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1 Introduction

Physical motivations

The direct detection of gravitational waves (GWs) is one of the great chal-
lenges of contemporary experimental physics. Its aim is to open up a new
window on the Universe, in astrophysics as well as in cosmology and in
fundamental physics. Each time physicists have probed Nature with new
tools, whether building accelerators reaching higher and higher energies, or
exploring the sky using x- or γ-rays telescopes, new and often unexpected
phenomena have been discovered. Gravitational waves are a potentially
unique probe, which can carry fundamental informations, inaccessible by
electromagnetic or other means. This can be traced to the following basic
facts:

• In astrophysics, potentially detectable GWs carry informations on the
bulk, coherent motion of large masses. By contrast, the electromag-
netic waves observed in astrophysics are typically generated by the
incoherent superposition of many emitters. Furthermore, due to their
very small cross section, GWs carry direct informations on regions,
such as the interior of neutron stars, that are opaque to electromag-
netic radiation, “revealing features of their source which no one could
ever learn by electromagnetic, cosmic ray, or neutrino studies” [1].

In particular, GWs are a unique probe of compact objects such as neu-
tron stars (NS) and black holes (BH). Their study, beside an evident
astrophysical interest, has also a great potential importance from the
point of view of “fundamental” physics. For example, the study of the
interior of neutron stars can reveal important properties of quantum
chromodynamics (QCD) at high density, while the detection of GWs
produced in the coalescence of a BH-BH system can allow us to make
unique explorations of gravity in a strong-field regime.

• In cosmology, their importance is due to the fact that, because of their
very small cross-section, GWs decouple from the primordial plasma
already at temperatures below the Planck scales, i.e. for kT < 1019

GeV. This temperature is reached 10−43 sec after the Big Bang. This
means that any stochastic background of GWs produced at a time
t > 10−43 sec after the Big Bang reaches us today without having
suffered any modification in its spectral features (apart from the red-
shift due to the expansion of the Universe) and therefore carries a
genuine “snapshot” of the Universe at the time of production. By
contrast, the cosmic microwave background (CMB) is a snapshot of
the Universe at the time when the electromagnetic waves decoupled
from the primordial plasma, i.e. at about 300 000 yr after the Big
Bang.
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For this reason, the detection of a stochastic background of GWs of
cosmological origin would carry extraordinary informations on early
Universe cosmology, and therefore on physics at correspondingly high
energies, which would be impossible to obtain by any other means (see
Ref. [2] for review).

The experimental situation

Resonant-mass detectors have behind 40 years of work and development and
have reached a duty cycle near 100%. They are now in the continuous obser-
vational mode with a burst sensitivity h = 2× 10−19 or spectral amplitude
of h̃ = 10−21Hz−1/2 in a bandwidth of tens of Hertz [3]. Such a sensitivity
should allow the detection of the strongest sources in our Galaxy and in
the Local group. The underlying non-gravitational physics associated with
these detectors is understood and further improvements appear based on
solid technological guidelines. Resonant bars are reliable instruments.

On the other hand, the large scale interferometer LIGO has almost
reached its target sensitivity, while VIRGO is expected to reach it in the
near future. In this context, we believe that resonant-mass experiments can
remain at the forefront of gravitational-wave research if they are able to im-
prove substantially their sensitivity so that, at least in some frequency range,
they will be competitive with large-scale interferometers, while at the same
time offering complementary features. As we will discuss in this proposal,
this can be obtained in the classical scheme of a main resonator coupled to
a secondary smaller resonant mass, by a combination of two factors: (1) the
improvement in the readout system, and (2) building a spherical resonant-
mass detector.

Concerning point (1), the successful cooldown [4] and the operation of
NAUTILUS [5] at 0.1 K [6] and of AURIGA [7] at 0.2 K [8] demonstrates
that thermal noise can be reduced to a level where it is no longer a dominant
source of noise, and the main limitation of resonant detectors will be due
to the noise temperature of the electronics. Efforts to improve the readout
system, essential to bring us closer to the quantum limit (i.e. to the detection
of a change in the vibrational status corresponding to a single phonon)
are under way. The best performances obtained up to now in a double-
SQUID system coupled with a resonant circuit give an energy resolution of
120h̄ [9], and even better noise figures, of the order of 20h̄ have been recently
approached [10].

Concerning point (2), a spherical resonant-mass detector has a number
of inherent properties that give it advantages over other types of detectors.
In particular:

• Present resonant bars are thin cylinders, with a length L ' 3 m and
a diameter d ' 30 cm. A sphere has the same frequency of a cylinder
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of the same material, if its diameter 2R is equal to the length L of
the cylinder (apart from a numerical factor very close to one). How-
ever, such a sphere is much more massive than the corresponding thin
cylinder, and therefore its cross-section for absorption of gravitational
waves is much larger.

• A sphere is an omni-directional detector, since its sensitivity is the
same independently of the direction of arrival of the wave. By contrast,
cylindrical bars (and also interferometers) have an optimal sensitivity
along some direction, and reduced sensitivity along the other directions
(as well as blind directions).

As a consequence, the cross-section of a resonant sphere for absorption
of GWs, compared to the cross-section of a bar with the same resonant fre-
quency is larger by a factor ' 18 (for a resonance frequency f ' 1 kHz),
for waves that hit the bar from optimal directions and with optimal polar-
ization. Comparing instead the cross-sections averaged over the solid angle
and polarization, this enhancement factor becomes ' 67, leading to a signif-
icant improvement in sensitivity. Combining this geometrical improvement
factor with the improvement in the readout mentioned above, we will see
that a resonant sfere with a radius R = 1 m can reach a sensitivity, in a
bandwidth ∆f ∼ 200 Hz centered around a resonant frequency f ' 1 kHz,
better than that of the first-generation of large-scale interferometers, and
not far from the sensitivity projected for second-generation interferometers
such as advanced LIGO and advanced VIRGO.

At the same time, a resonant sphere offers a number of remarkable fea-
tures, that makes it an ideal complement to an interferometric detector. In
fact, as we will discuss in more detail in the next section:

• A resonant bar has a single sensitive output, which is the oscillation
amplitude of its fundamental longitudinal elastic mode. Similarly an
interferometer has only one sensitive output, its differential mode. As
a result, if a detector such as an interferometer or a bar is hit by a
GW with amplitudes h+ and h× (where + and × label the two possible
polarizations of a GW), coming from a direction given by polar angles
θ, φ, from the single output of the detector we can read the combination

h+F+(θ, φ) + h×F×(θ, φ) , (1)

where F+,×(θ, φ) are functions which depend on the detector geometry.
From this single information we cannot disantangle, with a single bar
or a single interferometer, the values of h+, h×, θ and φ.

By contrast, the normal modes of a sphere are identified, among other
indices (see below) by the indices (l, m) that label the corresponding
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spherical harmonics. GWs interact with five quadrupolar modes with
l = 2 and m = −2, . . . ,+2, which are degenerate (apart from small
effects due to the suspension mechanisms that lift the degeneracy).
Therefore a resonant sphere has five outputs. From this information,
it is possible to read out separately the four quantities h+, h×, θ and
φ, so we measure separately the amplitudes of the two polarizations,
as well as the direction of arrival of the wave.

• A fifth information contained in the five output channels is a veto
that distinguishes a true GW signal from a spurious excitation due to
noise, checking the transverse nature of the disturbances. This is of
great importance, since all GW detectors, whether resonant masses or
interferometers, are affected by many non-gaussian disturbances that
simulate GW signals.

• If we include in our analysis the presence of noise, then the ability
to reconstruct the arrival direction will depend on the signal-to-noise
ratio. If we denote by SNR the signal-to-noise ratio in energy, it can be
shown that the error made on the determination of the arrival direction
is

∆Ω =
2

SNR
, (2)

where ∆Ω ≡
[
(∆θ)2 + sin2 θ(∆φ)2

]
. It can be shown that this resolu-

tion, which is obtained from a single spherical resonant-mass detector,
is better than what can be achieved, with the same SNR, combining
the outputs of three interferometers.

From this we see that interferometers and resonant spheres are really
complementary: interferometers, due to their larger bandwidth, are
much better at reconstructing the waveform, while a sphere is much
better at reconstructing the arrival direction. Together, an interfer-
ometer and a sphere would be much more effective for opening up the
field of GW astronomy.

Beside, the separate information that the sphere gives on h+ and h×
can be very important for reconstructing the parameters of the source.

• As with resonant bars, the vibration modes of the sphere will be mon-
itored and amplified by means of resonant transducers. For a sphere,
monitoring the five quadrupole modes therefore requires at least five
resonant transducers. However, a configuration of transducers which
is expecially simple for deconvolving the output, the so-called TIGA
configuration, includes a sixth transducer, and from the combined out-
put of these six channels we can also monitor a possible scalar wave. In
the standard theory of general relativity, GWs do not excite the quad-
rupolar mode with m = 0 and therefore we have a further veto that
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distinguishes spurious noises from real GWs. However, this mode is
excited by scalar fields, as one typically has in scalar-tensor extensions
of general relativity, and therefore one has the possibility of testing
such theories. More generally, in a resonant sphere a field with spin
s couples only to the modes labeled by (l,m), with l = s. Therefore
a resonant sphere measures directly the spin content of the field by
which it has been excited.

• Finally, we will see below that the overall cost of a spherical resonant-
mass detector with a diameter of 2 meters, working at a resonance
frequency of about 1 kHz, is a small fraction, of the order of a few
per cent, of the cost of a large scale interferometer of first generation,
and the natural and technologically straightforward extension of the
techniques on which our collaboration has developed a unique know-
out over the course of several decades.

These points will be elaborated below. In this proposal we first describe
the main features of spherical detectors along with their advantages with
respect to the present bar antennas and the interferometers, the target grav-
itational wave sources and the state of the art in the field of resonant-mass
detectors.

In the second part of this proposal we describe the program necessary
to realize a spherical detector, 33 tons of mass, competitive with large in-
terferometers but with complementary features.
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2 Resonant spherical detectors: theory

The response of a spherical resonant-mass detector to GWs has been studied
in detail in the literature, and all theoretical aspects are very well under-
stood. The advantages of a resonant sphere in terms of cross-section and its
multi-mode capability were already realized in the 1970s, see Refs. [11, 12,
13]. More recent detailed discussions of the response of spherical resonant-
mass detectors can be found in Refs. [14]–[20]. In this section we discuss
some of the most relevant results, following the forthcoming textbook [21].
In Section 2.6 we provide a summary of the main results relevants for this
proposal.

2.1 The normal modes of the sphere

Just as with resonant bars, the starting point for discussing the response of a
sphere to an external force, such as that due to GWs, is the standard theory
of elasticity. We consider an infinitesimal volume element of the elastic body,
located at the position x . Under the action of an external force, like that
exerted by a GW, it will be displaced to a new position x +u(x , t). Within
elasticity theory the equation governing the dynamics of u(x , t) is

ρ
∂2ui

∂t2
=

∂σij

∂xj
+ fi , (3)

where ρ is the density of the material, f is the force per unit volume acting
on the elastic body, and σij is the stress tensor. For homogeneous and
isotropic media

σij = λ(∇·u)δij + 2µ∇iuj , (4)

where λ and µ are known as the Lamé coefficients. The equation of motion
(3) then becomes

ρ
∂2u
∂t2

= (λ + µ)∇(∇ · u) + µ∇2u + f . (5)

The boundary condition (in the absence of external tractions on the surface
of the body) is that, on the surface, σijnj = 0, where n̂ is the unit normal
to the surface of the elastic body.

An elastic body is characterized by a set of normal modes ψN (x ), where
N denotes collectively all the indices that label them. The normal modes
are found setting the external force f = 0 in eq. (5) and searching for a
solution of the form

u(x , t) = ψ(x )e−iωt + c.c. (6)

Imposing the boundary condition fixes the allowed solutions, labeled by
N , and the corresponding values of the frequencies ωN . Since the normal

7



modes form a complete set, the most general displacement u(x , t) can then
be expanded as

u(x , t) =
∑
N

ξN (t)ψN (x ) . (7)

The functions ξN (t) are the oscillation amplitudes of the N -th mode.
The explicit computation of the normal modes ψN (x ) for an elastic

sphere is a classic textbook exercise in the theory of elasticity. The result is
that there are two families of normal modes, called spheroidal and toroidal,
respectively. To write them in a compact form, it is useful to introduce the
spherical Bessel function jl(z) and to define the functions

β0(z) ≡ jl(z)
z2

, β1(z) ≡ d

dz

(
jl(z)

z

)
, β2(z) ≡ d2

dz2
jl(z) , (8)

β3(z) =
1
2
[β2(z) + (l − 1)(l + 2)β0(z)] , (9)

β4(z) = β2(z)− λ

2µ
z2β0(z) . (10)

The spheroidal and toroidal modes are then described as follows.

Spheroidal modes.

These modes are labeled as ψS
nlm(x ), where the label S stands for spheroidal,

while l, m are the usual indices of the spherical harmonics, with l ≥ 0 and
m = −l, . . . ,+l, integers, and n ≥ 1 is an integer that labels the higher
harmonics with a given l, m, i.e. with a given angular dependence. The
frequency associated to ψS

nlm(x ) is given by

ωS
nl = (µ/ρ)1/2 kS

nl , (11)

where, as above, µ is a Lamé coefficient and ρ is the density of the material,
while kS

nl is the solution of an eigenvalue equation,

β3(kR)β4(qR)− l(l + 1)β1(kR)β1(qR) = 0 , (12)

where q is related to k by q2/k2 = µ/(λ + 2µ), and R is the radius of the
sphere. For each l this equation has an infinity of solutions, that we label by
the index n = 1, 2, . . ., and we denote by kS

nl. Equation (12) however does
not depend on m, so there is a (2l + 1)-fold degeneracy. This equation is
straightforward to solve numerically. In Table 1 we give the lowest n values
computed for l = 0 and for l = 2, for a value of λ/(2µ) = 1.05, typical of
the materials in which we are interested.

The explicit form of the spheroidal modes with l 6= 0 is

ψS
nlm(r, θ, φ) = [anl(r)r̂ + bnl(r)R∇]Ylm(θ, φ) , (13)
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l n (kR)S l n (kR)S

0 1 5.579950 2 1 2.650650
2 12.39403 2 5.110612
3 18.87013 3 8.639054
4 24.28610 4 11.10026

Table 1: The values of kS
nl for l = 0 and l = 2 and n = 1, . . . 4, taking

λ/(2µ) = 1.05. In a real detector, these values change by O(10%) because
of the effect of the suspension system.

0.2 0.4 0.6 0.8 1

-2

2

4

6

8

Figure 1: The function anl(r), for l = 2 and n = 1 (solid line), n = 2 (dashed
line), and n = 3 (dot-dashed), plotted against r/R, for λ/(2µ) = 1.05. The
functions anl(r) are normalized according to eq. (16).

0.2 0.4 0.6 0.8 1

-2

-1

1

2

3

Figure 2: The same as Fig. 1, for the functions bnl(r).

9



where

anl(r) = cnl

[
αnl

djl(z)
dz

|z=qS
nl

r − βnl l(l + 1)
jl(z)

z
|z=kS

nl
r

]
, (14)

bnl(r) = cnl
r

R

[
αnl

jl(z)
z
|z=qS

nl
r − βnl

(
jl(z)

z
+

djl(z)
dz

)
|z=kS

nl
r

]
.

The constants αnl and βnl are given by

αnl = β3(kS
nlR) , βnl =

q

k
β1(qS

nlR) . (15)

The constants cnl are normalization factors, which are usually fixed requiring∫
V

d3x ρ (ψS
nlm)∗ ·ψS

nlm = M , (16)

where M is the mass of the sphere and V its volume.
Despite the apparent intricacy of the analytic expressions, once the wave-

numbers kS
nl have been computed numerically, the radial functions anl(r) and

bnl(r) are obtained straightforwardly. In Figs. 1 and 2 we plot them for l = 2
and n = 1, 2, 3.

For l = 0, instead, the allowed values of k are the solution of the equation

β4(qR) = 0 , (17)

where again q2/k2 = µ/(λ + 2µ), and the spheroidal modes are given by

ψS
n00(r, θ, φ) = an0(r)r̂ , an0(r) = cn0

dj0

dz
|z=qS

n0r . (18)

Therefore the spheroidal modes with l = 0 are purely radial.
The deformation of the five spheroidal modes with l = 2 and n = 1

is shown in Fig. 3. As we will see below, these modes are the most inter-
esting for GW detection, and we will often loosely refer to them as “the”
quadrupolar modes of the sphere.

Toroidal modes.

These modes are purely transverse and exist only for l ≥ 1. The eigen-
values kT

nl are determined by the equation β1(kR) = 0 and the modes them-
selves have the form

ψT
nlm(r, θ, φ) = c′nl jl(kT

nlr) r×∇Ylm , (19)

with c′nl the normalization constant. Observe that r ×∇Ylm is orthogonal
both to Ylmr̂ and to ∇Ylm, i.e. to the displacements due to the spheroidal
modes.
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Figure 3: The deformations of the 5 quadrupole modes of a sphere (more
precisely, the five spheroidal modes with l = 2 and n = 1) Two deformations,
differing by half a period, are shown for each mode.

