests with the constant

z � 1 only in accordance with (33).

Let us analyze the function G(x, y, z) in (32). As evident from this formula, the

contribution of coherent bremsstrahlung (the first term in (32) is suppressed in the range

x < 1 or ω < γω0 due to the normal Ter-Mikaelian effect. The shape of the total spectrum

is in the range x ≤ 1 depends strongly on the values of parameters y and z. In the range

z � 1 the spectrum is determined in the main by the relationship between TR (second

term in (32)) and coherent bremsstrahlung contributions. This relationship depends on the

coefficient yz (obviously, the coefficient 2yz = 〈∆2χ〉L/τ̄ is equal to mean square of the

total azimuthal angle of multiple scattering). In the special case that yz � 1 (the emission

process being considered is close to that in amorphous target) contributions of coherent

bremsstrahlung and TR are comparable in the range x ≤ 1 and the shape of the total

spectrum takes the form characteristic for the spectrum under condition of anomalous

Ter-Mikaelian effect (see Fig.8).

In the case of thick enough target so that yz � 1 the contribution of coherent

bremsstrahlung proportional to full number of electron’s collisions with atomic strings

L/τ̄ dominates in the frequency range ω > γω0. As a consequence, the shape of the

spectrum comes close to that for coherent bremsstrahlung suppressed by the normal Ter-

Mikaelian effect (see the spectral curve presented in Fig.9).

The emission spectrum is changed substantially in the case z � 1. The spectral

curve presented in Fig.10 has been calculated for y > 1 and z � 1. Since L/lCoh = y(x+

x−1) > 2y > 2, the interference term in (32) oscillates in the case under consideration.

Therefore the effect of strong suppression of coherent bremsstrahlung due to azimuthal

multiple scattering in a wide frequency range is attended by oscillations in the spectrum.

It is interesting to note that the averaging of the general expression for emission

spectral-angular distribution can be performed exactly beyond the frame of dipole ap-
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Figure 8: The spectrum of strongly collimated emission. The function G(x, y, z), de-
pended by (32) is presented here, x = ω/γω0, y = ω0L/2γ, z = γ〈∆2χ〉/τ̄ω0. The curve
has been calculated for fixed parameters y = 0.1 and z = 0.4.

proximation. Let us consider the characteristics of photons emitted along the atomic

string axis and detected by X–ray detector with small angular size ∆Θ � γ−1. Such

conditions correspond to the experiment [31].

The expression (24) may be simplified very essentially on condition under consid-

eration because of the important property of a fast charged particle coherent scattering by

atomic string Ψ2
k = Ψ2

k+1 = Ψ2. The following from (24) expression

Atot =
e

π

[(
1

γ−2 + Ψ2
− 1

γ−2
s + Ψ2

)(
Ψi − Ψf exp

(
iω

2
(γ−2

s + Ψ2)
∑
k

τk

))

−∑
k

Ψk − Ψk−1

γ−2
s + Ψ2

exp


 iω

2
(γ−2

s + Ψ2)
∑
j≤k

τj




 , (34)

allows to calculate the emission spectral-angular distribution without complementary ap-

proximations. For example, the contribution of coherent bremsstrahlung is described by

the formula

ω
dNBs

dωd2Θ
=

4e2Ψ2

π

1 − 〈cos(∆χ)〉
(γ−2

s + Ψ2)2

ω2

ω2 + ω2
s(Ψ)

L

τ̄
, (35)

where the quantity ωs(Ψ) is defined by the formula (30) with precision of Θ̃ → Ψ.

Comparison of the exact result (35) with dipole distribution (29) shows that the

main characteristics of the collimated dipole coherent bremsstrahlung (the form of spec-

tral distribution and the magnitude of this distribution in the frequency range where it is

saturated) are presented for the emission beyond the frame of dipole approximation.
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Figure 9: The same but for y = 12 and z = 0.2.

Let us use the result (35) to estimate the coherent bremsstrahlung yield from above-

barrier fraction of an electron beam crossing the crystalline target along a string axis.

