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Abstract 
 

Tetrahedron coordinated sphalerite quaternary systems of type A1-xBxYyZ1-y consist 
exclusively of binary and ternary elemental tetrahedra, four of the first and four of the latter, 
each one with three configurations, i.e., a total of sixteen elemental tetrahedron configurations. 
These configurations cannot contain all four constituent atoms simultaneously in the same 
elemental tetrahedron; as a consequence we can consider each ternary tetrahedron composition 
as diluted in the quaternary compound. Thus, A1-xBxYyZ1-y extended x-ray absorption fine 
structure (EXAFS) data can be treated by using the strained tetrahedron model which, 
originally developed to deal with ternary systems, has already exhibited excellent agreement 
with numerous experimental data. To determine ion site occupation preferences of quaternary 
systems, we applied this model to our EXAFS data for Cd1-xMnxSeyTe1-y and to GaxIn1-xAsySb1-y 
data available in the literature, and compared them to those derived from ternary data for       
Cd1-xMnxTe and GaxIn1-xAs. In both sets, as the ternary is diluted in the quaternary system, a drift 
of the preference values of the pure ternary is observed. The present analysis of experimental 
reflectivity far infrared (FIR) phonon spectra of quaternary Cd1-xMnxSeyTe1-y crystals confirms 
the model predictions and leads to an interpretation of the experimental data for A1-xBxYyZ1-y 
quaternary systems. 
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1. Introduction 

In recent years, interest in multinary semiconductors has developed rapidly, moving from 
binary to ternary, then to quaternary systems. The evolution is due to the fact that an extra ion-
component leads to an additional degree of freedom in controlling material parameters. Indeed, 
cation substitution in a sublattice of a matrix of cations, and in the other sublattice an anion by 
another anion, causes continuous reconstruction of the electronic structure and the phonon 
spectra as the composition varies, leading to unique property variations. As observed, the ion 
substitution exhibits site occupation preferences (SOPs) linked to the thermodynamic properties 
of the creation of the quaternary system.  

We symbolise cations by A, B, C, anions by X, Y, Z, and the relative contents of site 
competing ions by x for cations by y for anions. We recall here that the elemental structure of a 
sphalerite (zincblende) binary AZ is a regular tetrahedron with alternatively at the centre an A 
(or a Z) ion, and at its four vertexes the other Z (or A) ion. Alloying two binary systems such as 
AZ + BZ (or AZ+AY) leads to the formation of different ternary A1-xBxZ (or AYyZ1-y) systems 
with A ions being progressively substituted by B ions (or Z by Y). Thus, one of the sublattices 
remains homogeneously mono-ion, while the other is modulated by the two competing ions. At 
the same time the tetrahedron is distorted, becoming a strained tetrahedron (see Fig.1 in [1]), 
whence the name of strained tetrahedron model introduced to treat these systems. Further we 
have the quaternary systems, either A1-xBxYyZ1-y  (2 cations +2 anions,  referred to as Q22), or 
A1-x-x’Bx’CxZ or AXyYy’Z1-y-y’ , systems with respectively 3 cations and 1 anion, or 1 cation and 3 
anions (we refer to them respectively as Q31 and Q13).  

We thus see that  configuration-structure-wise the quaternary systems are of two types: the 
first are the quaternaries of the unbalanced, truly quaternary type with a 3:1 or 1:3 cation:anion 
ratio, A1-x-x’Bx’CxZ or AXyYy’Z1-y-y’. Here, of the possible fifteen elemental tetrahedron 
configurations, ion-occupation-wise, three are binary, nine ternary, and three quaternary, as the 
elementary tetrahedron contains respectively two, three, and four different ions. We shall refer 
to them respectively as Q31 and Q13 systems. The other type of quaternary is the balanced type, 
with 2 cations and 2 anions, type A1-xBxYyZ1-y, and can be considered as pseudo-quaternary 
because, of the possible sixteen tetrahedron configurations, ion-occupation-wise, four are binary 
and twelve ternary, while none of their sphalerite tetrahedron configurations can canonically be 
quaternary, i.e., contain four distinct types of ions per tetrahedron (which would imply an 

antisite occupation point defect). This means that we can consider each ternary constituent with 
its tetrahedron configuration as being dissolved in the quaternary medium, with A1-xBxYyZ1-y 
consisting of A1-xBxY or AYyZ1-y, A1-xBxZ or BYyZ1-y and we shall refer to such a quaternary 
system as a Q22 alloy.  

Although all the types of alloys introduced above, e.g., Q31, Q13 and Q22, are usually 
chemically referred to as quaternaries, there is a basic structural difference between the pseudo 
and the truly quaternary systems. Indeed, while in a truly quaternary system one of its 
sublattices has a homogeneously mono-ionic population, the complementary sublattice is 
modulated by the three ion species competing for each site. This leads to a crystal structure with 
alternatively a homogenous ion shell, followed by a heterogeneous shell with site-competing 
ions. On the other hand, in pseudo-quaternaries the sublattices, and hence the successive ion 
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shells, are all heterogeneous, each shell composed alternatively of two anions or of two cations, 
competing with each other for site occupation in that shell. While the denomination is a 
consequence of the configuration limitations, it is the existence or not of alternative 
homogeneous\inhomogeneous shell structures that strongly affects the properties of the two 
classes of quaternaries. 

In the present article we do not address the two unbalanced truly quaternary types, but 
concentrate exclusively on the balanced pseudo-quaternary Q22 type of system. Indeed, the 
strained tetrahedron model designed to treat ternary systems is suitable for interpreting A1-

xBxYyZ1-y extended x-ray absorption fine structure (EXAFS) data. Thus, the analysis of the 
constituent ternaries is at the basis of understanding pseudo-quaternary system behaviour and, in 
particular, their cation-anion SOPs. 