2.2 The interaction of the normal modes with GWs

The time evolution of the amplitudes ξN (t) under the action of an external
force f is found inserting the expansion of the displacement u(x , t) in terms
of normal modes, eq. (7), into the equation of motion eq. (5) and using the
orthogonality relation (16). This gives

ξ̈N + ω2
NξN =

1
M

∫
d3xf ·ψ∗N , (20)

or, if we include also the dissipation term,

ξ̈N + γN ξ̇N + ω2
NξN =

1
M

∫
d3xf ·ψ∗N , (21)

where γN describes the dissipation in the N -th mode.
Let us recall, from standard textbooks on general relativity, that in a flat

background a GW is a small perturbation of the flat-space metric, gµν =
ηµν + hµν . Using the diffeomorfism invariance of general relativity, it is
possible to choose a gauge, the so-called transverse-traceless gauge or TT-
gauge, where h0µ = 0 and only the spatial components hij are non-vanishing.
Furthermore, hij is transverse, ∂jhij = 0, and traceless, hii = 0 (and of
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course symmetric, since gµν is symmetric). For a GW propagating in the
direction n̂ the transversality condition translates into nihij = 0. If for
definiteness we consider a wave propagating along ẑ, the most general form
of a GW is therefore

hij =

 h+ h× 0
h× −h+ 0
0 0 0


ij

(22)

Again from standard textbooks (see e.g. Ref. [22]) we recall that, as long
as the reduced wavelength λ− = λ/(2π) of the gravitational wave is much
larger than the size of the detector, the interaction of the GW with the
detector can be described in terms of a Newtonian force, without making
further reference to any general relativistic concept. More precisely, from
the equation of the geodesic deviation one finds that the force exerted by
GWs on a unit volume of the detector, located at the position xi (measured
from the detector center-of-mass), is given by

fi =
ρ

2
ḧijx

j , (23)

where hij is the GW metric in the TT gauge and ρ is the density of the
material. As we will see below, a resonant mass detector of diameter 2 meters
has a frequency f = O(1) kHz, so the reduced wavelength is λ− = c/f =
O(50) km, which is much larger than the size of the detector. The Newtonian
approximation is therefore excellent. Plugging eq. (23) into eq. (21) (and
taking ρ constant) we get

ξ̈N + γN ξ̇N + ω2
NξN =

1
2V

ḧij

∫
V

d3x (ψ∗N )ixj . (24)

This is the basic equation that governs the response to a GW of the os-
cillation amplitudes ξN (t) of the normal mode ψN . Inserting the explicit
expression of the modes ψN (x ) discussed in the previous section and car-
rying out the integral in eq. (24), one finds the following results.

• For the toroidal modes ψT
nlm, the integral vanishes for all values of

n, l,m. Therefore toroidal modes do not couple to GWs. This means
that monitoring them provides in principle a veto that distinguishes a
true GW from a noise.

• The spheroidal modes ψS
nlm couple to GW only if l = 2. All other

modes provide again a veto.

From now on we therefore concentrate on the spheroidal modes with
l = 2. To simplify the notation, we denote the corresponding amplitude
ξS
n,l=2,m(t) just by ξnm(t). The interaction of GWs with the l = 2 spheroidal

modes can be described in a very simple way writing the tensor hij in terms
of its spherical components hm, that we introduce in the next subsection.
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2.3 The spherical components of hij

In order to appreciate all the information that can be extracted from a
resonant sphere, it is very convenient to think in terms of the spherical
components of the metric tensor hij . In this section we therefore very briefly
recall the notion of spherical components of a tensor.

We consider a traceless symmetric tensor with two spatial indices, that
we denote generically by Qij(x ). Such a tensor has five independent com-
ponents (in a mathematical language, it is a spin-2 tensor representation of
the rotation group, and 5 = 2j + 1 with j = 2). These five components
can be rewritten in terms of objects related to the five spherical harmonics
Ylm with l = 2 observing that, if x̂ is the unit vector in the radial direction,
Qij(x )x̂ix̂j is a scalar and theferore can be expanded in spherical harmonics,

Qij(x )x̂ix̂j =
∞∑
l=0

l∑
m=−l

qlm(r)Ylm(θ, φ) , (25)

where qlm are the coefficients of the expansion. However, from the fact that
Qij is traceless and symmetric (i.e., is a spin-2 operator) it follows that in
the above expansion only the term l = 2 contributes, so we really have

Qij(x )x̂ix̂j =
2∑

m=−2

Qm(r)Y2m(θ, φ) , (26)

where Qm ≡ q2m. The five independent components of Qij can therefore be
expressed in terms of the five quantities Qm, with m = −2, . . . , 2, which are
called the spherical components of Qij .

A more direct relation between Qij and Qm can be obtained introducing
the five tensors Y2m

ij , with m = −2, . . . , 2, defined by

Y22
ij =

√
15
32π

 1 i 0
i −1 0
0 0 0


ij

,

Y21
ij = −

√
15
32π

 0 0 1
0 0 i
1 i 0


ij

, (27)

Y20
ij =

√
5

16π

 −1 0 0
0 −1 0
0 0 2


ij

,

together with Y2,−m
ij = (−1)m(Y2m

ij )∗. These five tensors are a basis in the
space of 3 × 3 traceless symmetric matrices and are related to the l = 2
spherical harmonics by

Y 2m(θ, φ) = Y2m
ij x̂ix̂j , (28)
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as one verifies immediately writing the unit radial vector in polar coordi-
nates, x̂1 = sin θ cos φ, x̂2 = sin θ sinφ, x̂3 = cos θ, and comparing with the
explicit expression of the l = 2 spherical harmonics,

Y 22(θ, φ) =
(

15
32π

)1/2

(eiφ sin θ)2 , (29)

Y 21(θ, φ) = −
(

15
8π

)1/2

eiφ sin θ cos θ , (30)

Y 20(θ, φ) =
(

5
16π

)1/2

(3 cos2 θ − 1) , (31)

together with Y l,−m = (−1)mY lm∗. In terms of these tensors, the relation
between the cartesian components Qij and the spherical components Qm is

Qij =
2∑

m=−2

QmY2m
ij . (32)

which can be inverted to give

Qm =
8π

15
Qij(Y2m

ij )∗ , (33)

or, explicitly,

Q±2 =
(

2π

15

)1/2

(Q11 −Q22 ∓ 2iQ12) ,

Q±1 = ∓
(

8π

15

)1/2

(Q13 ∓ iQ23) , (34)

Q0 = −
(

4π

5

)1/2

(Q11 + Q22) .

Since a GW is described by a tensor hij which is symmetric and traceless,
its spherical components hm can be defined as above. However hij , beside
being symmetric and traceless, is also transverse, a further property that
will be exploited below.

2.4 The quadrupolar modes and signal reconstruction

The reason why, in our context, the spherical components hm of hij , are
especially useful is that, carrying out the integral in eq. (24), one finds that
the dynamics of ξnm(t) is governed by the equation

ξ̈nm + γnξ̇nm + ω2
nξnm =

1
2

Rχnḧm , (35)

where χn is a constant which can be evaluated numerically. The remarkable
point is that the dynamics of the m-th quadrupole spheroidal mode is de-
termined uniquely by the corresponding spherical component hm, with the
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same m. Therefore each of the five quadrupolar modes of the sphere allows
us to measure separately one of the hm. From this, we can then reconstruct
hij , using eq. (32),

hij =
2∑

m=−2

hmY2m
ij . (36)

(More precisely, we measure the Fourier components h̃m(ω) in a bandwidth
around the resonance frequency ωn). Having obtained hij in this way, we
can extract the following informations.

• In the frame where the GW is propagating along the ẑ direction, hij

has the form (22). The matrix (22) has the property that the eigen-
value in the propagation direction is zero (as a consequence of the
fact that hij is transverse). Therefore det hij = 0. Since the determi-
nant of a matrix is invariant under rotations, it must vanish in any
frame. Therefore, monitoring the five quantities ξmn we can measure
the five quantities hm (more precisely, their Fourier modes around the
frequency ωn) and we can reconstruct hij through eq. (36); then we
can immediately check whether its determinant vanishes or not (with a
precision that will depend on the signal-to-noise ratio). If it does not,
the resulting excitation is a spurious noise, and can be discarded. If it
does vanish, the excitation of the detector is a candidate GW signal.
The check det hij = 0 can be performed efficiently on-line, allowing us
to discard most of the spurious noises that always affect GW detec-
tors. We therefore have a powerful veto that distinguishes GWs from
noises.

• If the check is passed, we can put the matrix hij in the form (22)
with a rotation. The new ẑ axis after the rotation is the propagation
direction of the GW and therefore we have reconstructed the arrival
direction of the wave (modulo a two-fold ambiguity ẑ→ −ẑ).

• By comparing with eq. (22), we can now read off the two amplitudes
h+ and h×.

We therefore see that the five quadrupole modes of the sphere give us
sufficient informations to reconstruct the arrival direction of the wave, (mod-
ulo a two-fold ambiguity ẑ → −ẑ; however, in a two-detector coincidence,
this ambiguity will be removed measuring the delay time of the signal be-
tween the two detectors), the two polarization amplitudes, and to impose a
powerful veto that discriminates GW signals from noises.

Finally, eq. (35) is formally the equation of a harmonic damped oscillator
subject to an external force and can be solved straightforwardly. This allows
us to determine the cross section for GW absorption of the modes ξnm,
basically repeating the standard computations performed for resonant bars.
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2.5 Resonant transducers and the TIGA configuration

The idea of a spherical resonant-mass gravitational wave antenna was first
proposed by Forward in 1971 [11]. While the potential of a spherical antenna
was known for some time [12, 13], what probably deterred people from
constructing resonant spheres was the fact that, just as with resonant bars,
to amplify and read the signal one needs to introduces resonant transducers,
one for each modes that one wishes to monitor. Thus, we must now deal
with a system of at least ten harmonic oscillators, the five quadrupolar
modes of the sphere and the five secondary resonators which act as resonant
transducers. For a generic configuration of transducers, the normal mode
structure of the system will be very complicated and all these ten degrees
of freedom will couple among themselves. We can then expect that the nice
property expressed by eq. (35), that there is a one-to-one correspondence
between the quadrupolar modes ξm and the components hm of the GW,
will be spoiled. The excitation of any mode of the sphere would produce
excitations in all other modes, through the common interaction with the
transducers, and in practice it might be quite involved to deconvolve the
output in order to read the values of the hm.

In 1993 Merkowitz and Johnson proposed a configuration of motion sen-
sors that solved the major practical problems in deconvolving a gravitational
wave signal [23]. They derived a set of equations to describe the mechanics
of a spherical antenna coupled to an arbitrary number of mechanical res-
onators [24]. A special arrangement of 6 resonators was proposed, which
they termed the truncated icosahedral (TI) arrangement. They proposed
using a truncated icosahedron as an approximation to a sphere, however the
only requirement for the TI arrangement is that the transducers be placed at
positions on the surface of the sphere at the center of six non-antipodal pen-
tagon faces of an imaginary truncated icosahedron concentric to the sphere,
as shown in Fig. 4. An analytic solution to the equations of motion was
found for the TI arrangement and they found that direct deconvolution of
the gravitational tensor components could be accomplished in principle with
what they called “mode channels”, a specified set of fixed linear combina-
tions of the resonator outputs. From the mode channels, the direction and
polarization information of an incident gravitational wave could be deter-
mined.

The original TIGA (Truncated Icosahedral Gravitational Antenna) model
[25] assumed perfect symmetry of the sphere as well as the tuning and place-
ment of the resonant transducers. Recently, more general models have been
developed that account for any deviations from perfect symmetry [26, 27].
However, Merkowitz and Johnson found that small deviations from the ideal
case (of the order of 1%) do not have a significant effect on the ability to
deconvolve a gravitational wave signal [27]. Further, they have developed
an in situ measurement technique that can be used to account for any small
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Figure 4: The TIGA technique for detecting gravitational waves. By trans-
forming to a 5 dimensional abstract vector space, based upon the 5 spherical
harmonics of order 2, a one-to-one relationship is found between the force
of a gravitational wave, the 5 quadrupole modes of a sphere, and a special
linear combination of the resonant transducer responses. Through these
relationships and a theory of gravitation, the direction, polarization, and
amplitude of a gravitational wave can be found with linear algebra using
the observable transducers responses.

deviations from perfect symmetry.
The beauty of the TIGA technique is that, except for some bandpass

filtering, it is simply linear algebra. This makes its implementation sim-
ple in an automated data analysis system. The in situ measurement tech-
nique takes into account any deviations from perfect symmetry and provides
transformation matrices that enable the data to be transformed to a space
where the frequency complications can be easily handled. This technique
was shown to be feasible on the LSU prototype TIGA, as described below,
thus its usefulness appears realistic.

Given the importance of the TIGA configuration of resonant transducers,
we give in Appendix A a detailed presentation of the method, including a
derivation of all relevant equations.

2.6 Properties of resonant spherical detectors: a summary

We now summarize the main results that we have discussed, or that can
be obtained using the formalism presented in this section. All theoretical
aspects concerning the modelization of the detector, and its response to GWs
are very well understood. The main features that emerge are the followings.

2.6.1 Multi-mode capability

A resonant sphere equipped with six resonant transducers in the TIGA con-
figurations has 6 outputs, from which one can obtain, with straightforward
algebra, the two polarization amplitude h+ and h× of the GW and its prop-
agation direction n̂ (modulo a sign ambiguity n̂→ −n̂).
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For comparison, a resonant bar (or an interferometer) has only one out-
put channel,1 which measures a combination of the form

h+F+(θ, φ) + h×F×(θ, φ) , (37)

where F+,×(θ, φ) are functions which depend on the detector geometry.
Therefore a resonant bar or a single interferometer are unable to disantagle
from their output the amplitudes h+ and h×, and the arrival direction.

From the six outputs of the sphere we have also a veto that helps to
discriminate true GW signals from spurios noises, checking that the matrix
hij is transverse (i.e., it has a zero eigenvalue in the direction of propagation).
This veto is of great importance, since all GW detectors are affected by
spurious and non-gaussian noises, that simulate GW signals.

If we include in our analysis the presence of noise, then the ability to
reconstruct the arrival direction depends on the signal-to-noise ratio. If we
denote by SNR the signal-to-noise ratio in energy, it can be shown [14, 20]
that, for large values of the SNR, the error made on the determination of
the arrival direction is 2

∆Ω =
2

SNR
, (38)

where ∆Ω ≡
[
(∆θ)2 + sin2 θ(∆φ)2

]
. It can be shown that this resolution,

which is obtained from a single spherical resonant-mass detector, is better
than what can be achieved, with the same SNR, combining the outputs of
three interferometers [29]. Fig. 5 shows the results of a numerical simula-
tion similar to that of Zhou and Michelson describing the error on a source
direction estimate due to a finite signal-to-noise ratio.

2.6.2 Omnidirectionality

Conventional gravitational wave detectors respond to only a single tensor
component of the gravitational field. Thus one of these detectors can provide
an estimate for only one of the five independent components in hij . This
deficiency can be overcome only by constructing 6 antennas with different
orientations, which is the minimum needed to recover all components of the
field with isotropic sensitivity [28].

From Eq. (35) we see that instead a spherical antenna is equally sensitive
to all the tensor components of a gravitational wave. This fact demonstrates
that a sphere is equally sensitive to gravitational waves of all polarizations
and directions. A spherical detector is thus a truly omnidirectional antenna.

1Actually, in an interferometer, beside the differential mode one can monitor also the
common mode, but this is affected by larger noises.

2A factor of 2 in Ref. [14] coming from an unconventional definition of SNR was cor-
rected in Ref. [20]. Observe furthermore that here we define ∆Ω ≡

[
(∆θ)2 + sin2 θ(∆φ)2

]
,

rather than ∆Ω ≡ π
[
(∆θ)2 + sin2 θ(∆φ)2

]
as done in [14, 20].
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Figure 5: The results of a numerical simulation similar to that of Zhou and
Michelson [14] describing the solid angle direction estimation error ∆Ω on
a source direction measurement due to a finite signal-to-noise ratio. Each
point represents the results of a 200 trial Monte Carlo simulation of a direc-
tion measurement with the corresponding signal-to-noise ratio.

One might suppose that this omnidirectionality would be lost once a
sphere is equipped with motion sensors to monitor the quadrupole modes.
However, Merkowitz and Johnson have shown that a sphere equipped with
6 resonant transducers in the TI arrangement maintains omnidirectional-
ity. In addition, they showed that not only could one understand the data
from a spherical antenna coupled to six resonant mass motion sensors, but
that there was no increase in noise compared to a bar antenna due to the
additional sensors [24].

2.6.3 Large cross-section

The gravitational wave energy absorbed by a resonant detector can be
expressed in terms of the total cross section Σn (integrated over the

frequency, around the resonant frequency ωn), which for the quadrupole
modes of a spherical detector can be written as [15]

Σn = Fn
G

c3
Msv

2
s , (39)

where n is the order of the quadrupole mode, Ms is the sphere mass, vs is the
speed of sound and Fn is a dimensionless coefficient which is characteristic
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of each quadrupole mode, found numerically to be F1 = 2.98, F2 = 1.14,
and F3 = 0.107.

This cross-section is larger by a factor 18 compared to that of a resonant
bar working at the same resonance frequency (taking f = 1 kHz), simply
because the mass of the sphere is much larger than that of the corresponding
bar. Furthermore, this figure refers to the case when the GW hits the
bar with optimal direction and polarization. Averaging over solid angle
and polarization, the sensitivity of a resonant bar decreases by a factor
15/4 ' 3.7, while the sensitivity of the sphere is independent of the arrival
direction and polarization of the GW. Overall, the cross-section of the sphere
is larger than the corresponding cross-section of a bar, averaged over solid
angle and polarization, by a factor (15/4)× 18 ' 67.

2.6.4 Multi-frequency capability

It is remarkable that, for a resonant sphere, the second-order (n = 2) quad-
rupole mode cross-section is only a factor 2.61 lower than that of the first
order (n = 1) quadrupole mode. By comparison, in a resonant bar the
harmonic n = 2 is not coupled to GWs 3, while the cross-section of the
harmonics with n = 3 is suppressed, with respect to the fundamental mode
n = 1, by a factor n2 = 9.

For resonant bars, considering their present sensitivity, it is generally
not considered worthwhile to afford the extra layer of complexity due to the
introduction of a new transducer, to monitor the n = 3 harmonics, which
has a cross-section 9 times smaller than that of the fundamental mode.