The function ωdNCB/dωd2Θ, calculated by (35) with account of incoherent multiple

scattering changing the orientation angle Ψ for Si < 110 > crystal with fixed thickness

and different electron energies, is presented in Fig.(11).

The curve 1 has been calculated for experimental conditions [31]. The theory and

data correspond to each other with an accuracy of about 20 − 30% within the range

30KeV < ω < 150KeV , but the discrepancy increases in the range ω > 150KeV ,

where the calculated emission density is saturated in contrast with obtained data showing

the continuing growth of the emission density. Such a discrepancy may be connected

with the contribution of channeling particle emission in small photon energy range due to

incoherent scattering processes.

7 Landau-Pomeranchuk-Migdal effect in coherent bremsstrahlung

As indicated above, the spectrum of strongly collimated coherent bremsstrahlung from

relativistic electron, crossing an aligned crystal, is suppressed in a small frequency range

due to the saturation of emitting particle scattering angle achievable in the process of

coherent azimuthal scattering by atomic string’s potential. On the other hand coherent

bremsstrahlung can be suppressed due to Landau-Pomeranchuk-Migdal effect [32] ap-

pearing with the proviso that the scattering angle of emitting particle achievable at the

distance of the order of emission formation length exceeds the characteristic angle γ−1.
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Figure 10: The same but for y = 4 and z = 4.

Figure 11: The spectrum of strongly collimated coherent bremsstrahlung. The presented
curves have been calculated for Si〈110〉, Ψ0 = 0.25 · 10−3rad, L = 0.523mm. The
curves 1–3 correspond to the electron energies 500, 1000 and 2000MeV respectively.
Experimental data [31] are presented here.
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It is clear than in general case the spectrum of coherent bremsstrahlung in small photon

energy range is formed by two mentioned effects. To consider the relation between contri-

butions of these effects let us start from the most general expression for spectral-angular

distribution

ω
dN

dωdΩ
=

e2ω2

4π2

〈∣∣∣∣∣∣
∞∫

−∞
dt[n,vt]e

iω(t−
√

ε(ω)n,rt)

∣∣∣∣∣∣
2〉

, (36)

describing the bremsstrahlung properties within the frame of classical electrodynamics,

here rt = r(t) is the emitting electron trajectory, vt = d
dt

rt, ε = 1 − ω2
0/ω

2, n is the unit

vector to the direction of emitted photon propagation. Integrating (36) over observation

angles and using the approximations (??) one can obtain the following formula for the

spectral distribution of the emission intensity

ω
dN

dtdω
= −e2ω

π

〈 ∞∫
0

dt

t

[
γ−2

s + Ψ2 − Ψ2 cos(∆χt)
]
[sin(2ωt)−

− sin


ω

2
(γ−2

s + Ψ2)t − ωΨ2

t

t∫
0

dτ(t − τ) cos(∆χτ )





〉

. (37)

Averaging in (37) can be performed analytically in the case of small azimuthal

scattering angles ∆χ � 1 [28]. To perform a qualitative analysis in the general case we

use the Landau-Pomeranchuk approach [32], replacing the function cos(∆χ) in (37) by

the averaged one cos(∆χt) =
2π∫
0

d∆χt cos(∆χt)f(t, ∆χt), where the distribution function

f(t, ∆χt) = (2π)−1∑
k

exp(ik∆χt − αkt) is presented, for example, in [28]. Obviously,

cos(∆χt) = exp(−α1t), α1 =
1 − 〈cos(∆χ)〉

τ̄
. (38)

Substituting (38) into (37), one can reduce this formula to simple one

ω
dN

dtdω
=

e2Ψ2ω

π

{∫ ∞

0

dt

t

(
1 − e−t

)
sin

ω

ωs(Ψ)

(
t − 2γ2

sΨ
2

1 + γ2
sΨ

2

t − 1 + e−t

t

)
−

−π

2

1

γ2
sΨ

2
[1 − 2

π

∫ ∞

0

dt

t
sin

ω

ωs(Ψ)

(
t − 2γ2

sΨ
2

1 + γ2
sΨ

2

t − 1 + e−t

t

)
]

}
(39)

The result (39) allows to obtain simple asymptotical formulae for the emission spec-

trum in different frequency ranges. For example, in the range of very small frequencies

ω � γω0 formula (39) is reduced to the expression

ω
dN

dtdω
� 2e2

π
γ2Ψ21 − 〈cos ∆χ〉

τ̄

ω2

γ2ω2
0

, (40)
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describing the Ter-Mikaelian effect in coherent bremsstrahlung.