The local structures of multinary systems can be investigated using several different 
techniques, such as neutron scattering, EXAFS or far infrared (FIR) vibrational spectroscopy. 
Particularly the last two methods yield information on ternary tetrahedron coordinated systems, 
A1-xBxZ and AYyZ1-y type, as well as on both unbalanced quaternary systems A1-x-x’Bx’CxZ or 
AXyYy’Z1-y-y’ (such as CdHgMnTe [2], ZnCdHgTe [3]) and balanced quaternaries of type A1-

xBxYyZ1-y (such as Cd1-xMnxSeyTe1-y [4], GaxIn1-xAsySb1-y [5], Zn1-xCdxSeyTe1-y [6]). However, 
all the methods allow one to obtain information about the real local structure and the internal 
interaction mechanisms of the investigated alloys.  

In the late 1990s [7] we analysed the average-pair distributions from EXAFS quaternary 
data in both Cd1-xMnxSeyTe1-y [4] and GaxIn1-xAsySb1-y [5]. In order to quantify ion SOPs, we 
developed an ad hoc semi-empirical model for these systems [7]. However, the strained 
tetrahedron model may be applied with success also to pseudo-quaternary materials such as 
these two systems. The estimations obtained by both methods are compared here. 

The correlation between vibration spectra and the elemental tetrahedron structure of 
zincblende ternary systems was first analysed by Verleur and Barker [8,9]. For GaAsyP1-y they 
considered the contributions of the five basic elemental tetrahedra to the vibration spectra. 
However, their one-parameter β model [8,9] is insufficient [10] to describe the configuration 
populations of FIR data of ternary systems in which SOPs are reported. As a consequence, to 
interpret FIR data we introduced an ad hoc model [11,12], derived from the strained tetrahedron 
model previously used to interpret EXAFS data [13-15]. In both models, a phonon mode 
observed in the reflectivity spectra [11,12] as an individual line from a lattice anion-cation pair 
can be associated with one of the possible five tetrahedron configurations, {Tk}k=0,4 for ternary 
A1-xBxZ or AYyZ1-y systems (see Fig.1 in ref. [13, 14]).  

In GaAsyP1-y [8] and CdSeyTe1-y [9], the observed deviation from linearity of the 
experimental sum of oscillation strength vs. composition has been ascribed to a non-random 
distribution of anions within the lattice, i.e., a SOP distribution. This was the first well-
documented information about SOPs from next nearest-neighbours (NNN) for ternary III-V and 
II-VI alloys.  Additional EXAFS studies have been performed in CdHgTe [15], CdMnTe [16], 
CdZnTe [17], GaAlN [18], GaAsP [19], GaInAs [20], HgMnTe [15], HgZnTe [21], ZnMnS [22-
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24], ZnMnSe [25,26] and ZnMnTe [27], while FIR spectra have been collected for CdHgTe[28], 
CdSeTe [29] and CdZnTe [30]. All these alloys clearly exhibit occupation preferences. 

Using the strained tetrahedron model, in the first part of this paper, we analyse the EXAFS 
data of two sets of Cd1-xMnxSeyTe1-y [4] and one set of Ga1-xInxAsySb1-y [5]. SOP-coefficients 
were obtained via a quantitative evaluation of the respective constituent tetrahedron 
configurations through the values of site occupation preference. In the second part we present 
and discuss far IR CdMnSeTe phonon spectrum, using the preference Wk-coefficient values [1] 

obtained by analysis of the corresponding EXAFS data [4] .  

While writing this contribution, experimental work performed by Romcevic et al. [31] based 
on FIR reflectivity and Raman spectra of Cd1-xMnxSeyTe1-y was published. These results were 
considered and are addressed in Section-6  of this paper. 

2. Theoretical approach 
Sphalerite  canonical  (i.e., without  impurities,  point  defects  and  antisites)  quaternary  

A1-xBxYyZ1-y systems with 2-cations+2-anions can be viewed as composed of tetrahedron 
configurations 

ji

kkcT
,

4, !  with a c-ion at the centre, c= {A, B, Y, Z} and k and 4-k ions at the 
vertexes, respectively (Y,Z) for c= A or B, and (B,A) for c= Y or Z. The constituent elemental 
configurations are thus sixteen: four binary configurations (with two ion species each) AZ, AY, 
BZ, BY and twelve ternary configurations (with three ion species each), { ZY
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T
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kkZ
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}c=A,B,Y,Z ≡1 (see [1]). The respective ternary probabilities of kc
T in A1-xBxYyZ1-y are  

 { ηc(x,y) }c=A,B,Y,Z ={½(1-x), ½x, ½y, ½(1-y)}     respectively      (with Σc ηc(x,y) ≡1). (1)  

In a random distribution, the site filling (of k B ions in a shell with N sites [4 in the 1st shell, 
and 12 in the 2nd shell], from relative contents x and 1-x) is precisely described by the Bernoulli 
binomials  

 {pk[N](x)=N!/[k!(N-k)!]xk(1-x)N-k }k=0,N (2) 

with  Σ k=0,N {pk[N](x) }≡1 and Σ k=0,N {k pk[N] (x) }≡Nx. 