For a sphere this changes, both because of the improved sensitivity of
the sphere in its fundamental mode, and because the n = 2 harmonics has
a cross-section smaller only by a factor 2.61. This means that this detector
can potentially be used at two frequencies [15]. A comparison of the cross-
section for the first few harmonics of a sphere to those of a bar, made of the
same material and resonating at the same frequency, are shown in Fig. 6.

The sphere quadrupole eigenfrequencies are found to be [16, 17]

ωn =
cn

Rs
vs (40)

The dimensionless coefficients cn are numerically found to be c1 = 1.62 and
c2 = 3.12. A Poisson ratio value of 1/3, common to most materials includ-
ing the ones we are interested in, was assumed in the reported numerical
results. Values of the first and second quadrupole resonant frequencies for
spheres of CuAl of different diameter are reported in Table 2. We show
for comparison the resonance frequencies of Al 5056 (the high mechanical

3This follows from the fact that in a bar, for the harmonics modes with n even, the
integral in eq. (24) vanishes for symmetry reasons, and is analogous to the fact that, for
the sphere, the toroidal modes do not couple to GWs.
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Figure 6: A comparison of the cross-section for the first few harmonics of
a sphere to those of an equivalent bar. All values are relative to the cross-
section of the first quadrupole modes of a sphere.

quality factor material used for the present bars) spheres. CuAl, a copper
aluminum alloy, is a material widely investigated [18], chosen for the two
small spherical detectors MiniGRAIL [30] in the commissioning phase in
Holland and Mario Schenberg [31], under construction in Brasil. The speed
of sound is 5400 m/s for Al 5056 at low temperature, and 4700 m/s for
CuAl. The masses considered range from 1 ton (1 m diameter Al 5056) up
to 100 tons (3 m diameter CuAl).

Considering that, in the TIGA configurations, the six transducers are all
placed on the same hemisphere, it is in principle possible to put six resonant
transducer in the TIGA configuration on one hemisphere, to monitor the
fundamental quadrupolar mode n = 1 (at a frequency f of about 1 kHz for
a CuAl sphere with a diameter of 2 meters, as we see from Table 2) and six
more on the other hemisphere to monitor its harmonic n = 2 (at a frequency
f of about 2 kHz for a CuAl sphere with a diameter of 2 meters).

Many typical astrophysical bursts are expected to have Fourier compo-
nents extending over the 1− 2 kHz range. For such a signal, a sphere with
two TIGA systems of transducers would be an extraordinarily clean detec-
tor. The first system of transducer provides, as discussed above, a veto
(checking the transversality of the excitation) and a determination of the
direction of arrival of the signal. The second system of transducers would
provide another veto (checking again the transversality of the excitation) as
well as a second independent determination of the direction, obtained from
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φ (m) f1 (Hz) f2 (Hz)
Al 5056 1.0 2850 5478

1.5 1900 3652
2.0 1425 2739
2.5 1140 2191
3.0 950 1826

CuAl 1.0 2175 4185
1.5 1450 2790
2.0 1087 2092
2.5 870 1647
3.0 725 1395

Table 2: Values of the first and second quadrupole resonance frequencies of
a sphere, as a function of the diameter φ of the sphere.

the spherical components h̃m(f) measured at the first harmonics, and the
latter determination of the direction must be consistent with the former.
Such a system would therefore provide a remarkable background rejection
rate. This is of great importance, given that all GW detectors have false
alarms.

The implementation of a full second TIGA system of transducers, tuned
to the second harmonics, is a developement that could only be implemented
at an advanced stage of the project, after we have mastered the experimental
complications due to the introduction of the first TIGA system. 4 However,
considering that the first system of transducers, tuned to the fundamental
l = 2 mode, already provides all the informations on the direction of the
GW, the addition of a single transducer tuned the the first harmonics will
be sufficient to measure the intensity of the signal in a second frequency
window, expanding considerable the capabilities of the detector.

2.6.5 Testing different metric theories of gravity

Until now General Relativity has passed all the test experiments in the Solar
System, as well as pulsar timing tests, with high accuracy. However, General
Relativity is not the only theory of gravity that passes such tests [33]. There
are alternative theories that pass the present weak field gravitational tests,
and that may deviate very widely from General Relativity in the strong

4As we see from Fig 1, the radial function anl(r) for l = 2, n = 2 happens to be
numerically small on the surface of the sphere (which luckly is not the case for the l =
2, n = 1 mode). Therefore, for the n = 2 harmonics, it is not convenient to use transducers
sensitive to the radial motion placed on the surface of the sphere. Since however the
amplitude of the motion in the transverse direction is large at the sphere surface, as we
see from the function bnl(r) with n = 2, l = 2 in Fig. 2, the first harmonics can be
monitored through its tangential displacement. This could be done placing a transducer
in a slot perpendicular to the sphere surface.
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field regime (one example of a phenomenon in the strong field regime is the
gravitational collapse of a star). Among these alternative theories, scalar-
tensor theories (such as Brans-Dicke theory), predicting also a scalar, or
spin-0, component of the wave, have been actively studied. Scalar-tensor
extensions of general relativity emerge also naturally as the low-energy limit
of string theory. In this case the scalars are the dilaton and the moduli of
compactification.

In general, all these scalar-tensor theories must have a built-in mech-
anism that suppresses the interaction of the scalars with matter at large
distances, in order not to be in conflict with the experimental confirmation
of General Relativity, for instance at the Solar System scale. This can be
achieved suppressing the scalar-matter interaction; for instance, in Brans-
Dicke theory the scalar interaction is suppressed, with respect to the inter-
action of the tensor component, by a parameter ωBD, and recent bounds
put by the Cassini experiment constrain ωBD > 20000; a more subtle mech-
anism, the Damour-Polyakov mechanism [34], based on a specific form of
loop corrections, could be at work in string theory for suppressing the dila-
ton coupling. Alternatively, one must give a mass to these scalar particles,
so that their static large-distance interaction is governed by a Yukawa po-
tential.

Because of these suppression mechanisms, the observation of a scalar
component of GWs is even more difficult than the observation of a standard
(tensorial) GW of the same amplitude. On the other hand, it has been
observed that in a number of situations scalar waves could be produced
with much stronger intensity than tensor waves; for instance, in a stellar
collapse which preserves spherical symmetry, little or no tensor waves are
emitted, while scalar waves are radiated.

It is also interesting to observe that, in an experimentally allowed range
of masses, dilatons produced in the early Universe could form a relatively
intense stochastic background of scalar GWs.

Therefore, even if it is not the main motivation of our investigation, the
fact that a spherical detector, through its scalar mode, has the capability of
detecting a hypothetical scalar components of gravitational radiation is an
additional welcomed feature.
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3 Experimental results

3.1 Introduction

This section summarizes what has already been achieved towards the com-
plete design of a gravitational wave observatory based on massive resonant
spherical detectors.

In the last few years significant advancements have been made to realize
a spherical antenna. The barriers already overcome are:

• Practicality of the truncated icosahedral symmetry for the positioning
of the transducers was demonstrated and the coupling of 6 resonant
transducers with the 5 quadrupole modes of a spherical mass is well
understood [25].

• Cooling large masses to ultra-low temperatures for long periods of time
is possible and was demonstrated by the operation of the 2.5 ton NAU-
TILUS antenna at 100 mK since December 1995 [6], of the AURIGA
detector at 200 mK [8] and by the initial operation of MiniGRAIL [96].

• The 5 quadrupole modes of a real spherical mass are independent and
have the required high mechanical Q at ultra-low temperatures [92].

• The possibility of obtaining large pieces of material suitable for a spher-
ical detector has been investigated. Large pieces of CuAl alloys, with
high quality factors [18, 31], can be built.

• The results obtained with the MiniGRAIL detector allowed us to test
techniques useful for a large spherical antenna. MiniGRAIL is large
enough to develop techniques applicable to a large antenna, but is of a
sufficiently manageable size to allow for rapid measurements and de-
sign changes. MiniGRAIL has been important to address the following
issues:

– Design and construct a complete cryogenic system, mechanically
decoupled from the suspension system and the detector, for a
sphere of about 1 meter diameter, based as much as possible on
state-of-the-art, commercially available items.

– Demonstrate the operation of the cryogenic system at a very low
acoustic noise level, and show that it is capable of rapidly cooling
a 1 meter diameter sphere to low temperatures.

– Design and construct a suspension system with at least -350 dB
of attenuation, without appreciable upconversion mechanisms.

– Investigate the problems of data acquisition and processing by
observing the 5 quadrupole modes of a sphere.
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– Investigate methods of attaching a resonant transducer to a sphere
while maintaining a high mechanical Q.

– Prove the quality of the solutions adopted by measuring the
Brownian motion of one of the quadrupole modes of the sphere,
at 4 K, with a state-of-the-art resonant transducer and SQUID
amplifier to achieve highest possible sensitivity.

In the following we will describe in more detail these topics.

3.2 TIGA experiments

To verify the mechanical behavior of a spherical antenna Merkowitz and
Johnson constructed a room temperature prototype in the shape of a trun-
cated icosahedron [90, 25]. In the course of testing the mode channel theory,
they successfully verified the in situ measurement technique that dealt with
any deviations from perfect symmetry in the actual detector [27]. They
tested the direction finding algorithm using an impulse excitation and found
good agreement between the measured and the expected results [91].

A practical application of the direction finding technique was performed
on the LSU prototype TIGA. An impulsive excitation was applied to the sur-
face of the prototype and the response of the 6 resonant transducer mounted
on the surface was measured. The amplitude and phase information of the 5
quadrupole modes of the sphere were successfully extracted from the trans-
ducer data. The strain tensor was then computed from this information.
The impulse location was estimated by proper interpretation eigenvalues
and eigenvectors of the strain tensor for an impulsive excitation. As shown
in Fig. 7, Merkowitz and Johnson found the calculated location of the im-
pulses to be consistent with those measured geometrically, thus verifying
their technique [25, 91].

3.3 Ultra-low temperature experiments

An experimental study of the eigenfrequencies and quality factors of alu-
minum alloy 5056 spherical resonators at ultra-low temperatures were per-
formed in Leiden by the Frossati team in collaboration with the ROG
group [92]. Three important points were investigated:

1. The quality factor of the vibrational modes of a solid sphere at very
low temperatures. Previous measurements had in fact investigated the
Q of flexural modes of disks, longitudinal modes of bars and torsional
modes of resonators.

2. The independence of the 5 degenerate quadrupole modes. The transfer
of energy at an appreciable level between these modes could have made
a potential detector useless.

25



  22.5

  45

  67.5

  90

30

210

60

240

90

270

120

300

150

330

180 0

Figure 7: Location of several impulses applied to the LSU prototype spher-
ical antenna, calculated using the TIGA technique. The x’s mark the loca-
tions calculated from the motion sensor data, and the o’s mark the location
of the center of the shaker measured geometrically.

3. The fabrication technique to produce a large sample while preserving
the high inherent Q of the material. It has been proposed [17] to use
an explosive welding method to produce large-diameter spheres out
of explosively-bonded plates. This technique produces high-strength
bonds between similar and dissimilar metals and appears capable of
preserving the inherent attributes of each parent metal.

The experimental study on several 15 cm diameter Al5056 spheres, sus-
pended at the center of mass, answered these questions [92]. Q-values of
spheroidal modes ranging from 3×106 to 2×107 in a bulk sample and from
1.7× 106 to 8× 106 in an explosively-bonded sample were measured. Inde-
pendence of the quadrupole modes was measured within one part in 105 in
amplitude. The influence of the suspension on the splitting of the 5 modes
was understood.

After these experiments, other materials were tested in Leiden by the
Frossati team; in particular copper alloys [93]. It was found that CuAl is a
promising material for use as a large spherical antenna. The Lips company,
in the Netherlands, is capable of casting large, high quality, pieces of this
material in a spherical shape. Tests on small pieces have demonstrated
that high mechanical quality factors are possible with the casting technique.
The ability to cast in large pieces, along with the high thermal conductivity
(lower thermal gradients, thus lower surface temperature) and relatively high

26



Young’s modulus (high gravitational wave cross section) makes a copper
alloy an appealing material for a large detector.

3.4 MiniGRAIL

MiniGRAIL is a spherical gravitational wave detector, developed in the
Kamerlingh Onnes Laboratory at Leiden University in the Netherlands [94].
The antenna, made of CuAl6%, has a diameter of 68 cm, a mass of 1300
kg and a resonant frequency of about 2.9 kHz. MiniGRAIL is the first
of two (the second is under construction in Brazil [95]) similar spherical
gravitational wave detectors that will operate in coincidence.

The engineering runs performed by MiniGRAIL up to now have been
useful to define many experimental issues relevant for the development of a
large spherical detector:

1. Suspension The suspension system of MiniGRAIL consists of four
CuAl6% masses and three copper masses. The upper CuAl mass is sus-
pended from the top flange of the cryostat with three stainless steel cables,
hanging from three stacks of rubber and aluminum plates. The rest of the
CuAl masses are connected with three steel rods with a ring in the middle
that works as a double c-spring and rounded conical nuts, 60 degrees shifted
for each mass. The copper masses are suspended from three goldplated cop-
per rods. The sphere is suspended from the centre with a copper rod of 20
mm diameter and 48 cm long. The attenuation between the last two copper
masses at room temperature, in air, was about 20 dB around the resonant
frequency of the sphere.

The attenuation between masses 3 and 4 was measured in a separate
room temperature test facility and the diameter was adjusted to increase
the attenuation around 3 kHz. The result is plotted in Fig. 8. The combi-
nation of the lower resonant frequency of the new sphere and the increased
frequency of the flexural modes of the masses of the attenuation system,
provides an open window of about 1 kHz around the sphere’s resonances
with an attenuation of about 50 dB. A similar result was achieved for the
Cu masses.

2. Cooling techniques
2.1. Cooling down to 4 K with a forced helium flow. To cool the sphere

down to 80 K, helium gas is circulated using two Roots pumps in series, see
figure 9.

The gas is pre-cooled using a flexible tube, immersed in liquid nitro-
gen, as a heat exchanger. The gas flows along the sphere up through the
neck of the dewar thus cooling the seven masses (each about 150 kg) of the
suspension.

A temperature of about 90 K was reached within 20 hours. Below 90
K, liquid helium was transferred directly into the IVC (Inner Vacuum Can).
It took another 7 h to reach 4.2K. The cool-down of MiniGRAIL using a
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Figure 8: The attenuation between mass 3 and 4 of the vibration isolation
system after modification. The gray area indicates the frequency range of
the five spheroidal quadrupole modes of the bare sphere. All measurements
were done at room temperature in vacuum.

Figure 9: Experimental set-up for forced helium flow used to cool the sphere
to 80 K.
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Figure 10: Cooldown of MiniGRAIL using a forced helium flow. From room
temperature down to 90K, the gas was pumped around in a closed circuit,
pre-cooled in a separate nitrogen dewar and injected below the sphere. From
90K down to 4K, liquid helium was directly transferred into the IVC. The
total cool-down time to 4 K was 27 h.

forced flow is about a factor of 25 faster with respect to the cooling of a bar
antenna using the exchange gas (figure 11).

2.2. Cooling down to milliKelvin temperature. The sphere is cooled
by conduction through the last three stages of the suspension. The first
copper mass is thermally anchored to the mixing chamber of the dilution
refrigerator. Several cryogenics runs were made to test different thermal
anchorings [96], and the best results were obtained using the Jellyfish de-
sign. The sphere reached 65 mK already 1 week after starting the dilution
refrigerator (see figure 12).
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Figure 11: Cooldown of MiniGRAIL compared with a typical cooldown of
NAUTILUS, the Al bar antenna in the Frascati INFN Laboratories.

Figure 12: The temperature of the surface of the sphere compared to the
temperature of the mixing chamber of the dilution refrigerator are plot-
ted versus the time during run 7. The minimum temperatures that were
achieved during this run are 65 mK on the sphere and 26 mK on the mixing
chamber.
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4 The SFERA detector

In this section we specify the characteristics of the detector that we propose,
we investigate its noise sources and we establish what is our target sensitivity,
both for a first stage and for an advanced stage of operation.

The study of the cosmic rays as a source of background for the SFERA
detector is in progress. Its aim is to understand if at the final sensitivity an
underground location is necessary to reduce the rate of false alarm events,
or if an opportune shielding combined with a cosmic ray veto system can
be effectively implemented. In any case, our plan is to install the detector
for assembling and commissioning at surface, and to move it underground
if eventually needed.

4.1 Specification of the detector

We propose to build a resonant-mass spherical detector with radius R =
1 meter, made of a CuAl6% alloy. The mass of such a sphere will be 33 ton.
We will monitor its first quadrupolar spheroidal mode (i.e. the spheroidal
mode l = 2, n = 1 in the notation introduced in chapter 2), which is at a
frequency of about 1 kHz (see Table 2), using six transducers in the TIGA
configuration. At an advanced stage, we will also monitor its first harmonics
(i.e. the spheroidal mode l = 2, n = 2), which is at a frequency of about
2 kHz. The elements that guided these choices are the followings.

Radius. Increasing the radius, for a fixed choice of material, has two
effects: the mass of the sphere increases as R3 (and therefore we increase
correspondingly the cross-section for absorption of GWs), and the resonance
frequency decreases as 1/R. Increasing R up to, say, 1.5 m, would bring the
mass to about 100 ton, increasing by approximately one order of magni-
tude the financial cost (especially because of the increase in the cost of the
cryostat), and would sensibly increase the experimental complexity. Fur-
thermore, it is not evident that the increase in sensitivity due to a larger
mass would make such a detector more competitive. In fact, the resonance
frequency of the detector would shift toward lower values (around 660 Hz for
a radius R = 1.5 m). In this region interferometers have a better sensitivity
than they have at 1 kHz, which raises the bar for what can be considered a
competitive sensitivity.