It is very important that the spectrum of coherent bremsstrahlung is described in the

frequency range γω0 � ω � ω∗ = 2γ2(1 − 〈cos ∆χ〉)/(1 + γ2Ψ2)τ̄ by the formula

ω
dN

dtdω
� e2 γ2Ψ2

1 + γ2Ψ2

1 − 〈cos ∆χ〉
τ̄

ω

ω∗
, (41)

which is correct independently of the energy of emitting electrons.

Formula (41) describes the above studied suppression effect, caused by the limita-

tion on the value of azimuthal scattering angle.

LPM effect in the coherent bremsstrahlung can manifest in the range ω � ω∗,
where the formula (39) can be reduced to more simple one

ω
dN

dtdω
=

e2Ψ2

π
ω

[
2
ω∗
ω

(1 + γ2Ψ2)
∫ ∞

0
dt sin

(
2t +

ωL

ω
t2
)
−

−π

2

1

γ2Ψ2

(
1 − 2

π

∫ ∞

0

dt

t
sin

(
2t +

ωL

ω
t2
))]

(42)

where ωL = 8
3
γ4Ψ2(1 − 〈cos ∆χ〉)/τ̄ is the frequency of LPM effect. In the special case

that ω∗ � ωL the formula (42) is reduced within the frequency range ω∗ � ω � ωL to

the expression [28]

ω
dN

dtdω
� e2Ψ2γ2 1 − 〈cos ∆χ〉

τ̄

√
2

π

ω

ωL
(43)

describing LPM effect in coherent bremsstrahlung.

In the opposite case ω � ωL the emission yield saturates

ω
dN

dtdω
� 2e2

π
Ψ2γ2 1 − 〈cos ∆χ〉

τ̄
(44)

Thus, the spectrum of non-collimated coherent bremsstrahlung consists of several

segments, where spectral properties are very different; in this case the boundaries between

these segments depend strongly on the emitting electron energy mγ, orientation angle Ψ

and the crystal parameters. Among other things, the field of existence of LPM effect

appears only with the proviso that

ω∗
ωL

≈ 4

3
γ2Ψ2(1 + γ2Ψ2) � 1 (45)

In accordance with (45) LPM effect is not realized if γΨ < 1. This conclusion is

well founded because the inequality γΨ < 1 implies that the condition of dipole approxi-

mation (28) is fulfilled.
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8 Conclusions

In accordance with performed analysis, the transition radiation from relativistic electron

crossing a thin target can modified substantially the characteristics of other emission pro-

cesses considered usually without account of contribution of TR.

Scattering of TR field by atomic electrons causes the suppression of the density

effect manifestation in polarization bremsstrahlung from relativistic electrons crossing a

thin layer of amorphous medium.

Similar process but in a crystalline target may change very substantially the angular

distribution of parametric X-rays from relativistic electrons.

In the process of parametric X-rays along the emitting electron velocity (forward

PXR) TR contribution may consist in the strong peak with small angular and spectral

width. This peak caused by dynamical diffraction effects arranges near to the forward

PXR peak and hampers therefore the observation of PXR peak.

Interference between TR and bremsstrahlung contributions is responsible for the

manifestation of anomalous Ter-Mikaelian effect in the bremsstrahlung from relativistic

electrons crossing a thin layer of amorphous medium.

Analogous and other effects take place in the process of coherent emission from

relativistic electrons crossing a thin crystalline target near parallel to the axis of a set of

atomic strings.

The manifestation of Landau-Pomeranchuk-Migdal effect in the coherent bremsstrahlung

from relativistic electrons in aligned crystal differs substantially from that in amorphous

medium due to the competition from the side of another suppression effect caused by

the limitation by the angle of coherent azimuth scattering of emitting electron by string’s

potential.
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