Whenever the distribution is not random, the preference weight coefficients kc
W are applied 

to the Bernoulli binomials [1], and the corresponding ternary configuration probability is 
depressed with respect to the random case ( kc

W ≡1), each time kc
W ≠1, by a factor 

 
kc
C =min[

kc
W , 1, (4-k 

kc
W )/(4-k)] ≤1 (see [1]) (3) 

This is due to the unbalanced quest of the ions in competition leading to a scarcity of one of the 
two contending ions with respect to the other. The ions in excess go to enhance the 
corresponding binary populations, AZ for kZ

W <1 and for AW k <1, BZ for kZ
W >1 and kB

W <1, 
AY for kY

W <1 and AW k >1, BY for kB
W >1 and kY

W >1. This fully defines for A1-xBxYyZ1-y the 
probabilities { kc

P (x,y)}c=A,B,Y,Z; k=0,4 for all twelve ternary configurations { kc
T }c=A,B,Y,Z; k=1,3, with 
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the variable cv(x,y) in the Bernoulli binomial defined for c=Y or c=Z as cv(x,y)=x, while for  
c=A or c=B, it is cv(x,y)=y. 

{
kc
P  (x,y) = ηc(x,y) kc

C  pk
[4][ cv(x,y)] }k=1,3  for ternary Tk 

with {
kc
C  (Wk)}k=1,3 , corrective weight factors imposed by the stoichiometry of x or y 

0≤ {
kc
C =min[Wk,1,(4-kWk)/(4-k)] }k=1,3 ≤ 1 

Wk<1 enhances binary AZ populations, while Wk>1 that of binary BZ, i.e., 

0
P

c
(x,y) =ηc(x,y)  { p0

[4](x) +Σk=1,3 [ max(0, 1-Wk) pk
[4] (x) ] }  for binary AZ configuration T0 

4
P

c
(x,y) =ηc(x,y)  { p4

[4](x) +Σk=1,3[ max(0, k(Wk-1)/(4-k)) pk(x) ] } for binary BZ configuration T4 

 (4) 

In the random case, when {Wk≡1 }k=1,3 , { kc
P  [4](x,y) →ηc(x,y)  pk[ cv(x,y)] }k=0,4. 

Following the evolution of SOP values of a pure ternary (ternary(as T)) as it is being diluted in 
a pseudo-quaternary system (ternary(in Q)) gives information on the system thermodynamics. 

The above considerations are valid for zincblende structures, but can also be extended to the 
tetrahedron coordinated wurzite (hexagonal) structures when the predominant contribution to 
physical properties comes from NN and NNN atomic neighbours. Thus the approach can be 
applied to analysis of A1-xBxYyZ1-y EXAFS data of both zincblende and wurzite structures. 

3. EXAFS data analysis of < CN
j

i (x)> and < dji (x)> 
EXAFS (see theoretical considerations in ref.s [32,33]) is one of the most widespread 

investigation methods used to characterise the local structures of an ordered system. EXAFS 
analysis is usually performed by selecting the x-ray energy at the K-edge value of the atom 
under investigation or, with some limitations, for high-Z elements at the energy of the L-edge 
value. The standard EXAFS equation, formulated in the generally accepted short-range single-
electron theory [34] expressed in the  k-vector  space, is  

Π(k) = 1/k Σ Aj(k) sin[Νj(k)] 
where Νj(k) is the total phase of electron scattering in the k-vector space, with subscript j 
summed over all coordinate shells, while Aj(k), the EXAFS amplitude, is given by  

Aj(k)= Nj/Rj
2 |fj(Β,k)| exp(-2Rj/δ) exp(-2Φj

2k2) , (5) 
where fj(Β,k) is the back scattering amplitude from each of the Nj neighbouring atoms of the jth 
type situated at position Rj , and Φj is the Debye-Waller factor that accounts for thermal 
vibrations of the atomic bonding. Finally, the term exp(-2Rj/ δ) accounts for inelastic losses in 
the scattering process, with δ the attenuation factor. 

The formula bears information on the neighbouring ions of the photoexcited ion. Apart 
from the complexity of the expression, it is easily seen that the amplitude of the signal is 
proportional to the number of neighbours in the successive shells. Due to the large tuning of the 
electron wavelength because of scattering losses, the materials are commonly studied through 
relations between the c-atom and its nearest-neighbours (NN) and next nearest-neighbours 
(NNN), and only in selected cases for next next nearest-neighbours (NNNN). 

For the quaternary four constituent ions c={A, B, Y, Z} of the sample under investigation 
(of relative content x), this reveals the average (over the sample and over all configurations) 
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local structure around this c-ion, of 1) the relative number of ions of a given type around it, i.e., 
ion pairs or coordination numbers (CN), < CN

j

c (x)> ; 2) inter-ion distance < djc (x)> between the 
selected c-ion and the NN or NNN j-ions around it. We prefer to use the mnemonic symbolism 
to the traditional Ri and Ni currently used in EXAFS analysis and cited in the previous 
paragraph.  

 
The probability kc

P (x,y) of an NN ion-pair ij= {AY, AZ, BY, BZ} is the product of the 
corresponding cη  times the configuration probability (Eqs. 1 and 3). As an example, for a 
substituting ion at the vertex, we have, 

for ZB from TZ : Zη(y) k kZ
W  pk

[4](x) 
while for an ion being substituted: 

for AZ from AT : Aη(x) (4-k A
W
k ) pk

[4](y), or  
(the full set of equations is given in Table-A1 of the appendix). 