On the other hand, taking a smaller value of R decreases the sensitivity
and increases the resonance frequency, gradually moving it outside the region
f < a few kHz, which is considered the most intersting for astrophysical
reasons.

The choice R = 1 meter, which for our choice of material gives a reso-
nance frequency f ' 1 kHz, is therefore the best compromise, which allows
us to explore a region of frequency considered among the most interesting
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for GW astrophysics, while keeping under control the financial cost and the
experimental complexity.

Material. CuAl6% is chosen because of its high quality factor (Q ' 107

at cryogenic temperatures), high sound velocity (vs = 4700 m/s) and a large
thermal conductivity. It is the material already used for MiniGRAIL.

4.2 Noises

The sources of noises that affect a resonant-mass detector can be divided
into two groups; noises intrinsic to the detector, such as the thermal noise
and the noise in the readout, and external disturbances, such a seismic noises
or cosmic rays.

Thanks to the large experience gained with resonant bars, as well as
with MiniGRAIL, all intrinsic noise sources are very well understood. We
have programs that simulate the response of these detectors to the noises,
and which reproduce very satisfactorly the noise curve measured experimen-
tally: the intrinsic noises that affect resonant-mass detectors are very well
understood.

Concerning the external disturbances, the effect of cosmic rays on a
33 tons resonant detector is more important than on present resonant bars,
and we will discuss it in detail in the following section.

4.3 Cosmic rays

The effects due to the cosmic ray interactions in the sphere set a limit to
the sensitivity of a resonant detector running in a site not shielded from
cosmic rays. This effect can be computed using the thermo-mechanical
model; in this model the effect of the cosmic ray is a local heating exciting
the detector’s vibrational modes. There are several sources of uncertainty
in estimating the event rate, the most important being:

1. the details of the hadronic core of the cosmic ray induced showers.

2. the validity of the thermo mechanical model for a superconducting
material.

An important test of the calculations are the results of NAUTILUS and
EXPLORER antennas that are equipped with a cosmic ray detector [110,
111, 112, 113].

4.3.1 Rate calculation

A cosmic ray crossing the sphere produces along its path in the medium a
local overheating phenomenon which can be related to a local over pressure.
Such perturbations propagate acoustically to the entire detector and finally
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excite vibrational eigenmodes. The relation between the particle energy loss
dE along a path dX and the energy En in the nth vibrational mode [114] is:

En =
1
2

l20
V

G2
n

ρv2
γ2
(

dE

dX

)2

(41)

where l0 is the track length of the cosmic ray in the detector and V is the
detector’s volume. γ, ρ and v are the Gruneisen’s dimensionless parameter,
the mass density, and the speed of sound in the medium respectively. The
“form factor”

Gn =
v

ωn

1
l0

∫
l0

div⊥undl (42)

is related to the geometry of the detector through the eigenmode un, and it
is expected to be of order unity for a large number of modes and paths. If
we take Gn = 1 and assume that is constant along all the paths, the relation
between the energy released by the cosmic ray (∆E) and the vibrational
energy in the mode En can be estimated for a sphere at low temperature:

En (Kelvin) = D × (∆E (GeV ))2 (43)

where D = 3.2 × 10−9 for a 2 m aluminum sphere and D = 0.6 × 10−9

for a CuAl sphere. Different types of particles can interact with a resonant
detector at sea level: muons, electrons, hadrons. Montecarlo calculations
of the effect due to single particles, muons and hadrons, is in reference
[110]. Simulations were made using the GEANT package to estimate the
energy absorbed in the sphere. The muon and hadron fluxes were taken
from experimental data. The effect due to the interactions of Extended
Air Showers (EAS) (electrons, muons or hadrons from the core of a cosmic
ray cascade) is difficult to evaluate as cascades produced in the atmosphere
from primary cosmic rays are complex processes not yet fully understood in
details and there are technical problems due to the large number of particles
involved. We have done a rough estimation of the rate for extensive air
showers and multiple hadrons using simplified hypotheses. In table 3 we
summarize the results obtained in [115] for an aluminum sphere 3 meters in
diameter. To give an idea of the importance of the cosmic ray effect the last
columns reports the signals/day of an antenna close to the quantum limit
with an effective temperature of 2×10−7 K and a resolution time of 5 ms. A
2 m CuAl sphere shall have an event rate/day higher by a factor 3.5 - 4. A
study of how the energy of a cosmic ray particle interacting with a spherical
antenna is distributed over its eigenmodes can be found in ref. [116].

To have a more precise estimate of the effect of cosmic rays, a full simu-
lation for the case in which multiple particles are interacting with the sphere
is necessary.
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Mode energy ev./day ev./day ev./day ev./day ev./day
threshold (K) muons hadrons (EAS) multi had. total

10−7 126150 63770 2870 – 192800
10−6 10870 8200 535 – 19600
10−5 940 1110 100 22 2180
10−4 84 120 19 20 245
10−3 10 12 4 17 43
10−2 0.5 1.3 0.6 2 4.4

Table 3: The number of cosmic ray events per day calculated from a Monte
Carlo simulation for a 3 m diameter aluminum sphere. A 2 m CuAl sphere
shall have an event rate/day higher by a factor 3.5 - 4.

4.3.2 Cosmic ray rejection

There are basically two possibilities to cope with the cosmic ray background:
the first is to install an active veto with a cosmic ray detector; the second
is to put the antenna in an underground site. Both possibilities shall be
considered as the detector’s sensitivity improves. The rate of cosmic rays
impinging on a 2 m sphere is of the order of 1 kHz. This means that is not
possible to do a veto system with a simple layer of detectors signaling all
the cosmic rays, the resolution time of the antenna being in the range of
few milliseconds. The veto should therefore be capable to identify cosmic
rays that may eventually loose a large fraction of energy in the antenna,
i.e. identify energetic muons, hadrons and showers. This should be done
mainly on the top of the antenna; in fact, due to the large mass of the
sphere, in most of the cases with a single incident particle, no secondaries
will come out from the sphere in case of interaction with a large energy
loss. A very interesting application of this detector will be the possibility
to compare the direction measured from the cosmic ray detector for single
particles with the one measured from the sphere using the excitations in the
different modes. In this way a continuous calibration of the sphere capability
to measure the direction will be possible. Another possibility for the veto is
to shield the antenna from the electromagnetic and hadronic components of
the cosmic ray with absorber and use cosmic ray detectors only for energetic
muons (for example a TRD). A fundamental assumption in the calculation
of the cosmic ray event rate is the thermo-mechanical model. The thermo-
mechanical model has been tested on a bar at room temperature[117, 118]
. However, when a material becomes superconducting several parameters
change, namely the specific heat decreases to zero with temperature and
the Gruneisen coefficient might vary as well, the net effect of cosmic rays is
expected to change. The material might become locally not superconducting
at the passage of a ionizing particle; in this picture, the standard calculations
are still valid.
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Of course, the results obtained with NAUTILUS and EXPLORER are
very important to check the validity of the overall picture. At present,
the sensitivity of these detectors is such that only signals from cascades
(extended air showers with hadrons and muons) are detected. We remind
that the uncertainty in the rate calculation for this type of events is very
large due to the complexity of the cosmic ray cascade. Single muons/hadrons
have a larger effect on the noise of a spherical antenna operated near the
quantum limit. For this kind of events the uncertainty due to the cosmic ray
is small, the main uncertainty in the calculations comes from the thermo-
mechanical model.

We observed in NAUTILUS deviations from the predictions of the thermo-
mechanical model when the detector was operated at 0.1 K, in supercon-
ducting regime [112].

To clarify this problem, the RAP experiment is under way: it studies the
interactions of the 0.6 GeV electron beam of the DAΦNE Beam Test Facility
at INFN Frascati National Laboratory with a small bar made of the same Al
alloy as NAUTILUS, both above and below the transition temperature [119,
120] as well as other normal conducting and superconducting materials.
One can draw the following scenario: the sphere will be commissioned in
a suitable facility, unshielded from CR’s. The antenna will then require
CR veto to detect both single muons and EAS (with multiplicity). With
improved sensitivity the veto will be no longer sufficient and the antenna
shall be installed underground, shielded from low energy secondaries.

4.3.3 Proposed Cosmic Ray veto

It has been pointed out that the rate and the energy lost by CR’s in the
antenna may spoil completely the antenna operation and that a CR veto
is necessary. The veto shall be able to estimate EAS multiplicity as well
as single particle direction. The NAUTILUS veto uses layers of streamer
tubes above and below; at EXPLORER plastic scintillators with phototube
readout, also above and below. They are both designed to detect single
muons for CR detector calibration and EAS’s multiplicity for antenna veto.
They do not provide granularity sufficient to trace muons inside a sphere,
however, it will be very useful to have a veto system similar to the Explorer
one. During the first phase of operation of the sphere, when the best per-
formances will not yet be reached, only cosmic ray showers will be able to
produce detectable signals in the sphere. Later on, when the detection also
of single particles will become important, the system could be integrated
with other detectors. For example, the possibility to continuously calibrate
the sphere read out in signal direction with single muons, could be achieved
with a compact muon telescope movable around the cryostat. If the antenna
is installed underground care shall be taken to veto high energy CR muons
and muons due to in-the-earth neutrino interactions.
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4.4 Cryogenics for SFERA

The minimum energy that can be detected with a resonant spherical gravita-
tional wave antenna fitted with quantum limited SQUID amplifiers of noise
temperature TN is given, in terms of an effective temperature Teff QL by

Teff QL =
T

βQ
+ 2TN (44)

where T is the thermodynamic temperature of the sphere, Q is the mechan-
ical quality factor and β is a parameter smaller than 1 that measures the
ratio between the energy transferred to the transducer and that deposited in
the sphere by the gravitational wave. A sphere of 2m diameter made of CuAl
6% will resonate at 1 kHz that is, at a frequency 2/0.68 =2.94 times lower
than MiniGRAIL which resonates at frequencies between 2800 and 3050 Hz
for the 5 fundamental spheroidal quadrupole modes (at low temperature).
The minimum SQUID noise is hence

TN =
hν

kB
= 4.3 · 10−8K (45)

so that
T

βQ
≤ 8.6 · 10−8K (46)

Values of Q of 2 · 107 have already been measured in the CuAl 6% alloy [97]
and β ∼ 0.1÷0.2 should be attainable, so if we take β=0.1 and Q = 5·106 we
require a thermodynamic temperature of 42 mK. The 1.3 ton MiniGRAIL
sphere plus the suspension total about 2 ton and have already been cooled
to 64 mK and progress is being made to reach lower temperatures so we are
confident that the 2 m sphere will also be cooled to similar temperatures.
We describe briefly how we plan to cool the large sphere and suspension
from room temperature to the low mK region.

4.4.1 Cooling from 300K to 4K

The heat to be removed from the sphere and suspension system is shown in
the following table.

Temperature range (K) Enthalpy H (J/gm) Energy (J)
300 - 160 37.0 2.0 · 109

160 - 80 22.5 9.0 · 108

80 - 4 6.0 2.4 · 109

If we would upgrade the MiniGRAIL method, 20000 liters of liquid ni-
trogen would be needed to cool down to 80K and another 12000 liters of
liquid helium would be needed to cool down further to 4K. The costs would

36



be about 130000 euros per cool down, which is clearly not feasible. Our sug-
gestion is to use GM-cryocoolers that would only be used for the pre-cooling
and then turned off. Model UGM 600 from Cryomech has a cooling power
of 600W at 77K and about 1200 at 250K so we would use 4 of them for a
cooling power of 4800W and a cool-down time of 8 days to 60K. This would
decrease the pre-cooling time to below 12 days.

4.4.2 Cooling to mK temperatures

Since this antenna could be eventually operated in an underground site, we
decided to avoid liquid cryogens for the normal operation of the antenna,
also in view of the maintenance costs and to increase the detector duty cycle.
The antenna and suspension will hence be cooled during normal operation,
by pulsed tube refrigerators (PTR) of the type PT410 of Cryomech and by a
dilution refrigerator without 1K pot. PTR coolers produce less vibrational
noise than a liquid nitrogen bath plus a helium bath and can now be found
with separated valve head to further reduce vibrations. We chose the PT410
because of the cooling power of 1W at 4.2K which is higher than that of
other products in the market. The absence of liquid helium precludes the use

Figure 13: Low temperature part of the cooling power diagram of a PT410

of a 1K pot for the dilution refrigerator. A Joule Thompson heat exchanger
(JTHE) is hence used to pre-cool the incoming 3He mixture that enters the
JTHE at ∼4K. A PTR dilution refrigerator of this type has recently been
built for the SCUBA telescope that has the highest cooling power available at
present for this type of refrigerator with 650 µW at 120 mK and can circulate
1.5 mmol/s. This refrigerator, shown below uses one PT410. For the present
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project a PTRDR (Pulse Tube Refrigerator Dilution Refrigerator) with a
cooling power of ∼2 mW at 120 mK which should be enough to cool the
2 m sphere to below 80 mK if the heat leak from the sphere/suspension is
lower than 200 µW. We cannot say much about what to expect from the 33
ton sphere since we do not know how it scales with size but we know it will
decrease in time. It could start at 1 mW and after a few weeks decrease to
0.2 mW if we scale the MiniGRAIL values by a factor 10 up, but it could
also be less, depending on the solidification and annealing of the sphere
after casting. Based on the SCUBA experience we will build a PTR-DR
with larger cooling power and with characteristics that will further decrease
the vibrational noise transfer to the antenna. This will be done by having
the still, the intermediate stage and the mixing chamber to be very massive
and coupled with each-other by flexible heat exchangers so that vibration
attenuation will occur, as for the suspension of the antenna itself. Each of
the three stages will be coupled to a damping mass by means of very soft yet
high thermal conductivity “jelly-fish” type of conductors successfully tested
with the MiniGRAIL antenna.

4.4.3 Suspension

In order to maximize the attenuation of external vibrations the sphere will be
suspended from a stack of 7 masses, each one of about 1000 kg. The masses
will be linked to each other by means of hard steel springs that should damp
the motion above 10-20Hz. The coiled type of spring also helps in decreasing
the thermal conduction from one mass to the other for the first 4 masses,
(made of the same alloy as the sphere CuAl6%) that will be between 4K
and 50-100 mK. The last 3 masses will be made of pure copper. The first of
the 3 (see drawing below) will be connected to the mixing chamber of the
dilution refrigerator. The 3 masses will be connected using the same springs
as the upper ones and thermally anchored using thin copper foils similar to
the jelly fishes used to link the DR to the masses. The center rod will be
made of copper. Traction tests will be done on all parts subject to possible
rupture to ensure a good safety margin.
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Figure 14: PTR-DR with a cooling power of 650 µW at 120 mK and a
circulate rate of 1.5 mmol/s.
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Figure 15: A schematic view of the large sphere, cooled by a PTR-DR.
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4.5 Read-out

After a signal has been picked up by the antenna, it must be amplified and
recorded for analysis. The transduction of extremely small vibrations is still
an open challenge of technology: the aim is to reach, and possibly overcome,
the standard quantum limit (SQL) of the detection of a single quantum of os-
cillation. For frequencies around 1 kHz, we have h̄ω ∼ 10−30J ∼ 10−7K. The
only viable way to achieve this is to transform the signal into electromag-
netic energy, and then use state-of-the-art techniques for electromagnetic
amplification and readout.

Transducers for resonant–mass gravitational wave antennas fall into two
categories: passive transducers and parametric transducers. Passive trans-
ducers have no external power source, and their power gain is less than unity.
They must always be used with a high–gain, low–noise amplifier at the fre-
quency of the antenna. Parametric transducers, on the other hand, have
an external power source (a pump oscillator at frequency ωp) which is mod-
ulated by the antenna motion. They have intrinsic power gain associated
with the transfer from the antenna frequency ωa to the higher frequency ωp.

The ROG Collaboration is developing both parametric and capacitive
transducers. Parametric transducers in the r.f. to microwave region look
promising. An intense R&D is underway to develop parametric devices.

On the other hand capacitive transducers have been developed in the
ROG group for a very long time and brought to a very good level of re-
liability. The facts that they can be fabricated from the same material of
the antenna and can be extensively tested at room temperature are definite
advantages of these devices.

The proposed strategy for the SFERA project is to continue the develop-
ment of both passive and parametric transducers, and to use the best device
available at the moment. A more detailed description of the capacitive and
parametric read-out is given in the following sections.

4.5.1 Capacitive read-out

Let us briefly recall some of the terms and concepts that will be used in this
section:

Transducer An electromechanical transducer is characterized by its
transduction coefficient α [V/m], that depends on the strength of the stored
e.m. field and on circuit parameters. For a capacitive transducer, e.g., it is
simply the electric field E in the gap, up to negligible corrections. Other rel-
evant parameters are its electrical output Impedance Z22 and its mechanical
input impedance, function of the resonator mass and frequency. Following
the usual Giffard’s notation we can write, for linear (non parametric) trans-
ducers:
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f(t) = Z11ẋ(t) + Z12i(t) (47)
v(t) = Z21ẋ(t) + Z22i(t) (48)

where the reverse transducer action,called back action (current in the
circuit producing force on the resonator) is also shown. Clearly, α ≡ jωZ12.
The Zij matrix connects the input variables (force f(t) acting on the trans-
ducer and velocity ẋ(t) of the transducer mechanical parts) with the output
variables (voltage v(t) and current i(t)). In important cases the Zij compo-
nents satisfy the relationships Z11Z22 = Z12Z21 and Z12 = Z21.