The NN average coordination numbers < CN
j

i (x)> is a count of pair numbers and, though 
configuration independent, EXAFS may discriminate (due to the K-edge selectivity) an ij-pair 
depending on whether it comes from the configuration Ti or Tj . Because they are not 
correlated to each other, we have to distinguish between CNj

i and CNi

j . From the expressions 
for the ternary such as <AZCN>, <BZCN>, <AZd>, <BZd> taken from [1], one can write for each 
NN dipole<CN(x,y)> of the pseudo-quaternary A1-xBxYyZ1-y four pairs of equations. For an ion being 
substituted we have: 

< CN
Z

A
(y)> =Σk=0,3[(4-k

kA
W )pk

[4](y)] = 4 - < CN
Y

A
(y)> 

(the full set of equations is reported in Table-A2 of the appendix). A similar set of equations is 
obtained for the average NN inter-ion distances <ijd> [1]. These depend on the configuration 
they belong to; hence the stoichiometry has to be accounted for using the c Ck coefficients 
(Eq.1) instead of the kc

W coefficients. Whence, as for the CNv

c ’s, one has for the dvc ’s, for an 
ion being substituted: 

< d
Z

A
(x,y)>= 

{(1-x) Σk=0,3{ k

Z

A
d (4-k

kA
C ) +4

0
d

AZ

A
max(0,1-

kA
W ) +4

4
d

AZ

A
max[0,(k

kA
W -1)/(4-k)} pk

[4](y)} 

/ { (1-x) Σk=0,3{(4-k
kA
C ) +4 max(0,1-

kA
W ) +4 max[0, (k

kA
W -1)/(4-k)]} pk

[4](y) } 

(the full set of equations is reported in the Table-A3 of the Appendix) 
 

4. Quaternary EXAFS data interpretation 
As mentioned in the introduction, a rough three-parameter semi-empiric approximation was 

applied to fit the reported coordination number < CN
j

c (x)> preferences [7] of two sets of 
EXAFS data of the  A1-xBxYyZ1-y  type  quaternary systems, namely GaxIn1-xAsySb1-y [5] and 
Cd1-xMnxSeyTe1-y [4]. The GaInAsSb structure remains mono-phase zincblende structured at all 
compositions, i.e., x∈[0;1] and y∈[0;1], while CdMnTeSe does so when simultaneously x<0.2 
and y<0.2. We recall that in this model we attribute weight coefficient factors wk to the 
Bernoulli (random distribution) binomials. The result, for GaInAsSb, gave {wk}k=1,3={2.19, 
1.07, 1.64} (see Table-1) and, for CdMnTeSe, {wk}k=1,3={1.9, 1.6, 1.3}, see Table-2. (We recall 
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here that for a random site occupation without preferences {wk}k=1,3≡1.) The semi-empiric 
approximation returns an excellent fit to the experimental results for both quaternary systems 
[7]. However, following the introduction of the strained tetrahedron model [1] it was established 
that the elemental tetrahedron distribution (with four NN sites to be filled) in the sphalerite and 
in the wurzite crystal structures (limited to the first two shells, NN and NNN) have coefficients  

1) expressly bound by two extreme values {0≤wk≤4/k},  

2) and departure from the random distribution leading to an automatic decrease in the 
corresponding tetrahedron population (see ref. [1]).  

Thus, the semi-empiric approximation gives a value of w3=1.64 for GaInAsSb, which is 
beyond the allowed range (w3≤4/3), in violation of the physical condition of coordination 
conservation. However, in both materials the T3 configuration is evanescent (see Table-2) 
because, when one of the competing ions through an extreme preference grabs all four available 
tetrahedron sites, the other ion type has no sites available to form a ternary, and only binary 
systems are possible. We have to underline that while the coefficients wk used in the semi-
empirical treatment are just numerical parameters, in the strained tetrahedron model, Wk are 
physical values related to the number of available occupation sites. We will now reinterpret the 
data of these alloys (see ref. [13]) in the framework of the strained-tetrahedron model [1,13,14] 
to evaluate the improvement  with respect to previous estimations. 

4.1. GaxIn1-xAsySb1-y analysis 
Islam and Bunker [5] investigated the quaternary GaxIn1-xAsySb1-y which crystallises in the 

tetrahedron coordinated zincblende monophase structure for all x and y compositions. They 
reported an EXAFS investigation at the As K-edge for eight different compositions: five with 
yAs=0.05, xGa={0.2, 0.5, 0.65, 0.8, 0.95} and three with yAs=0.10, xGa={0.1, 0.5, 0.9}. Applying 
the strained tetrahedron model to this set of data, one may obtain both preferences and inter-ion 
distances for a ternary GaInAs(in Q) in a quaternary medium (see Table-1).  

Previously, Mikkelson and Boyce [20] studied, using the As K-edge, ternary Ga1-xInxAs as 
a pure ternary GaIn

kkAs
T

,

4, !  system. The deconvolution of his results returns SOP values {W1= 1.05, 
W2= 0.25, W3= 0.58}, see ref. [1]. The GaInAs(as T) k

Ga

As
d and k

In

As
d values are also reported in 

Table-1 [1].  
Comparing the values of the GaInAs(as T) with those of the GaInAs(in Q) obtained by the 

deconvolution of a quaternary [5] we recognised the evolution of the preferences of this ternary 
as a component of a quaternary system. Moreover, we have to underline here also that Islam’s 
data refer to a quaternary medium heavily Sb-loaded (ySb=(1-yAs)≥0.90, since yAs≤0.10). For the 
sake of clarity, the model-derived k

Ga

As
d and k

In

As
d  inter-ion distances of the GaInAs(in Q) are 

reported with those obtained for GaInAs(as T) [1]. Comparison of Islam and Bunker [5] 
experimental NNN average coordination number values and their two best fit curves (as a 
function of “x”) are given in Fig.1. Fit was performed using both 

a)  the semi-empirical approach (dashed curve) and  
b)  the strained-tetrahedron model (full curve).  

The approaches show good agreement with experimental data, but in Fig.1 while curve b 
remains throughout with CN≤4, curve a violates the CN extreme condition, exceeding the limit 
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of CN=4. The slight deviation of the results for yAs=0.10 from those of the five for yAs=0.05 is to 
be attributed to the fact that the y=0.10-set is a fit based on only three points and three 
parameters (W1, W2, W3), while the y=0.05-set is based on five points and is a true best fit, free 
of the rigidity that is liable to reproduce local point value uncertainties. Thus, we can claim that 
in the range <0.05 – 0.10> SOP coefficients are stationary and are those labelled as both 
together. These values are quite different from those of the yAs=1 values of the pure ternary 
obtained by Mikkelson and Boyce (see bottom row). The discrepancy is addressed in the 
discussion section. 

4.2 Cd1-xMnxSeyTe1-y analysis 
The Q22 system Cd1-xMnxSeyTe1-y has a complex phase transition diagram [35]; when 

simultaneously both x<0.2 and y<0.2, the structure is mono phase zincblende. Kisiel et al. [4] 
investigated four samples: three Cd1-xMnxSe0.1Te0.9 with xMn={0.05, 0.10, 0.15), and one 
Cd0.8Mn0.2Se0.2Te0.8 , and reported EXAFS results for nearest-neighbours [4] both of <CN> 
coordination numbers and of <d> distances. Analysis of quaternary NN Cd1-xMnxSeyTe1-y data 
(at the K-edges of both Mn and of Se) yields information on both TeSe

kkMn
T

,

4, !  and SeMn

kkSe
T

,

4, !  
configurations. The peculiarity of the EXAFS analysis is that the method selects, at the Mn 
K-edge and Se K-edge, the MnSeyTe1-y (in Q) or Cd1-xMnxSe (in Q) components in the quaternary 
environment respectively. Applying the strained tetrahedron model [1,13] to the reported data 
(24 experimental values), we obtain the following SOP Ck-coefficient values: a) Cd1-xMnxSe (in 
Q), {Ck}={0.54,0,0};  b) Cd1-xMnxTe (in Q) , {Ck}={0.26,0,0};  while  those  of  a  pure ternary 
CdMnTe(as T)

 [16]  are {Ck}={0.68, 0.67,0};  c) CdSeyTe1-y (in Q), {Ck}={0.54,0,0};  
d) MnSeyTe1-y (in Q, {Ck}={0.26,0,0.20} (Tab.2). The corresponding coordination number 
curves are given in Fig.2. 

5. Analysis of Cd1-xMnxSeyTe1-y phonon spectra 

To check the hypotheses that a pseudo-quaternary system like Cd1-xMnxSeyTe1-y behaves as 
a linear combination of the contributions of its related four ternary components, we measured 
the  FIR  spectra, i.e.,  the  phonon  spectra  of  each  of  the ternary constituent systems. The 
Cd1-xMnxSeyTe1-y samples are those previously investigated by EXAFS [4].  

Actually, a pseudo-quaternary can be viewed as a combination of ternaries, so its phonon 
spectrum should exhibit ternary behaviour as described in ref.s [11,12]. Similarly to the FIR 
spectrum of a ternary, the expression for the dielectric function of an A1-xBxYyZ1-y quaternary 
system is 

ε(ω , x , y) = ε∞+Σj=1,n{Sj ω
2

j /[(ω2-ω2
j) +i ωΓj] = ε1(ω , x , y) + i ε2(ω , x , y) (6) 

where {ωj, Γj, and Sj} are, respectively, the frequency, the line half-width and the oscillator 
strength  of  the  Lorentzian line components of the spectrum. The FIR phonon spectrum of an 
A1-xBxZ ternary can be written as the superposition of the contributions of its iZ-dipoles (i=A or 
i=B) from the respective five configurations: one phonon from each of the two binary 
configurations ZT0B and ZT4B, and a phonon from each of the AZ and BZ dipoles from each of 
the three ternary configurations ZT1B, ZT2B, ZT3B, i.e., a total of eight phonons in two mode-bands. 
The oscillator strength of each phonon is determined by the configuration probabilities Pk(x)’s 
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defined by Eq.(4), which takes into account the preferences and the specific oscillator strengths 
of the two AZ and BZ binary systems. The expression for ε2(ω,x) is given in the appendix 
(Eq.6).  
 

5.1 Experimental investigation of  FIR reflectivity 
The quaternary  CdMnSeTe  crystals,  previously  investigated  by  EXAFS [4],  were 

investigated  here  by  means  of  IR reflectivity,  i.e.,  one  Cd0.8Mn0.2Se0.2Te0.8  and two  
Cd1-xMnxSe0.1Te0.9 with xMn={0.05, 0.15). The crystals were grown by the Bridgman method [36] 

in mono-phase zincblende crystals (all crystals fulfil simultaneously x≤0.2 and y≤0.2) [35]. For 
these experiments, the crystal samples were cut in sizes ≈ 0.5 × 0.5 × 0.2 cm3, and their surfaces 
prepared for the optical measurements.  

The IR reflectivity measurements were performed at the DAΦNE-light laboratory at Frascati 
[37] using a BRUKER Equinox 55 FT-IR interferometer modified to collect spectra under 
vacuum, a liquid helium bolometer of IRLABS and a Hg-lamp as light source. During the 
experiments the vacuum pressure was kept at <10-3 mbar. A JANIS helium-cooled cryostat was 
used for measurements at low temperature in the range 10-300 K. The reflectivity was measured 
using a gold film evaporated onto the surface of the investigated samples as reference. This 
method enabled us to measure the reflectivity coefficient with an accuracy of about 1%. The 
spectral resolution was 2 cm-1 and we usually collected 200 scans for each T within  <1000 s of 
acquisition time.  