The energy coupling coefficient β is constructed from these parameters
and is a good figure of merit of a transducer:

β =
1

mω

|Z21|2

Zel
(49)

Usually the total electric impedance Zel = Z22 + Zcircuit + Zampl of the
whole output circuit is considered in β

Resonant transducers are invariably used in modern antennas, because
the use od a light mass auxiliary resonator allows us to substitute the value
mt ∼ 1kg for ma ∼ 1000kg in the denominator of β. We can consider the
second oscillator of mass mt as an impedance matching device between the
stiff antenna and the low input impedance of the mechanical amplifier. In
this case, also the Q of the auxiliary resonator is a relevant parameter.

Amplifier A real linear amplifier can usefully be schematized as an ideal
amplifier (with zero or infinite input impedance) plus an input impedance
and two noise sources: voltage noise en and current noise in. One of these
(depending on whether we use a ideal current or voltage noise) appears
as a white additive noise, the other produces circulating currents in the
transducer output circuit that give rise, via reverse transduction, to the so
called back-action.

To model a SQUID (that is properly a flux to voltage transducer) a
current amplifier model is appropriate: we then need specify the input
impedance (the mutual inductance M of the input transformer) and flux
noise φn so that in = φn/M as the additive noise, and voltage noise en,
responsible for circulating currents that produce a (hardly detectable) back-
action.

Matching circuit Often the transducer output impedance is poorly
matched to the amplifier input; such is the case of a capacitive transducer
(Z22 = 1/ωa C∼ 105Ω) coupled to a SQUID (Zampl = ωLin ∼ 10−2Ω. A
matching circuit is then needed to couple the two devices. In simpler cases it
can be a very simple one (just an inductor, or a capacitor), but in the above
mentioned instance a superconducting transformer is needed. This implies
two consequences: a) the circuit impedance seen by the amplifier Ztot can
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Figure 16: Scheme of the readout electronics.

no longer be considered constant or slowly varying with frequency and b) a
third, electrical resonator (transducer capacitor + transformer inductor) is
added to the detector. If the resonant frequency of this circuit is close to
the mechanical resonances (as it should be, for efficient matching) then a
full three mode detector modeling is needed.

Mechanical Amplifier These blocks (transducer, circuit, amplifier) are
often lumped together by defining a mechanical amplifier i.e. a ”virtual”
device that contains in itself both the transduction and the amplification
process. In this case the two noise sources become, by properly scaling the
electrical sources by the parameter α, a displacement noise xn and a force
noise fn.

Influence of the readout chain on the noise temperature of the
detector An important parameter to describe the sensitivity of a resonant
detector is the so called effective temperature kTeff , that represents the
minimum detectable energy innovation. It can be written in a convenient
way in terms of the noise temperature of the amplifier Tn, the thermody-
namic temperature of the detector T , the energy coupling coefficient β and
the quality factor Q [51]

kTeff ' 2
√

2kTn

(
1 +

2T

βQTn

)1/2

(50)

and characterizes the overall noise in the detector. The purpouse of this
section is to describe the role of the electronic components on the value of
Teff , which has to be as low as possible.

From figure (16) we see that the capacitive transducer (Ct and its par-
asitic capacitance Cp) is coupled to the d.c. SQUID via a superconducting
high-Q transformer. The effect of the transduction can be represented by
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an equivalent voltage generator

vg = E(y − x) (51)

where E is the electric field stored in the transducer and y−x is the relative
motion of the transducer with respect to the face of the antenna. We can
neglect the losses of the superconducting transformer [52] because of the
high Q and as long as the resonance frequency of the electrical mode is far
from mechanical modes. Using Thevenin’s Theorem, the voltage across the
transducer is

v′g = vg
Ct

Ct + Cp
(52)

By defining the following parameters:

• M1 = k1

√
L0L is the mutual inductance of the transformer and k1 is

its coupling coefficient;

• M2 = k2
√

LinLSQ and k2 are the mutual inductance and the coupling
coefficient between the d.c. SQUID and its input coil respectively;

• Cd is the decoupling capacitor, needed to charge the transducer;

• L0 and L are the inductances of the primary and secondary coil of the
transformer respectively;

• Lin is the inductance of the input coil of the SQUID and LSQ that of
the SQUID itself;

• γs = L
L+Lin

.

It is possible to see that, neglecting the effect of the SQUID, the current
flowing in the secondary coil is

i = vg

(
Ct

Ct + Cp

)
√

L0
L

jωL0k1 − 1
γsk1

( 1
jωC + jωL0)

 (53)

where
C =

Cd(Cp + Ct)
Cp + Ct + Cd

≈ Cp + Ct (54)

is the equivalent capacitance as seen from L0, while the second equality is
true only if Cd � Cp + Ct. By introducing the effective transformer ratio

Ne =
√

L0
L k1γs we obtain

i = vg
Ct

Ct + Cp

Ne

Z0(ω)
(55)
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where the total impedance has been introduced

Z0(ω) =
1

jωC
+ jωL0(1− γsk

2
1) =

1
jωC

(
1− ω2

ω2
el

)
(56)

with the resonance frequency of the electrical mode

ω2
el =

1
CL0(1− γsk2

1)
(57)

Now we can relate the magnetic flux in the SQUID, Φ = M2i, with the
mechanical signal

Φ = M2i = αφ(y − x) (58)

and
αφ =

Ct

Ct + Cp

NeM2

Z0(ω)
= jωCt

NeM2(
1− ω2

ω2
el

) (59)

We get the unexpected result that, as long as ωel > ω±, (ω± are the fre-
quencies of the mechanical normal modes) αφ does not depend on Cp.

Besides, it is clear that to maximize the signal fed to the SQUID it is
necessary a transformer with a high coupling constant and a high effective
transformer ratio.

The signal on the SQUID due to the brownian noise is [52]

ΦBr = αφ

√
kbTe

2myω2
±

(60)

Inserting equations (59) and (60) in equation (50), for Teff one has

kTeff =
4φn

M2CtE

[
1

Ne

(
1− ω2

ω2
el

)]√
kTemy

τ
(61)

Where φn is the intrinsic noise of the SQUID, my the mass of the transducer
and τ is the common amplitude decay time of the modes.

From equation (61) it is clear that to minimize Teff it is necessary to
have a low noise (φn) and high coupling (M2) d.c. SQUID, Ct as high as
possible and a high τ . Since τ is related to the Q by the well known formula

Q = πντ (62)

the last condition corresponds to a high Q. Both the bar and the transducer
have Qs of the order of 106 and the overall Q of each mode of the detector
is, roughly speaking, given by

Q−1
tot ∝ Q−1

bar + Q−1
trasd + Q−1

el (63)

45



Figure 17: Experimental strain sensitivity of EXPLORER in 1998 (upper
figure) and 2001 (lower figure), after the upgrade of the readout.

So the need to have Qel of the same order of magnitude as those of the bar
and transducer.

Present status of capacitive readout Both EXPLORER and NAU-
TILUS are now equipped with new “rosette” single-gap capacitive trans-
ducers [53], with a gap of the order of 10µm, and commercial single-stage
d.c. SQUIDs, with energy resolutions of a few thousand h̄s. These readout
have been installed in 1999 and 2002 respectively, achieving a considerable
increase of the useful signal bandwidth [54] (see fig. (17)) and, thus, in an
increase of sensitivity.

At present EXPLORER is cooled to 2.6 K and NAUTILUS to 3.5 K,
both reach peak sensitivities of about 1÷ 2 · 10−21Hz−1/2 and a bandwidth,
at the level of 10−20Hz−1/2, of about 45 Hz for EXPLORER and 35 Hz
for NAUTILUS. The noise temperature of the detectors is about 2 mK,
corresponding to a sensitivity to burst h = 3 · 10−19. The duty-cycle is of
the order of 90%, only limited by cryogenic operations.

Future capacitive readout

Double-gap transducer The transduction efficiency β is given by the
ratio between the mechanical energy of the transducer and the electromag-
netic energy stored in the gap, and for a capacitve transducer equation (49)
becomes

β =
CE2

mω2
0

(64)

where C is the total capacitance of the transducer, E the biasing field, m
the resonator mass and ω0 its resonance frequency. It turns out from eq.
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Figure 18: A schematic view of the double-gap transducer.

(64), that a way to increase β is to increase the capacitance C.
The idea followed by the ROG Collaboration is the double-gap trasducer

(fig. (18) shows a scheme of the device). A “rosette” resonator is enclosed
between two identically spaced electrodes, i.e. two identical gaps. The cir-
cuital scheme of the transducer, the matching transformer and d.c. SQUID
amplifier is showed in fig. (19). This setup has the net effect to double
the total capacitance C of the transducer, thus to increase the transduction
efficiency β.

Figure 19: The circuital scheme of the double-gap transducer, connected to
the matching transformer and d.c. SQUID amplifier.

Moreover, by properly biasing the two gaps, one with a positive voltage
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and the other with a negative voltage with respect to the resonator, it is
straightforward to see that the signal current flowing in the primary coil of
the transformer is twice that in the case of a single gap transducer.

Figure 20: Comparison of the theoretical values of ω0 with experimental val-
ues for the two-gap transducer: the full curve represents theoretical results
and the circles are experimental points.

A double-gap transducer has already been designed, assembled and tested
at liquid helium temperatures. The value for both gaps was of the order of
15µm and the mechanical quality factor was found to be 1.0 · 106 when the
transducer was biased with field of about 20 MV/m. Moreover the depen-
dence of ω0 on Ebias has been fully investigated finding a good agreement
between the measured and calculated [55] values (see fig. (20)).

On a sphere 2m in diameter we can straightforwardly export current
technology as we use it today. The two main design criteria are indeed
the physical dimensions (mainly its diameter D), that should be negligible
or small with respect to the sphere curvature radius (a transducer should
in principle sense the motion of one point on the sphere surface), and the
resonant frequency. A 2m sphere of CuAl will resonate around 1 kHz, just
like our present bars, and will have linear dimensions that can well tolerate
D=230 mm transducers as we use now. So the present design can be ex-
ported as is, with the unique difference of the material, that will obviously
be CuAl and not Al5056.

Double SQUID amplifier
Gravitational wave detectors require the highest possible sensitivity of a

d.c. SQUID. In this case the standard readout may not be the best solu-
tion, because the overall sensitivity can be limited by the room-temperature
preamplifier noise. With this setup an energy resolution of about 3000h̄ has
been measured [56] .
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Figure 21: Noise spectra of the ROG double-SQUID amplifier expressed in
Φ0/

√
Hz at 0.9 K and 4.2K. We also show in the figure the corresponding

energy resolutions.

In the last years, it has been shown [57, 58, 59] that a double-SQUID
system can reach quantum limit energy resolution and that a double-SQUID
system can be arranged in a stable configuration when connected to a high-Q
resonant circuit [60].

The double-SQUID amplifier of the ROG Collaboration is made of a
sensor d.c. SQUID, developed by the Institute of Photonic and Nanotech-
nologies of CNR, while the preamplifier SQUID is a commercial Quantum
Design d.c. SQUID. The performances of the device are very good: with
open input and open loop it exhibited [57] energy resolutions equal to 28h̄
at 4.2 K and 5.5h̄ at 0.9 K.

To avoid the instabilities that arise in d.c. SQUID devices connected to
high-Q resonant input loads, it has been necessary to install a cold damping
network [61].

The system has been succesfully tested with a high-Q5 resonant input
load in the temperature range 2 K-4.2 K. The device showed very good
stability and it was possible to measure an energy resolution of about 70h̄
at 2 K, corresponding to a noise temperature Tn ≈ 6µK to be compared to
that of a single stage SQUID amplifier Tn ≈ 250µK.

4.5.2 Parametric transducer

Most parametric transducers use a high–frequency resonator combined with
a low–noise high–frequency amplifier. Figure 23 illustrates their basic struc-
ture. The parametric transducer illustrated uses a capacitor in a resonant
circuit. The capacitance is modulated by the gap spacing between the ca-

5The parameters of the circuit are L0=96 mH, Q0=0.7 · 106, k=0.38 and f0= 1740 Hz
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Figure 22: Energy resolution (expressed as number of h̄) vs temperature.

pacitor and the antenna. The change in capacitance due to the motion
modulates the resonant frequency of the circuit, creating modulation side-
bands in the output signal.

One widely used form of high–frequency resonator is the capacity–loaded
coaxial–line resonator or re–entrant cavity resonator. The re–entrant cavity
is basically a lumped elements LC resonator, where the capacitance is de-
termined by the spacing between the central post and the end wall of the
antenna, and the inductance is mainly due to the central section of the cav-
ity. Any change in the distance between the central post and the antenna
modulates the capacitance of the cavity and, as a consequence, its resonant
frequency, ω2

a = 1/(LC), producing sidebands in the pump signal which are
displaced from the pump by the antenna frequency. These sidebands contain
in their amplitude, phase and frequency the information about the external
perturbation causing the vibration of the antenna.

One important difference between passive and parametric transducers is
in the transducer impedance mismatch ratio or coupling factor β. For the
parametric transducer

βpara =
1
2

CV 2
p Qe

mω2
ax

2
(65)

In the limit Qe > ωp/ωa, the electrical quality factor of the resonator Qe, is
replaced by the ratio ωp/ωa.

For the passive capacitive transducer

βpass =
1
2

CV 2

mω2
ax

2
(66)
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Figure 23: Schematic model of a resonant mass antenna with a parametric
transducer. M is the effective mass of the antenna, k = Mω2

a and γ =
Mωa/Q are respectively the elastic constant and the damping factor. C, L
and R represent the lumped–elements resonant circuit.

Note that the passive transducer coupling factor is not enhanced by a Q–
factor term.

Parametric transducer noise performance depends on the mechanical and
electrical quality factor of the transducer structure. All types of transduc-
ers, both active and passive, are limited in noise performance by the noise of
the amplifier with which they are used. In terms of noise number at 1 kHz
a noise number of 1 corresponds to a noise temperature of about 50 nK,
whereas at 5 GHz the same performance correspond to Tn ' 0.3 K. Am-
plifiers for microwave parametric transducers are available with Tn ' 2 K.
Critical to achieving excellent amplifier noise is very low signal levels, requir-
ing excellent carrier suppression, since otherwise pump power reflected from
the cavity greatly exceeds the signal sidebands. Finally, a critical problem
is phase noise in the pump oscillator.

Re-entrant cavity design
A first–generation re–entrant cavity transducer was designed, constructed

and extensively tested at the University of Western Australia in Perth
[62, 63, 64, 65, 66]. Another device of this kind is now being developed for
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the Brazilian spherical gravitational wave detector SCHEMBERG [67, 68].

Figure 24: A prototype of the re–entrant cavity transducer ready for testing.
Note the clamps that keep the cavity tight onto the reference plane and the
rf connectors that deliver the power and extract the signal. The cavity can
be tested both in two–port configuration (transmission) and in one–port
configuration (reflection).

In our design (see fig. 25) the cavity has a length ` = 5 mm and radius
r1 = 3 mm. The central post has a conical section with end radius r0 =
0.5 mm. High transducer sensitivity is obtained by usign a small value of the
capacitance gap d. We choose d ' 15 µm. Finite element calculations gave
the following values for the cavity operating parameters: resonant frequency
(TEM mode) ωa/(2π) = 5.5 GHz, sensitivity ∆f/∆d ' 1.4 × 1014 Hz/m.
The cavity is pumped by an external ultralow phase noise source at its
resonant frequency ωa.

For a parametric transducer the sensitivity is proportional to PiQ
2
e,

where Pi is the input power and Qe is the unloaded electromagnetic quality
factor of the cavity. Since high values of the quality factor are desirable the
cavity is made of niobium.

The quality factor is defined as

Q = ωa
U

Pd
(67)

where U is the energy stored in the cavity and Pd is the overall dissipated
power. Losses in the re–entrant cavity transducer are mainly due to niobium
surface losses, to radiative losses and to losses in the external circuit.

Surface losses are given by the ratio between a geometric factor and the
cavity surface resistance. The surface resistance is an intrinsic property of
the cavity surface material dependent on frequency and temperature. It is
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Figure 25: Schematic view of the re–entrant cavity. (a) The rf power is
coupled through the choke, so that the effect of the coupling on the frequency
and on the sensitive spot can be minimized. (b) Since the cavity is open,
the chokes’ shape and dimension are designed to minimize the radiated field,
thereby preserving the electromagnetic quality factor. (c) The transducer
oscillating mass will be made of niobium. The plate is not in contact with
the cavity. (d) The cavity is designed to operate at ωa/(2π) ' 5.5 GHz.
With an electromagnetic quality factor Qe ∼ 108 and an input power of
1 µW the electric field strength in the gap is Eg ' 8 MV/m.

given by the sum of two contributions: Rs = RBCS+Rres. The intrinsic BCS
term, strongly temperature dependent, may be calculated numerically from
the general theory. At f ' 5 GHz and T ' 0.1 K, RBCS � 0.1 nOhm. The
residual losses depend on surface preparation and cleanliness. With standard
surface preparation techniques residual resistance values Rres ' 1 nOhm
have been obtained, which would give Qe ' 1010.

The external losses are usually parameterized defining a (coupling) co-
efficient ζ = Qe/Qext, so that

1
Q

=
1

Qe
+

1
Qext

=
1 + ζ

Qe
(68)

or
Q =

Qe

1 + ζ
(69)

When ζ = 1 (critical coupling) the external losses equal the intrinsic losses.
In this case the cavity input impedance is exactly matched with the input
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line impedance and no power is reflected back in the input line.
Radiation losses will also be present due to the small gap between the

transducer and the antenna. In order to minimize them an rf choke was de-
signed (see fig. 25). The choke consists in a short–circuited half–wavelength
transmission line, tuned to the cavity operating frequency. The first quarter
wavelength is a radial waveguide while the second quarter wavelength is a
coaxial transmission line that is short–circuited at the bottom.