The FIR reflectivity phonon spectrum of each single crystal was observed in the 20-700 cm-1 
frequency range, both at room temperature and at a low temperature, between 10 and 30 K. All 
reflectivity spectra are shown in Fig.3A. From each spectrum, using the Kramers-Kronig 
transformations, and being careful of the finite experimental ω-range, we obtained the 
corresponding real (ε1) and imaginary (ε2) parts of the dielectric constant ε  (Eq.6). ε2 spectra are 
shown in Fig.3B where the maxima of each oscillator line are directly visible in each spectrum. 
We assumed either Gaussian or Lorentzian lines, both characterised by the three parameters {ωj, 
Γj, and Aj}. The Microsoft Office Excel 2003 Solver program was used to fit the analysed 
functions, by minimising the sum of quadratic deviations.  

As is evident in Fig.3B the CdTe-dipole-related mode band at about 140-144 cm-1 is the 
dominant one, but at least three bands related to lighter dipole pairs, namely CdSe, MnTe and 
MnSe, can be detected at about 170-185 , 185-190 and 205-210 cm-1, respectively (see 
Fig.3B.a). Frequencies are affected by a red shift of up to 6 cm-1 as the temperature is increased 
from low to room. 

5.2 FIR spectrum analysis 

The ε2 Kramers-Kronig transformations of the observed reflectivity phonon spectra are the 
envelops of the phonon lines. According to our hypothesis each line is linked to an anion-cation 
dipole from each of the five tetrahedron configurations of the four ternary components of the 
quaternary system. Each ternary configuration contains two bands, each correlated to one of the 
two different dipole types vibrating in the ternary tetrahedron, leading to potentially four phonon 
lines. The expression of the overall oscillator strength of a ternary spectrum is given in (Eq.6) 
[11,12] and is the sum of the contributions of each of its eight phonon lines, linked to one of the 
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two kinds of its cation-anion dipole oscillators. Besides its frequency, each oscillator is 
characterised by two parameters, the half-width and the specific oscillator strength. The line 
amplitude is the product of several factors, such as the dipole specific binary oscillator strength, 
the dipole multiplicity of that configuration, and the probability Pk of the configuration (see 
Eq.4). Because the oscillator strength of a pseudo-quaternary is the sum of the four spectra of 
the ternary components, 32 lines are expected. Each line belongs to a phonon mode-band of a 
given cation-anion dipole. 

The ab initio analysis consisted in attempting to fit all measured FIR spectra, with 32 plus 
4 lines (to take into account additional vibrations such as those of point defects or impurities), 
each one defined by its three parameters (ωi , Γi , Ai ) and with the only constraint that the set 
{ωi}i=1,36 be a monotonous increasing set, with ωi - ωi-1 >2 cm-1 (to account for the experimental 
resolution). With such a large number of parameters, the fits return a good agreement with 
experimental data (an illustration is given in Fig.4a). Important to note is that the fits return nil 
amplitudes for several lines, i.e., the corresponding phonon modes are not detected. Indeed, this 
fitting method does not allow a reliable identification of the lines. As a consequence we 
reconsider the analysis of the zincblende A1-xBxYyZ1-y systems with our model. 

6. Discussion 

To verify the hypothesis that a pseudo-quaternary A1-xBxYyZ1-y system is really composed 
of only binary and ternary tetrahedron configurations, we try to fit the spectra using the 
preference Ck-coefficients as derived in the CdMnTeSe compound by EXAFS analysis [4] (Eqs. 
3-5, and Table 2). Within this model each line is correlated to a dipole mode of a given 
configuration and the intensities explicitly reflect the respective ion contents, the configuration 
probabilities including preferences, the configuration multiplicity and the dipole oscillator 
strength. For the 32 lines previously defined, the frequencies are set to respect the frequency 
hierarchy within each mode band (ordered inversely to the configuration mass). The frequency 
sequences of the two parallel hierarchy relations are given in  Table A4 of the appendix. Again 
to fulfil the experimental resolution, we impose within each sequence that (ωi - ωi-1)≥2 cm-1.  

Seven tetrahedron configurations { TeSe

Mn
T

,

2,2
, CdMn

Se
T

,

2,2
, CdMn

Se
T

,

1,3
, TeSe

Cd
T

,

2,2

TeSe

Cd
T

,

1,3
, CdMn

Te
T

,

2,2
, 

CdMn

Te
T

,

1,3
} turn out to be negligible due to the extreme preferences observed, as quantified by the 

Ck values derived from EXAFS data analysis. This means that fourteen frequencies have to be 
neglected (see the 14 shaded-grey frequencies in Table A4 of the appendix). Hence we expect 
that:  

1) the intensities of the four CdTeω, MnTeω, CdSeω, MnSeω lines from the binary configurations 
will be enhanced with respect to their random values;  

2) only eight lines: TeSe

SeCd

,

3,11:
! , TeSe

TeCd

,

3,13:
! , CdMn

MnSe

,

3,11:
! , CdMn

CdSe

,

3,13:
! , CdMn

CdTe

,

3,13:
! , 

CdMn

MnTe

,

3,11:
! , TeSe

SeMn

,

3,11:
! , TeSe

TeMn

,

3,13:
!  will be detectable,  

3) Due to the low values of relative contents  x≤0.15 and y≤0.2, the two lines TeSe

SeMn

,

1,33:
!  

and TeSe

TeMn

,

1,31:
!  should have low intensities, which are hard to detect. 

Then, we proceed to check the presence of extreme preferences in the pseudo-quaternary 
CdMnTeSe. For a quaternary A1-xBxYyZ1-y tetrahedron configuration with an “i” centred ion and 
“m” “j” vertex ions, we write i

jΓm for the half width and i
jAm for the amplitude. In agreement 

with refs. [11,12] we consider {i
jΓm}m=1,4=i

jΓ, and {i
jAm}m=1,4 = i

jA. Finally we consider the eight 
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parameters A
YΓ, A

ZΓ, B
YΓ, 

B
ZΓ, Y

AΓ, Y
BΓ, Z

AΓ, Z
BΓ and the eight parameters A

YA, A
ZA, B

YA, B
ZA, 

Y
AA,�  Y

BA, Z
AA, Z

BA, e.g., one parameter-pair per a given mode-band ion-pair dipole. We refer 
to such an approximation as the 8+8 approximation, with the corresponding deconvolution 
illustrated in  Fig.4b.  

In a quaternary system, an ij-ion-pair dipole occurs in two distinct ternaries. We thus 
investigate an even more stringent approximation in which we consider that i

jΓ= j
iΓ= 

ijΓ, i.e., 4 
parameters AYΓ, AZΓ, BYΓ, BZΓ, and i

jA= j
iA= 

ijA, i.e., another 4 parameters AYA, AZA, BYA, BZA so 
that the model becomes a 4+4 approximation, with the corresponding deconvolution illustrated 
in Fig.4c. Comparing Figs.4b and 4c, both approximations are in good agreement with spectral 
shapes. The respective normalised sum-quadratic-deviation “variances (s2)” show that both the 
8+8 and the 4+4 approximations are consistent and indeed equivalent because for the spectral 
signal in the ω-range [100-240] cm-1 the relative s2 is between <0.5-2.8>% for the 4+4 
approximations, while it is confined between <0.4-1.4>% for the 8+8 approximations (see 
Table-3). The result confirms that in a quaternary system, to a first approximation, and as has 
been shown in ternary systems, the line shape and the specific oscillator strength are 
characteristic of the ion pair of the emitting dipole and are independent of the multiplicity of the 
emitting configuration. Moreover, it appears that in pseudo-quaternary systems, the phonon 
oscillator strength from an AZ-dipole remains invariant, independently of the corresponding 
configuration of the ternary system A1-xBxZ, i.e., with A at the tetrahedron centre and Z at a 
vertex, or as in AYyZ1-y i.e., with Z at the tetrahedron centre and A at a vertex. In other words it 
is independent of the respective centre-vertex positions of the ions within the tetrahedron.  

Romcevic et al. [31] observes in the far-infrared Cd1-xMnxSeyTe1-y spectra three TO-modes 
at about 140 cm-1  (CdTe), 170 cm-1  (CdSe related) and 205 cm-1  (MnTe related), while in the 
Raman spectra only the first two modes. In our FIR spectra, we do identify three bands, but 
assign them to four overlapped modes, extending between the two extreme CdTeω<139.5-145.6> and 
MnSeω<205-220>

  frequency modes, with the intermediate CdSeω<165-173.5>
   mode and the additional 

MnTeω<185.7-191.2>
 frequency. The existence of such bands, with their oscillator strengths weighted 

by their probabilities (<72-85.5>% for CdTe, <8.5-18>% for CdSe, <4.5-13.5>% for MnTe and 
<0.5-2>% MnSe), may support a line overlap with a consequent overall envelop clearly detected 
in our data (see Fig.3B.a). 

 

7. Conclusion 

Three of the four CdMnSeTe samples investigated by EXAFS measurements have been 
investigated with FIR reflectivity. The main results addressed by the analysis presented in this 
paper are:  
• The strained tetrahedron model, originally applied to ternary tetrahedron coordinated 

systems,  can  be applied with success also to interpret pseudo quaternary systems of type 
A1-xBxYyZ1-y. 

• Comparison between the semi-empirical approach and the strained tetrahedron models 
applied to the analysis of pseudo-quaternary shows that both are reliable models and their 
best fit curves reproduce the EXAFS experimental data at room temperature within the 
experimental error bars. 
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• Systems with a pseudo-quaternary zincblende structure can be described by a superposition 
of binary and ternary elemental tetrahedrons.  

The strained tetrahedron model has also been applied to analyse and interpret the FIR 
phonon spectra of quaternary Cd1-xMnxSeyTe1-y  . 

• To a first approximation, both line shapes and intensities in pseudo-quaternary and in ternary 
systems are determined by the cation-anion dipole pair, and are unaffected by the centre-
vertex position of the dipole within the tetrahedron configuration. Indeed, observing the 
best-fit results (Table-3) of approximations 8+8 vs. 4+4, on the one hand, as expected, 
confirms the better convergence with 8+8 compared to that with fewer parameters 4+4, 
while on the other hand the closeness of the returned s2

8+8 and s2
4+4 , s2 values speaks in 

favour of our  assumption that the two phonons emitted by a  dipole Z
A from the ternary 

AxB1-xZ and by A
Z from the complementary AYyZ1-y, are with a good approximation equal. 

• Since FIR spectra show a trend vs. temperature of the molecular vibrations, an EXAFS 
analysis vs. T could be interesting, in particular for the analysis of the Debye-Waller 
parameters in these materials. 

• EXAFS analysis and FIR phonon spectra of pseudo-quaternary systems indicated that they 
can be described by a linear superposition of the contributions of the four ternary 
components, and the strained tetrahedron model, originally designed to model ternary 
systems, can also be applied with success to these compounds. Preferences in quaternary 
systems are quantified by coefficients; when the relative contents change, so do preference 
values (see preference coefficients for GaxIn1-xAs(as T) in which the second shell ions around 
an As-anion are all As-anions, while those in GaxIn1-xAs0.05Sb0.95 of GaxIn1-xAs(in Q) in which 
the second shell ions around an As-anion are almost all Sb-anions).  