Read–out electronics The transducer is complemented with a feed-
back loop, which keeps the local oscillator on track with the cavity. As
shown in fig. 26, the loop components are arranged in a phase comparator
configuration, so that the output of the mixer is proportional to the phase
difference between the rf generator signal (at angular frequency ωrf ) and
the cavity output.

Figure 26: Detector conceptual layout. In the picture the resonant antenna,
the secondary oscillator, the parametric transducer and the read–out circuit
are represented.

The cavity output has the same instantaneous frequency as the rf gen-
erator signal, but it is phase-shifted of an amount which, near the cavity
resonance, is linearly proportional to ωrf −ωcav, where ωcav is the instanta-
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neous resonator angular frequency6 given by

ωcav = ωa

(
1 +

1
2

C δ

)
(70)

In this equation C represents the sensitivity of the cavity resonant frequency
to a change in the gap dimension. It is given by

C =
2
ωa

∆ω

∆δ
(71)

and δ is the time–varying gap, which oscillates at the same angular frequency
of the incoming gravitational wave (see eq. 127). ωa is the unperturbed
(δ = 0) cavity resonant frequency. ωcav strongly depends on the geometry
of the cavity and is, by design, maximally sensitive to the gap distance.

The feedback circuit allows to keep the rf generator frequency tuned
with the cavity instantaneous frequency by looping back the error signal
coming from the mixer into the Voltage Controlled Oscillator (VCO). This
error signal, properly amplified, carries the useful information on the GW.
In the first order approximation, near the cavity resonant frequency, the
error signal is given by

Verr = −2 Grf Kmix τ Kcav
ζ

(ζ + 1)2
(ωrf − ωcav) (72)

where Grf is the gain of the rf low–noise aplifier, Kmix is the mixer conver-
sion loss, τ is the energy decay time of the superconducting cavity (see eq.
129), and ζ is the cavity coupling coefficient, given by the ratio between the
the cavity input impedance and the circuit impedance. Kcav is a low–pass
filter with cut–off frequency 1/(2τ) = ωa/(2Q), which takes into account
that the cavity filters out frequency components outside its bandwidth. For
a stationary (linearized) solution, where δ(t) ∝ ejΩt, sidebands appear in
the field solution at frequencies ωrf + Ω and ωrf − Ω. Kcav is therefore a
function of the modulating frequency Ω.

Finally the VCO instantaneous frequency is given by

ωrf = ωfree + KV CO Verr (73)

where ωfree is the generator free–running angular frequency (usually chosen
to be ωfree = ωa), and KV CO is the VCO voltage–to–frequency conversion
characteristic.

The feedback implementation is prone to two main noise sources, namely:
the rf oscillator phase and amplitude noise and the amplifiers (rf and if) input

6It should be remarked that ωcav is only the natural oscillation frequency of the res-
onator and, in general, it is different from ωrf , which is frequency of the rf signal passing
through the cavity. The unperturbed cavity is designed to have the natural oscillation
frequency equal to ωa.
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noise. The rf amplifier is one of the most critical component in the loop,
as its noise input level ultimately sets a limit on the sidebands amplitude
detection. In few words, the cavity instantaneous frequency is modulated
by the moving gap and therefore sidebands arise from the rf signal, with
an amplitude roughly proportional to the frequency displacement causing
the modulation ∆ω divided by the modulating frequency: Aband ∝ ∆ω

Ω .
To be detected, this amplitude must be greater than the rf amplifier input
noise. We should note however that state–of–the–art, commercially available
amplifiers can already provide near quantum–limited, cryogenic–operated
devices (Tn ' 2 K, that is ' 8 h̄ @ 5 GHz).

The cavity is pumped through one port and read through the same
port, that is through the reflected signal. If the electromagnetic coupling ζ
to the cavity resonant mode is ζ ' 1, then the reflected signal amplitude
near resonance is nearly zero. In a real experimental condition, when ζ can
be far from 1, one might need to provide a more complicated circuitry to
suppress the strong reflected signal from the cavity entering the rf amplifier
(carrier suppression interferometer [69]).

The feedback equations couple the rf oscillator frequency ωrf with the
masses position δ through the cavity instantaneous frequency ωcav. For
very high open-loop gain, the rf generator instantaneous frequency closely
follows the cavity one. To extract the GW information one can use either
the feedback error signal (whose typical frequencies are ∼ 103 Hz) or the rf
generator output (∼ 109 Hz). Both techniques are theoretically valid and
the choice between them is a matter of experimental feasibility.

4.6 Data Acquisition System

4.6.1 Requirements

The aim of the Data Acquisition System (DAQ) is to provide a hard-
ware/software environment basically dedicated to:

1. the digitization of the data collected from the transducer readout chan-
nels, the precise time determination of the sampled data and the or-
ganization of data into structures;

2. the logging of the data structures on permanent mass storage;

3. the sequencing of the operations related to data collection (run);

4. the collection and the execution of directives originated by remotely
located users;

5. the notification of the working conditions, including the abnormal
ones;
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6. the execution of programs for monitoring the detector performances
and the quality of data.

4.6.2 Architecture

The previuos tasks fit into a distributed computing system since time critical
processes associated to them (e.g. task 1) cannot be interrupted by external
conditions. This requirement leads to the assignment of time critical pro-
cesses to a dedicated processor. The DAQ architecture (Fig. 27) includes
a board computer (Host A) that performs time critical tasks, namely the
the readout of the digitization electronics via VMEbus, the organization of
data into structures and the transmission of data on the network. A sec-
ond computer (Host B) receives data and logs them on disks. Information
related to user directives, to the synchronization and status of operations
and to abnormal conditions are shared among Host A and Host B by mes-
sage exchange on the network. Host B provides also the collection of user
directives and the display of control information via remote graphical user
interface (GUI). The monitoring of the detector performances based on the
online data preanalysis is performed on Host B.

The designated operating system for the implementation of the archi-
tecture is Linux, which is supported on a wide range of platforms, insuring
processor cross-operability in a distributed environment. Moreover, a con-
sequence of this choice is that the extensive availability of archived and
supported freeware/shareware software can be helpful in the realization of
the architecture.

4.6.3 Hardware components

The first choice for Host A is an Intel Pentium III processor-based VME
single board (SBC) belonging to the General Electric (GE) VMIVME-7750
family (1.26 GHz, 512 MB), which is equipped with a high-performance
PCI-to-VME interface and has the capability of operating as a VME crate
controller. SBC is complemented by a VMEbus IDE hard disk drive module
(GE VMIVME-7459) connected via the VMEbus P2 lines.

The digitization of the transducer readout channels is performed by a
GE VMIVME-3123 analog input board, which provides the analog-to-digital
conversion of up to 16 input channels with conversion rates of up to 1.6
Msample/s (100kHz/channel). Each input is equipped with a dedicated
sample-and-hold amplifier and a 16-bit A/D converter. Digitized samples
are accumulated in a data buffer until retrieved by SBC on the VMEbus.
Buffer size is software controlled from one sample to 4 Msample.

The sampling clock for the 3123 module is provided externally by an
Elsat GPS2000 receiver and time/frequency source. This module is equipped
with an internal quartz oscillator generating a 10 MHz waveform. The
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Figure 27: DAQ general architecture

frequency is down scaled to the region of ∼ 10 kHz by an external frequency
divider module housed in the VME crate. The reference time is given by
the GPS2000 module via the internal GPS receiver, insuring a frequency
stability of the 10 MHz waveform less then 1 10−12. The module provides
a reference output for the standard time in form of one pulse per second
with an accuracy of the front edge of < 200 ns against UTC. The front edge
of the pulse is sensed by a Caen VME-V977 Input/Output Register, which
gives the general synchronization of the readout channel sampling activity
with the standard time.

The collection of environmental data (e.g. seismic data, thermometry,
etc.) is performed by a GE VMIVME-3125 module, which provides a 12-bit
analog-to-digital conversion for 32 analog voltage input channels. Measure-
ment data for each channel is constantly available to the VMEbus through
a dual-ported Data Register.

Host B is a standard dual CPU Pentium processor.
The data logging throughput is dominated by the digitization of the

readout channels: about 120 kB/s are generated for a sampling frequency of
10 kHz per channel. This corresponds to about 4 TB/year of uncompressed
data to be logged on disk and leads to the inclusion of a (redundant) disk
server in the acquisition system network.
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4.6.4 Software components

The data acquisition software is written using the C programming language
and compiled with the freely distributed GNU compiler. Besides standard
libraries included in the compiler software, a set of additional libraries, pro-
vided by the VMEbus hardware vendor, are used to interface the exper-
iment electronics with the acquisition software itself. The data and mes-
sage exchange between Host A and Host B is performed through network
sockets. On both computers the main acquisition program tasks are dis-
tributed between concurrent threads, each carrying on an independent job
asynchronously but always sharing information with the other threads via
a common control and status register. A circular buffer for temporary stor-
age of acquired data is implemented on Host A in order to cope with CPU,
network and disk latency times.

We chose to use the ROOT data analysis framework for data presentation
and preanalysis. This software is largely used in the HEP community and
offers great flexibility for a wide range of applications. One of the features
we plan to use is the possibility of having a histogram server (on Host B
in our case) capable of creating histograms and distributing them on the
network.

Data acquisition control also is requested to be performed from remote
stations. A web based GUI, allowing remote interaction with the DAQ,
will be implemented together with an authentication system and a locking
mechanism preventing uncontrolled interaction with the DAQ system.

4.7 Expected sensitivity

The expected sensitivity for a 2 meter sphere is shown in Fig. 28 and 29. The
two curves represent the sensitivities that can be achieved with a read-out
at 20h̄ and at the quantum limit respectively.

In conclusion, a spherical resonant-mass detector with the specification
proposed, will reach, in a first stage of operation, a sensitivity about equal
to that of a large scale interferometer such as VIRGO or LIGO, in their
initial configuration, over the frequency range 900Hz < f < 1100 Hz. In the
final configuration, it will reach over the same frequency window a sensitivity
S

1/2
h (f) = 3×10−23 Hz−1/2, approximately equal to the projected sensitivity

of Advanced LIGO or Advanced VIRGO.
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Figure 28: Calculated strain noise spectrum for a 2 meter diameter CuAl
sphere. The sphere is equipped with six transduction chains in the TIGA
configuration, with a read-out at 20h̄.

Figure 29: Calculated strain noise spectrum for a 2 meter diameter CuAl
sphere. The sphere is equipped with six transduction chains in the TIGA
configuration, with noise at quantum limit.

60



5 Astrophysics with a spherical gravitational wave
detector

The existence of GWs is demonstrated by 20 years of observation of the
binary pulsar PSR 1913 + 16 [74]. Today, the interest of GW research is to
use them as a probe of astrophysics and possibly cosmology. In this section
we discuss some of the most interesting sources that can be searched, using
a resonant spherical detector, with the characteristic specified in Sect. 4.
We will discuss both the results that can be obtained at an initial stage,
taking as reference value a strain sensitivity Sh(f) ' 3× 10−22 Hz−1/2 over
a frequency range 900 Hz < f < 1100 Hz, and our final target,

Sh(f) ' 3× 10−23 Hz−1/2 , (74)

again over the range
900 Hz < f < 1100 Hz . (75)

Throughout this discussion we make use of the fact that the energy signal-
to-noise ratio (SNR) of the output, after optimal filtering, is given by the
well-known formula

SNR = 4
∫ ∞

0

|h̃(f)|2

Sh(f)
df, (76)

where h̃(f) is the Fourier transform of h(t) and Sh(f) the (single-sided)
spectral density of the signal.7 We now discuss the SNR of this spherical
resonant detector for various gravitational wave signals.

5.1 Burst sources

A number of astrophysical phenomena, like supernova explosions or the final
merging of a neutron star-neutron star binary system, can liberate a large
amount of energy in GWs in a very short time, typically less than a second,
and sometimes as small as a millisecond. We will refer to such signals as
GW bursts, and we denote their duration by τg. In Fourier space, a GW
burst therefore has a continuum spectrum of frequency over a broad range,
up to a maximum frequency fmax ∼ 1/τg.

In principle, if we know the form of h̃(f), we can just plug it into eq. (76)
to obtain the SNR for a given noise spectral density of the detector. How-
ever, bursts come from explosive and complicated phenomena, and it is
very difficult to predict accurately their waveform. We can however make
some simple order-of-magnitude estimates, observing that, with a bandwidth
∆f ∼ 200 Hz and a central frequency f0 ' 1 kHz, we have ∆f/f0 ' 0.2,
so the Fourier components of h̃(f) are not expected to change much, while

7An equivalent form is SNR =
∫∞
−∞

|h̃(f)|2
Sh(f)

df , where Sh(f) is the single-sided spectral
density.
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Sh(f) is also quite flat in this window, see Fig. 29. Then in the integrand
in eq. (76) we can approximate h̃(f) with h̃(f0) and Sh(f) ' Sh(f0), and
eq. (76) becomes

SNR ' 4|h̃(f0)|2
∆f

Sh(f0)
, (77)

The energy radiated in GWs during a burst can be estimated in terms of
h̃(f0), assuming a flat spectrum up to a maximum frequency fmax, and is
given by

∆Erad '
4π2r2c3

3G
|h̃(f0)|2 f3

max , (78)

where r is the distance to the source. Combining eqs. (77) and (78) we get,
at SNR=1,

r ' 18 Mpc

(
3× 10−23 Hz−1/2

S
1/2
h (f0)

) (
∆Erad

10−2M�c2

)1/2 ( ∆f

200 Hz

)1/2 (1 kHz
fmax

)3/2

.

(79)
This equation gives an estimate of the maximum distance r at which we
can detect a burst source which radiates and energy ∆Erad in gravitational
waves, with a detector having a strain sensitivity Sh(f) over a bandwidth
∆f , and is the basic equation that allows us to estimate our sensitivity to
GW bursts. We now apply it to discuss the detectability of various possible
burst sources.

Binary Coalescence. Binary systems made by two neutron stars (NS-
NS), or by two black holes (BH-BH) or by a neutron star and a black hole
(NS-BH) are among the most interesting sources that can be searched in
GW experiments.

The gravitational radiation emitted by these systems sweeps up in fre-
quency, until the two objects coalesce. In the Newtonian approximation
the relation between the frequency f of the GWs emitted and the time to
coalescence, τ , is

f(τ) ' 134 Hz
(

1.21M�
Mc

)5/8 (1 s

τ

)3/8

, (80)

where Mc = (m1m2)3/5(m1 +m2)−1/5 is the so-called chirp mass of a binary
system with masses m1,m2. The reference value Mc = 1.21M� corresponds
to a binary system of two stars with m1 = m2 = 1.4M�, typical of neutron
stars. Formally eq. (80) states that the GW signal enters in our frequency
band, f > 900 Hz, when the time to coalescence is τ = 6 ms. At this stage,
the Newtonian and pointlike approximation used to derive eq. (80) becomes
invalid, so the precise number cannot be trusted. In any case, the conclusion
is that the inspiral phase is not accessible to our detector, and we are instead

62



sensible to the final plunging and merging phase. Therefore, in our detector,
the binary inspiral is seen as a burst signal.

The energy radiated during the final merging phase of a NS-NS system
is rather reliably estimated to be of order

∆Erad ∼ 10−2M�c2 . (81)

On the other hand, the coalescence rates are more uncertain. Before the
recent discovery of a new NS-NS binary [36], the rate of NS-NS coalescences
in the Galaxy was estimated to be in the range 10−6 to 5 × 10−4 mergings
per year [35]. This estimate depends strongly on the shortest-lived systems
known, and the recent discovery of a new NS-NS binary, with the shortest
known merging time (85 Myr), brings this estimate up by one order of
magnitude [36].

Equation (79) indicates that, given the value (81) for ∆Erad, and us-
ing our final target sensitivity, we can detect a NS-NS coalescence up to a
distance of order

r ∼ 18 Mpc . (82)

In particular, we can detect a NS-NS coalescence in the Virgo cluster,
r ∼ 15−20 Mpc; given that in the Virgo cluster there are over 2000 galaxies
(including giant galaxies), the expected rate at this distance can be esti-
mated between 2× 10−2 and O(1) events per year.

These numbers are however quite uncertain, since they depend strongly
on the lifetime of the system with the shortest known merging time. As we
have already seen, the discovery of just one system with the shortest known
merging time can bring these estimates to substantially higher values.

The final stage of the coalescence of BH-BH and BH-NS binary system
will produce a signal in our bandwidth if the BH is of the order of 1− 2M�
(for higher-mass BHs, the maximum frequency radiated in the merging phase
becomes lower than 900 Hz), and its intensity is of the same order as for
NS-NS. The rates of BH-BH and BH-NS coalescence are very uncertain,
since, contrarily to NS-NS binary, no such system has yet been observed.
Estimates based on population synthesis suggest that their rate should be
comparable, or somewhat lower, than NS-NS coalescences.

Black hole formation. It has been shown that a spherical detector is a
very interesting instrument for observing the formation of black holes [76].
When a binary whose total mass M is greater than the maximum neutron
star mass coalesces the likely outcome is a mass M black hole. The excita-
tion of fundamental quadrupole mode of the resulting black hole generates
gravitational waves with a typical frequency of

f ' 12 kHz
(

M�
M

)
, (83)
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lasting for a few cycles. For Schwarzschild black holes, a typical spheri-
cal antenna is sensitive to formation of black holes with mass of the order
of 10 M�, which are known to exist. For instance the estimated mass of
Cygnus X-1 and LMC X-3 are in that range. Assuming an energy con-
version efficiency of the black hole mass into gravitational waves of 10−4,
the signal-to-noise ratio of Schwarzschild black hole formation in the typical
detector is thus given by[82]

SNR '
(

50 Mpc
r

)2 ( M

15 M�

)3
(

3× 10−23 Hz−1/2

S
1/2
h (f)

)2

. (84)

Even under the pessimistic assumption that there is no increase in efficiency
for the coalescence of orbiting black holes, our reference antenna is expected
to observe a typical 15M� black hole formation event out to tens of Mpc,
and in particular in the Virgo cluster.

There is one additional reason why a spherical detector is very interest-
ing for observing sources such as a gravitational collapse. Since in General
Relativity no gravitational wave is radiated from a spherically symmetric
collapse, we cannot obtain any information if collapses are spherically sym-
metric. However, in scalar-tensor theories scalar waves are radiated even
from a spherically symmetric collapse. These scalar gravitational waves can
be detected very naturally by observing the excitation of the monopole and
the ` = 2,m = 0 quadrupole modes of a sphere, which are not excited by
the tensor waves of General Relativity. It is also expected that the scalar
waves reflect directly the stellar initial radius, mass, and density [83].

Supernova explosions. Current estimates of the energy radiated in GWs
in a type II supernova explosion range between 10−2M�c2 and 10−6M�c2,
depending mainly on the deviation from sphericity of the collapse. From
eq. (79) we see that, at the initial sensitivity, we can detect a SN explosion
out to a distance of 1.8 Mpc for the optimistic case ∆Erad = 10−2M�c2 and
18 kpc for ∆Erad = 10−6M�c2.

At the advanced level we get 18 Mpc for ∆Erad = 10−2M�c2 and 180 kpc
for ∆Erad = 10−6M�c2. A collapse taking place in the Virgo cluster of
galaxies, at r ∼ 15− 20 Mpc (where the expected rate is of order of several
events per year) will be detected if it radiates about 2× 10−2 solar masses.

A supernova in our Galaxy (say at r = 10 kpc, expected rates of orders
one every ∼ 40 yr) would be seen with a signal-to-noise ratio (in energy)
SNR ∼ 107 for ∆Erad = 10−2M�c2 and SNR ∼ 103 for ∆Erad = 10−6M�c2.
In the Local Group of galaxies (say, r < 600 kpc, rates or order 1 every
10-20 yr) an event with ∆Erad = 10−2M�c2 would be seen with SNR ∼ 25.

Starquakes, Soft Gamma Repeaters, and Magnetars. Our target sensitiv-
ity allows us to explore extragalactic distances in search of rare events, such
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as supernova explosion or NS-NS coalescence, that liberate huge amounts
of energy. On the other hand, this sensitivity also allows us to explore our
Galaxy, in search of events which are less dramatic, but hopefully much
more common on the galactic scale.

In particular, neutron stars (as well as hypothetical compact objects such
as quark stars, or neutron stars with a core of deconfined quark matter),
can produce GW bursts as a consequence of sudden rearrangements of their
structure, either in the crust or in the core. Crustquakes can liberate in GW
an energy

∆Erad ∼ (10−10 − 10−8) M�c2 , (85)

while even larger values can be obtained in corequakes (see [37] and refer-
ences therein).

A very interesting example of this phenomenon is provided by magnetars,
which are neutron stars with huge magnetic fields, of order 1014 − 1015G
[38, 39], i.e. 100 to 1000 times stronger than in ordinary pulsars. It is
believed that magnetars provide an explanation for the phenomenon of soft
gamma repeaters (SGR), x-ray sources with a persistent luminosity of order
1035 − 1036 erg/s, that occasionally emit huge bursts of soft γ-rays, with a
power up to 1042 erg/s, for a duration of order 0.1 s. The mechanism invoked
to explain the burst activity is that the magnetic field lines in magnetars
drift through the liquid interior of the NS, stressing the crust from below
and generating strong shear strains. For magnetic fields stronger than about
1014 G, these stresses are so large that they cause the breaking of the 1 km
thick NS crust, whose elastic energy is suddenly released in a large starquake,
which generates a burst of soft gamma rays. Such starquakes can radiate in
GWs an energy ∆Erad ∼ 10−10−10−9M�c2 [40, 41, 37]. Occasionally SGRs
emit truly giant flares, and in this case the estimate for the energy radiated
can be 10−8M�c2 or even larger [42].

Magnetars are just one example of objects which could emit GW bursts
at this level, and a number of variants have been considered [37]. For in-
stance the rearrangement in the internal structure of the star could be trig-
gered by accretion, rather than by the magnetic field, or the emission could
be related to phase transition in the core of a hybrid quark-hadron star [43].
While the rigidity of the crust is determined by the Coulomb interaction be-
tween nuclei, in the core the relevant energy scale is determined by hadronic
physics, so corequakes could be a much more powerful source of GWs than
crustquakes (see also Ref. [41]).

At our initial sensitivity, eq. (79) indicates that a GW burst that liberates
in GWs an energy ∆Erad = 10−8M�c2 can detected up to a distance r ∼
3 kpc. At our final target sensitivity, for ∆Erad = 10−8M�c2 we reach
r ∼ 33 kpc, that is, we can explore all the Galaxy. A burst taking place
at the distance r = 100 pc, corresponding to the distance to the closest
observed neutron stars, will be detectable if it radiates ∆Erad = 10−11M�c2

65



for our initial sensitivity and ∆Erad = 10−13M�c2 for our final sensitivity.
Observe that, while the closed observed NS is at about 100 pc, population
synthesis calculation indicates that the NS closest to us should be at just
5-10 pc, and that in a sphere of radius 100 pc around the Sun, there should
be O(104) neutron stars [44].

Finally, it is interesting to observe that these “small” bursts do not
destroy the source, but leave it in the condition of flaring again. As observed
experimentally in the bursts of soft γ-rays in magnetars, the events coming
from such sources have a very characteristic distribution in energy spectrum
and in waiting time (the time between one outburst and the next), that
would provide a clear experimental signature [48].

5.2 Periodic sources

Neutron stars have in general deviation from spherical symmetry, which
are typically generated when they cool down and their crust solidifes. In
a rotating NS these deviations from spherical symmetry produce a time-
varying quadrupole moment and therefore generate a periodic GW signal,
at a frequency f0 equal to twice the rotational frequency frot.8 The resulting
GW amplitudes, for the + and × polarizations, are

h+ = h0
1 + cos2 ι

2
cos [2πf0t] (86)

h× = h0 cos ι sin [2πf0t] (87)

where ι is the inclination of the rotation axis with respect to the line of sight
and

h0 =
4π2G

c4

Izzf
2
0

r
ε

' 1.06× 10−25
(

ε

10−6

)(
Izz

1038 kg m2

)(
10 kpc

r

) (
f0

1 kHz

)2

. (88)

Here G is Newton’s constant, Izz the zz component of the moment of inertia
tensor, and ε is the ellipticity of the star, which measures its deviation from
sphericity.

The equilibrium values of the mass and of the radius of NS are fixed by
the equation of state and, with all realistic equations of state, Izz cannot
differ much by the reference value used in eq. (88). The main source of
uncertainty is instead due to the ellipticity ε. Plausible theoretical values
are ε<∼10−6, although values as large as ε ' 10−5 can be obtained.

8If the angular momentum of the NS is not aligned with a principal axis of the crust,
there is also a precession motion at frequency fprec, and GWs are emitted, besides at
f0 = 2frot, also at f0 = frot + fprec. Since fprec � frot, we basically have two lines at
f0 = frot and at f0 = 2frot.
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The fastest spinning NS are millisecond pulsar. In particular, a pul-
sar with a period of about τ ' 2 ms, and therefore frot ' 500 Hz, emits
GWs at f0 ' 1 kHz, in our bandwidth. Equation (88) shows that the GW
amplitude h0 increases as f2

0 , and therefore the signal from fast spinning
pulsars is strongest, and the kHz region is a particularly interesting region
for detection.

To extract the small GW signal from the background, one must integrate
it for a time as long as possible. The Fourier transform of such a long
stretch of data should then show a monochromatic line emerging from the
background, in correspondence to the GW frequency. Ideally, if one had a
stretch of data of length T (e.g. T = 1 yr), one could perform a single FFT
on the data and search for monochromatic lines. Then, using the explicit
form of the signal given in eqs. (86)-(88) and plugging it into the general
formula (76) for the signal-to-noise ratio, one can show that, at SNR = 1,
we can detect a pulsar with ellipticity ε, in an observation time T , up to a
distance r given by

r = 2.5 kpc

(
3× 10−23 Hz−1/2

S
1/2
h (f0)

) (
T

3× 107 s

)1/2 ( ε

10−8

)
, (89)

where we used the standard value Izz = 1038 kg m2 and we set the GW
frequency f0 = 1 kHz. The reference value chosen for T corresponds to 1 yr
of data.

Unfortunately, the above result only holds for coherent searches, i.e. if
we have a single continuous stretch of data of length T , on which we apply
a single Fast Fourier Transform (FFT). More generally, our data will be
divided into shorter continuous stretches of data. In each stretch we can
perform an FFT, and the result of the different FFTs can then be added
incoherently. In particular, if the total integration time T is divided into
N observation period of length ∆t, with T = N∆t, one finds that the
sensitivity to the GW amplitude is reduced by a factor N 1/4 with respect
to the sensitivity of coherent searches, and eq. (89) becomes

r =
2kpc
N 1/4

(
3× 10−23 Hz−1/2

S
1/2
n (f0)

) (
T

3× 107 s

)1/2 ( ε

10−8

)
. (90)

The reasons that force us to divide the integration time into N shorter
stretches are both of practical and of fundamental nature.

(1) From the practical point of view, data taking is interrupted period-
ically, either because of period of higher noise or, at the latest, because of
cryogenic maintenance operations.

(2) At a more fundamental level, there is a relative motion of the detector
and the star, due to the Earth rotation and revolution around the Sun, which
produces a Doppler broadening of the spectral line, and also the signal is
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not perfectly monochromatic, because of intrinsic changes in the frequency
of the source, such as those due to pulsar spindown. Unless one corrects for
these effects, it becomes useless to integrate for long times. In particular,
the Doppler correction depends on the position of the source and therefore
the data analysis and, as we will see, the sensitivity, differs depending on
whether we are targeting a known pulsar, for which we know the position and
the spindown parameters with good accuracy, or whether we are performing
a blind all-sky survey. We examine the two cases separately.

Search for known fast-spinning pulsars. In this case, we usually know
with a sufficient accuracy the position, as well as a number of parameters
that describe the intrinsic spin drift of the source, and we can simply apply
the appropriate corrections for Doppler shift and spindown. In this case the
main limitation on continuos data taking will be due to practical factors
such as maintenance operations. Assuming that one year worth of data are
split into O(50) continuos data taking period of one week, we only lose a
factor ∼ 501/4 ∼ 2.6 compared to the estimate for coherent searches and,
assuming a total integration time T ∼ 3× 107 s, eq. (90) gives

r ' 1 kpc

(
3× 10−23 Hz−1/2

S
1/2
h (f0)

) (
ε

10−8

)
. (91)

This means that, at our final target sensitivity, we can detect a known
millisecond pulsar at r = 1 kpc as long as its ellipticity ε is larger than 10−8,
and a known millisecond pulsar at r = 10 kpc as long as ε > 10−7. 9

Blind all-sky searches. A blind search for pulsars all over the sky is in
principle of the greatest interest. Electromagnetic observations only allow us
to detect a tiny fraction of the existing neutron stars. As already mentioned
above, the closed observed NS is at about 100 pc, while it is estimated that
the actual closest NS should be at just 5-10 pc, and that in a sphere of radius
100 pc around us, there should be O(104) neutron stars. In the Galaxy, it
is estimated that there are O(107) neutron stars, while only about 2000 are
detected electromagnetically, as pulsars beamed toward us.

The difficulty of such a blind search is that the Doppler correction de-
pends on the unknown position of the star in the sky, and on its unknown
spin-down parameters. We therefore have a multidimensional parameter
space (for fast pulsar, three spindown parameters are usually required, plus
the position in the sky). We must discretize it, and apply the correction

9This is approximately a factor of 2 better than what could be achived with one in-
terferometer having the same value of S

1/2
h (f0). The reason is that at an interferometer

there is also an amplitude modulation due to the fact that, following the Earth rotation
and revolution, the orientation of the interferometer with respect to the source changes,
and the detector will be at times oriented unfavorably with respect to the source. Instead
we have seen that the sphere, combining its five output channels, is an omnidirectional
detector, so it is always well oriented with respect to the source.
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separately for each point of this discretized parameter space, which means
that we must perform a different FFT for each point in parameter space.
If we increase the integration time T , we need also a finer mesh in this pa-
rameter space, in order to take advantage of the longer integration time.
As a result, a coherent blind all-sky search quickly exceeds any present and
forseable computer capability, if T becomes too large. For fast pulsars it is
estimated that, even on a Teraflop computer, a blind coherent all-sky search
cannot be performed on a stretch of data longer than T ' 18 days [45].

The solution is then to split the data into N stretches and to add them
incoherently, paying a factor N 1/4 in sensitivity. The simplest (although not
optimal) strategy is to divide the data in stretches of length ∼ 30 min, since
in this case no correction needs to be applied (the Doppler effect due to the
Earth spin is the first effect to become important and, for f0 = 1 kHz, it
becomes important after an integration time T ' 80 min). One year worth
of data will then be split in N = 1 yr/(30min) ' 1.7 × 104 stretches, and
N 1/4 ∼ 11. We therefore lose about one order of magnitude in sensitivity,
compared to the search for known pulsars.

This means that, at our final target sensitivity, we can detect, in a blind
all-sky search, a pulsar at r = 1 kpc as long as its ellipticity ε is larger than
10−7, and at r = 10 kpc as long as ε > 10−6.

With this sensitivity, assuming a reasonable neutron star distribution in
space and in frequency, we can expect to detect several sources in one year
observation time [76].

5.3 Stochastic backgrounds

Stochastic backgrounds of GWs can result either from the incoherent super-
position of many astrophysical sources which are not resolved individually,
or from processes taking place in the early Universe. Examples of the latter
phenomenon is provided by the amplification of vacuum fluctuations during
transitions between different cosmological epochs (e.g. a transition between
an inflationary phase and the radiation dominated era) or first order phase
transitions taking place in the early Universe.

The intensity of a stochastic background of GWs can be characterized
by its energy density per unit logarithmic interval of frequency, dρgw/d log f ,
normalized to the critical density for closing the Universe, ρc,

Ωgw(f) ≡ 1
ρc

dρgw

d log f
. (92)

The critical density is ρc = 3H2
0/(8πG), where H0 = h0100 km/(sec Mpc)

is the Hubble expansion rate and h0 ' 0.7 parametrizes the experimental
uncertainty on H0. Actually, it is conventional to use the quantity h2

0Ωgw

rather than Ωgw, in order to get rid of the uncertainty in h0.
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Various upper limits are known on Ωgw, from different type of obser-
vations. In our frequency window (and in general in the whole frequency
window accessible to ground based detectors) the strongest bound comes
from primordial nucleosynthesis, and gives [2]

h2
0Ωgw(f) < 10−5 . (93)

Observe however that this bounds applies only to GWs produced before
nucleosynthesis, i.e. in the early Universe, and not to backgrounds of astro-
physical origin. Using a single detector, whether a bar or an interferometer,
the minimum detectable value of h2

0Ωgw is [2]

h2
0Ω

min
gw (f) ' 1

F
· 10−2

(
f

100Hz

)3
(

S
1/2
h (f)

10−22Hz−1/2

)2

, (94)

where F is an angular efficiency factor which depends on the detector ge-
ometry. One has F = 2/5 for an interferometer, and F = 2/5 also for each
of the five quadrupolar modes of a resonant sphere.

From this we see that both our resonant sphere, at its target sensitivity,
and advanced VIRGO (or advanced LIGO), used as single detectors, are far
from a really interesting sensitivity to stochastic backgrounds. In the kHz
region, both the sphere and advanced VIRGO (or advanced LIGO), used
as single detectors, can reach at most h2

0Ωgw = O(1). Advanced VIRGO
or Advanced LIGO have their best sensitivity around f = 200 Hz, where
anyway they cannot go below h2

0Ωgw = O(10−3 − 10−4). 10

The situation however changes drastically if we correlate the outputs of
two detectors. In this case, if the two detectors are sufficiently close (that is,
their separation is not large with respect to the wavelength of the GWs that
one is searching), the stochastic backgrounds at the two detector locations
will be the same, while the noise are uncorrelated. Then, integrating the
products of the signal for a sufficiently long time,11 one can extract even a
very small correlated signal from a much larger, but uncorrelated, noise. In
can be shown that in this case the optimal signal-to-noise ratio is given by

SNR =
3H2

0

10π2

[
2T

∫ ∞

0
df γ2(f)

Ω2
gw(f)

f6Sh,1(f)Sh,2(f)

]1/2

, (95)

where Sh,1(f) and Sh,2(f) are the strain sensitivities of the detectors that
we are correlating, and γ(f), known as the overlap reduction function, is a

10Furthermore, in a single detector, a stochastic background manifest itself as just
another source of noise, and, if one observe a noise curve higher than expected, it will be
extremely difficult to tell whether one has observed a stochastic background of GW or a
noise which has not been properly accounted for in the modelization of the detector.

11More precisely, we must also multiply the two signals by a filter function, whose
optimal form depends on the frequency spectrum of the stochastic background that one is
searching, so in practice a family of filters will be applied. For full details and derivations
of the results of this section, see ref. [2].
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function that suppresses the correlation at frequencies such that 2πfd � 1,
where d is the distance between the two detectors; its form is known esplicitly
for a sphere-interferometer correlation.

At f = 1 kHz, two detectors within a few hundreds kms, such as VIRGO
near Pisa and a sphere in the Gran Sasso laboratories, are still reasonably
well correlated, and γ(f) ∼ 1. Over the useful bandwidth ∆f ∼ 200 Hz of
the sphere, eq. (95) can be approximated as

SNR ' 3H2
0

10π2
(2T∆f)1/2 Ωgw(f)

f3S
1/2
h,1 (f)S1/2

h,2 (f)
, (96)

and, at SNR = 1, the minimum value of h2
0Ωgw that can be detected, in

a window ∆f around a frequency f0, correlating the outputs of the two
detectors for a time T , is

h2
0Ωgw(f0) ∼ 10−5

(
f0

1 kHz

)3
 S

1/2
h,1 (f0)

3× 10−23 Hz−1/2

 S
1/2
h,2 (f0)

3× 10−23 Hz−1/2


×
(

200 Hz
∆f

)1/2 (1 yr
T

)1/2

. (97)

The conclusion that we can draw is the following:

both VIRGO and the sphere, used separately, in the 1 kHz re-
gion can reach only an uniteresting sensitivity to stochastic back-
grounds, h2

0Ωgw = O(1). Instead, a VIRGO-sphere correlation
can reach a sensitivity h2

0Ωgw = O(10−5).

Such a sensitivity is quite interesting. First of all, it is about five orders
of magnitude better then the present best direct measurement of stochas-
tic backgrounds of GWs at f = 1 kHz [46], and three order of magni-
tude better than the best limit presently put by LIGO around 200 Hz [47].
Second, it starts to penetrate in the region allowed by the nucleosynthesis
bound; at this level signals from early Universe cosmology can in principle
be found. Firm predictions about cosmological backgrounds are at present
possible only in rare cases (e.g., the stochastic background from standard
inflationary model, which however is too low for our sensitivity), because
they typically involve speculations about early Universe cosmology and/or
the corresponding high-energy physics. Still, there are models that predict
stochastic backgrounds of GWs that can saturate the nucelosynthesis bound,
in the frequency range of interest for us (see ref. [2] for review). A sensitiv-
ity such as that given in eq. (97) will therefore allow us to penetrate into a
region experimentally unknown and potentially very interesting.
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6 Project Costs

The SFERA costs excluding infrastructure.

Item Cost (kEURO)
Cryogenics
Cryostat design 70
Cryostat construction 640
Pumps and vacuum 270
Dilution refrigerator unit 650
Gauges and sensors 60
Transfer tubes 50
Pre-cooling system 40
Consumables 40
Subtotal 1820
Suspension System
Electronics 40
Mechanics 290
Subtotal 330
Read-out
Electronics and transducers 140
Subtotal 140
Data Acquisition
Acquisition hardware 100
Analysis software 30
Subtotal 130
Sphere
Sphere CuAl 33 tons 350
Subtotal 350
Travel
Travel 2006 20
Travel 2007 50
Travel 2008 50
Subtotal 120
Total 2890
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7 Schedule

The SFERA schedule assuming initial funding starting in Janury 2006.The
first science run is scheduled at the end of 2008.

Item End date
Cryogenics June 2007
Cryostat design March 2006
Refrigerator design May 2006
Construct cryostat January 2007
Construct refrigerator March 2007
Test Cryostat April 2007
Test Refrigerator April 2007
Final Assembling and test June 2007
Suspension System July 2007
Finite element modeling April 2006
Suspension design June 2006
Construction January 2007
Room temperature tests May 2007
Final assembling in the cryostat July 2007
Data Acquisition July 2007
Purchase and assemble hardware February 2007
Acquisition software January 2007
Assemble electronics February 2007
Analysis software June 2007
Sphere October 2007
Construction and final machining March 2007
Tests with PZTs at room-temp May 2007
Mounting in the cryostat July 2007
Test circulated cooling August 2007
Cooling at 4K and tests with PZTs September 2007
Cooling at ultralow temperature and tests October 2007
Read-out December 2007
Definition of the read-out June 2007
Installation of a single read-out channel December 2007
Commissioning October 2008
Engineering run with one read-out channel March 2008
Engineering run with six read-out channel October 2008
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8 The collaboration

The SFERA collaboration is open to the partecipation of all the interested
people. The present collaboration includes:

• INFN: D. Babusci, R. Ballantini, M. Bassan, Z. Berezhiani, P. Carelli,
G. Cavallari, F. Cavanna, A. Chincarini, E. Coccia, C. Cosmelli, S.
D’Antonio, V. Fafone, G. Gemme, G. Giordano, A. Ianni, A. Marini,
Y. Minenkov, I. Modena, A. Moleti, G.P. Murtas, O. Palamara, G.V.
Pallottino, R. Parodi, G. Piano Mortari, G. Pagliaroli, G. Pizzella, L.
Quintieri, A. Rocchi, F. Ronga, A. Scaramelli, R. Terenzi, G. Torrioli,
R. Vaccarone, G. Vandoni, M. Visco

• University of Geneva: M. Maggiore, F. Dubath, S. Foffa, H. Sanctuary,
R. Sturani

• University of Leiden: A. de Waard, G. Frossati, O. Usenko
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A The TIGA configuration

In this appendix we give the relevant equations that describe the system
of five quadrupolar modes of the sphere plus the six secondary resonators
representing the resonant transducers in the TIGA configuration.

We begin by considering the five quadrupolar modes of the sphere, la-
beled by m, coupled to N resonant transducers, labeled by j = 1, . . . , N ,
and for the moment we keep N arbitrary. It is convenient to use the real
spherical harmonics Ym(θ, φ), defined by Y0 = Y20 and

Y1c =
1√
2
(Y2,−1 − Y2,+1) , Y1s =

i√
2
(Y2,−1 + Y2,+1) ,

Y2c =
1√
2
(Y2,−2 + Y2,+2) , Y2s =

i√
2
(Y2,−2 − Y2,+2) . (98)

To keep the notation lighter, we denote by ξm(t) the spheroidal modes
ξnlm(t) with l = 2 and n given (we are typically interested in the funda-
mental mode n = 1), in the real basis for the spherical harmonics. Similarly
we denote simply by a(r) and b(r) the functions anl(r) and bnl(r) with l = 2
and the given value of n. Then, using eqs. (7) and (13), the contribution
to the displacement u(x , t) due to the spheroidal modes with l = 2 and n
given can be written as

u(x , t) =
∑
m

ξm(t) [a(r)r̂ + b(r)R∇]Ym(θ, φ) , (99)

where m runs over the values 0, 1c, 1s, 2c, 2s. We also denote the frequency
ωS

n2 with the given value of n simply by ω0. Finally, the amplitude of the
transducers’ oscillations in the radial direction are denoted by ξt,j and their
frequency by ωt (we will then tune ωt = ω0, for resonant transducers).

The Lagrangian describing this system of coupled oscillators is

L =
∑
m

[
1
2
Mξ̇2

m −
1
2
Mω2

0ξ
2
m

]
+
∑
j

[
1
2
mtξ̇

2
t,j − V (ξt,j ; ξm)

]
, (100)

where V (ξt,j ; ξm) is the interaction potential between the j-th transducer
and the sphere. If the transducers are built so to sense the radial displace-
ment of the sphere, the interaction potential is

V (ξt,j ; ξm) =
1
2
mtω

2
t q

2
j , (101)

where qj is the relative displacement between the j-th transducer and the
surface of the sphere, in the radial direction. We denote by x j the location
of the j-th transducer. In spherical coordinates x j has polar angles θj , φj ,
and we denote by r̂j the radial unit vector at x j . The relative displacement
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qj can be written using eq. (99),

qj(t) = ξt,j(t)− r̂j · u(x j , t)

= ξt,j(t)− a(R)
∑
m

ξm(t)Ym(θj , φj) , (102)

It is useful to introduce the notation a(R) = an2(R) ≡ α, as well as

Bmj ≡ Ym(θj , φj) . (103)

Then
qj(t) = ξt,j(t)− α

∑
m

Bmjξm(t) . (104)

In conclusion, the Lagrangian describing the interaction of the five modes
ξm with the N transducers ξt,j is

L =
∑
m

[
1
2
Mξ̇2

m −
1
2
Mω2

0ξ
2
m

]
(105)

+
∑
j

1
2
mtξ̇

2
t,j −

1
2
mtω

2
t

(
ξt,j − α

∑
m

Bmjξm

)2
 ,

and from this we get immediately the equations of motion. We include
external forces Fm acting on the ξm (which describe, e.g. the GW force or
the Nyquist thermal force on the sphere) and external forces Fj acting on
the transducer ξt,j . Then (making use of eq. (104) to eliminate ξt,j in favor
of qj) the equations of motion are

ξ̈m + ω2
0ξm − µω2

t α
∑
j

Bmjqj =
Fm

M
, (106)

q̈j + ω2
t qj + α

∑
m′

Bm′j ξ̈m′ =
Fj

mt
, (107)

where µ = mt/M . Actually, some sources of noise (e.g. fluctuations in the
electric field of the capacitor made by the sphere and the transducer) are
rather described by forces acting between the sphere and the transducer. To
take them into account observe that, in the above equations, −mtω

2
t qj =

−ktqj is the elastic force between the transducer and the sphere, so the
forces fj that act between the sphere and the transducer can be included
replacing −ktqj with −ktqj + fj . Therefore eqs. (106) and (107) become

ξ̈m + ω2
0ξm − µω2

t α
∑
j

Bmjqj =
1
M

(Fm − α
∑
j

Bmjfj) , (108)

q̈j + ω2
t qj + α

∑
m′

Bm′j ξ̈m′ =
Fj + fj

mt
, (109)
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Dissipation can be introduced with the replacements Fm → Fm−γmξ̇m and
fj → fj − γj q̇j . Experimentally, we measure the relative displacements qj ,
for instance using capacitive transducers. With these outputs, we can form
the five combinations

gm(t) =
∑
j

Bmjqj(t) , (110)

which are independent, if we have at least five transducers. Multiplying
both sides of eq. (109) by Bmj and summing over j, we get

g̈m + ω2
t gm + α

∑
m′

∑
j

BmjBm′j ξ̈m′ =
1

mt

∑
j

Bmj(Fj + fj) . (111)

For a generic configuration of transducers, i.e. for Bmj generic, each gm(t)
is therefore coupled to all five variables ξm′(t). The advantage of the TIGA
configuration is that it satisfies

∑
j

BmjBm′j =
3
2π

δmm′ , (112)

and eqs. (108) and (111) become

ξ̈m + ω2
0ξm − (µω2

t α)gm =
1
M

(Fm − α
∑
j

Bmjfj) , (113)

g̈m + ω2
t gm +

3α

2π
ξ̈m =

1
mt

∑
j

Bmj(Fj + fj) . (114)

The crucial point is that in this configuration each gm couples only to the
mode ξm with the same value of m. Therefore, our original system with
ten coupled harmonic oscillators splits into five systems, each with only
two coupled oscillators, (ξm, gm). The variables gm are called the “mode
channels”. The inclusion of all forces, such as Nyquist forces, acting on the
system is necessary in order to compute the effect of noises on the system.
If instead we want to compute the response of the system to GWs, we can
simply set

Fm

M
=

1
2
χRḧm , (115)

as in eq. (35) (again, we suppress the label n in χn), and take Fj = fj = 0.
Equations (113) and (114) are then easily solved in Fourier space. Setting
ωt = ω0, we have

(−ω2 + ω2
0)ξ̃m(ω)− (µω2

t α)g̃m(ω) = −1
2
χRω2h̃m(ω) , (116)

(−ω2 + ω2
0)g̃m(ω)− 3α

2π
ω2ξ̃m(ω) = 0 , (117)
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which gives
g̃m(ω) = T (ω)h̃m(ω) , (118)

where the transfer function T (ω) is

T (ω) = −
(

3α

4π
χR

)
ω4

(ω2 − ω2
0)2 − 3α2

2π µω2
0ω

2

≡ −
(

3α

4π
χR

)
ω4

(ω2 − ω2
+)(ω2 − ω2

−)
, (119)

In the limit µ = mt/M � 1, we get

ω2
± ' ω2

0

1±
(

3α2µ

2π

)1/2
 . (120)

Observe that this transfer function is the same for all gm, independently of
m. The five modes of the sphere ξm combine with the five mode channels
gm to produce two quintuplets, degenerate in frequency, at ω = ω±, and
the value of hm is determined by the value of gm with the same m. For
each m, the relation between hm and gm is very similar to the relation
between the variables ξ0 and ξt of the system made by a cylindrical bar and
its transducer. The simplicity of this result makes the TIGA arrangement
particularly attractive.

Finally, observe that with the six transducer outputs we formed the five
mode channels given by eq. (110). We still have the possibility of forming
one more independent combination, that monitors the monopole mode l = 0
of the sphere. Recalling that the spherical harmonics Y00 is a constant, we
see that the matrix Bj ≡ Y00(θj , φj), analogous to the matrices Bmj defined
in eq. (103), is actually independent of j, so the monopole mode is simply

g00(t) =
∑
j

qj(t) . (121)

The monitoring of this mode can be used as a further veto that distinguishes
GWs from noise. More ambitiously, the monopole mode is excited by scalar
fields, such as those predicted in scalar-tensor generalizations of general
relativity, and therefore the monopole mode can be used to search for scalar
GWs.
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B Equations of motion

The resonant antenna (mass m1) and the secondary mass m2 (with m2 �
m1) form a system of two coupled harmonic oscillators (see fig. 26). The
oscillators are designed to have (when uncoupled) almost equal resonant fre-
quencies ω1 ' ω2. Mechanical dissipation is included in the model through a
dissipation constant γi (i = 1, 2) from which the energy decay time constant
τi = mi/γi, and mechanical quality factor Qi = ωiτi can be derived.

The equations that describe the dynamics of the mechanical system alone
can be derived from the Lagrangian function:

Lm =
1
2
m1ẋ

2
1 +

1
2
m2ẋ

2
2 −

1
2
m1ω

2
1x

2
1 −

1
2
m2ω

2
2 (x2 − x1)

2 (122)

together with a Dissipative function [70]:

Dm =
1
2

m1ẋ
2
1

τ1
+

1
2

m2 (ẋ2 − ẋ1)
2

τ2
(123)

To include in the model the dynamical interaction between the mechani-
cal resonators and the transducer, while still keeping the equations as simple
as possible, we shall make use of the fact that any configuration of the field
inside the resonator can be expressed as the superposition of the electro-
magnetic normal modes [71]: ~E(~r, t) = (ε0)−1/2∑ En(t) ~En(~r), ~H(~r, t) =
(µ0)−1/2∑Hn(t) ~Hn(~r), with the time–dependendent amplitudes12 En(t) ≡
(ε0)1/2

∫
~E · ~En dV , Hn(t) ≡ (µ0)1/2

∫
~H · ~Hn dV , and the orthonormality

conditions
∫

~En · ~Em dV =
∫

~Hn · ~Hm dV = δnm.
We shall consider an experimental situation in which an external source

at angular frequency ω excites the field in the cavity near one of its eigen-
frequencies ωa. In this case the field stored in the cavity essentially coin-
cides with the eigenmode at frequency ωa and we shall write: ~E(~r, t) '
(ε0)−1/2E(t) ~E0(~r) and ~H(~r, t) ' (µ0)−1/2H(t) ~H0(~r).

The time–dependent amplitudes of the electromagnetic field stored in
the re–entrant cavity behave like a simple harmonic oscillator with resonant
frequency ωa and energy decay time τ . This harmonic oscillator can be
described by e.m. terms in the Lagrangian and in the Dissipative function:

Lem =
1

2ω2
a

Ḣ2 − 1
2
H2 (124)

Dem =
1

2τω2
a

Ḣ2 (125)

The dynamical interaction between the e.m. oscillator and the mechan-
ical oscillators has to be included. In our model the transducer is coupled

12The choice of the normalization constants is such that H(t) and E(t) have the same
dimension. The total energy of the field is given by U = 1/2(H2 + E2).
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to the secondary mass, so the interaction term will have the form [72, 73]:

Lint = −1
2

C (x2 − x1)H2 (126)

The coupling constant C has dimensions [length]−1.
The equations of motion of the three–coupled–oscillators system are eas-

ily derived as

ẍ1 +
ẋ1

τ1
+ ω2

1x1 −
m2

m1

δ̇

τ2
− m2

m1
ω2

2δ −
1

2m1
CH2 =

f1

m1
(127)

δ̈ +
δ̇

τ2
+ ω2

2δ + ẍ1 +
1

2m2
CH2 =

f2

m2
(128)

Ḧ+
Ḣ
τ

+ ω2
aH (1 + C δ) = ω2

afs (129)

where δ = x2 − x1.
The r.h.s. of the above equations account for possible external interac-

tions (f1 might describe the gravitational interaction coupled to the primary
oscillator, f2 might describe the gravitational interaction coupled to the sec-
ondary oscillator and fs describes the external rf source at angular frequency
ωrf ). For vanishing coupling constant, C = 0, we recover the equations of
motion of the two coupled mechanical oscillators.

It is worth stressing again that whenever an interaction term is present
in the third (e.m.) equation (the interaction term must be present if we want
to have a signal from the transducer), terms of the same order of magnitude
' C are present in the mechanical equations. From this we can conclude
that the transducer plays an active role in determining the dynamics of
the system. At least one dynamical variable, describing the state of the
transducer, has to be coupled to some degree of freedom of the monitored
system (in this case the e.m. field amplitude H is coupled to the positions
x2−x1 of the vibrating masses). The same variable appears in the equations
of motion of the monitored system, and its contribution cannot, in general,
be neglected.

The explicit form of the coupling coefficien C can be deduced from eq.
(129). This equation describes a frequency modulated oscillator with time–
varying resonant frequency ω2(t) = ω2

a[1 + C δ(t)]. This term can be put in
the following form:

ω2 − ω2
a

ω2
a

' 2
ω − ωa

ωa
= C δ (130)

or
C =

2
ωa

∆ ω

∆ δ
(131)

The coupling coefficient depends only on the geometry of the transducer.
In the present design ωa/(2π) ' 5.5 × 109 Hz and 1/(2π) ∆ω/∆δ ' −1.4×
1014 Hz/m, so that C ' 5× 104.
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