• The evolution of the SOP-coefficients, as a ternary is progressively diluted within the 
pseudo-quaternary, may be considered as a valuable index of the thermodynamic evolution 
of the system. Indeed, the heterogeneous presence of competing ions in the NNN shell 
profoundly modifies the SOPs with respect to the corresponding pure ternary (which has a 
perfectly homogeneous NNN shell composition). 

• A true-quaternary system is characterised by three ions competing for site occupation in a 
shell bounded on both sides by shells of the complementary sublattice with homogeneous 
mono-ions! The pseudo-quaternary system is conditioned by site occupation competition in 
both the cation and the  anion  sublattices, i.e., all shells. Whence, in a pseudo-quaternary 
system Q22 preferences are conditioned by relative concentrations; in a true-quaternary 
system, Q31 and Q13 are not. 

Several investigations have shown that most semiconductors exhibit SOPs. Through 
analysis of these data, quantitative preference coefficient values can be reliably obtained using 
different models. Among them, the strained tetrahedron model has been applied with good 
agreement to both EXAFS data [1,13]  and FIR spectra [11,12]  of sphalerite ternary A1-xBxZ 
and AYyZ1-y, and now to pseudo-quaternary A1-xBxYyZ1-y (2-cation +2-anion) systems. With 
some limitations, it turns out to be successful also in the interpretation of wurzite [13] and 
intermetallic M3(XX’) [14] systems, returning a quantitative evaluation of the SOPs.  

In many semiconductors, SOPs return extreme values. Such  behaviour indicates that a 
ternary filling of one (sometimes two of the three) elemental configuration does not occur. This 
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seems to be related  to the  thermodynamic creation affinity of cation-anion pair components in 
ternary or quaternary systems. A wide group of semiconductors presents such missing 
configurations. Understanding the phenomenon responsible for such behaviour  would lead to a 
deeper knowledge of semiconductor behaviour.  
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Appendix 
 
The far infrared phonon spectrum of an A1-xBxZ ternary 

ε2(ω,x) ={{4 AZs0 AZω0
2 AZΓ0 ω / [(ω2 −AZω0

2)2 +AZΓ0
2 ω2]} P0(x)   binary AZ 

+ Σk=1,3 {k BZsk 
BZωk

2 BZΓk ω / [(ω2 −BZωk
2)2 +BZΓk

2 ω2]  
+(4-k) AZsk

 AZωk
2 AZΓk ω /[(ω2 −AZωk

2)2+AZΓk
2 ω2]}Pk(x)   ternary ABZ 

+{4 BZs4 BZω4
2 BZΓ4

 ω / [(ω2 −BZω4
2)2 +BZΓ4

2 ω2]} P4(x) }  binary BZ (6) 

with the Pk(x)’s defined by Eq.(5) 

 

Tab.A1 The eight equations defining the probabilities kc
P (x,y) of an NN ion-pair ij= {AY, 

BZ} (i.e., the product of the corresponding η  times the configuration probability (Eqs. 
1 and 3)) 

 
AZ from T

A
: ηA (4-k

kA
W ) pk

[4](y) ZA from T
Z

: ηZ (4-k
kZ

W ) pk
[4](x) 

BZ from T
B

: ηB (4-k
kB

W ) pk
[4](y) ZB from T

Z
: ηZ k 

kZ
W  pk

[4](x) 

AY from T
A

: ηA k
kA

W  pk
[4](y) YA from T

Y
: ηY (4-k

kY
W ) pk

[4](x) 

BY from T
B

: ηB k
kB

W  pk
[4](y) YB from T

Y
: ηY k 

kY
W  pk

[4](x) 

 

Tab.A2 The eight equations defining the average NN coordination numbers < CN
j

i (x)>, (to 
distinguish between CN

j

i and CN
i

j ) for each NN ij-dipole of a pseudo-quaternary 
A1� xBxYyZ1-y ; pre-subscript c-centre ion, pre-superscript v-vertex ion 

NN dipole  <CN(x,y)> Quaternary 
A1-xBxYyZ1-y 

AZ   < CN
Z

A
(y)>= Σk=0,3[(4-k

kA
W )pk

[4](y)] = 4 - < CN
Y

A
(y)> 

< CN
A

Z
(x)>= Σk=0,3[(4-k

kZ
W )pk

[4](x)] = 4 - < CN
B

Z
(x)> 

BZ   < CN
Z

B
(y)>= Σk=0,3[ (4-k

kB
W )pk

[4](y)] = 4 - < CN
Y

B
(y)> 

< CN
B

Z
(x)>= Σk=1,4[   k   

kZ
W  pk

[4](x)] = 4 - < CN
A

Z
(x)> 

AY  < CN
Y

A
(y)>= Σk=1,4[   k   

kA
W  pk

[4](y)] = 4 - < CN
Z

A
(y)> 

< CN
A

Y
(x)>=  Σk=0,3[ (4-k

kY
W ) pk

[4](x)] = 4 - < CN
B

Y
(x)> 

BY  < CN
Y

B
(y)>= Σk=1,4[   k   

kB
W  pk

[4](y)] = 4 - < CN
Z

B
(y)> 

< CN
B

Y
(x)>= Σk=1,4[   k   

kY
W  pk

[4](x)] = 4 - < CN
A

Y
 (x)> 
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Tab.A3 The four equations that define the average NN inter-ion distances dv
c

 for the four 
possible ion combinations in a pseudo-quaternary A1-xBxYyZ1-y, with c-centre ion, v-
vertex ion 

 
NN interion <d(x,y)> Quaternary       A1-xBxYyZ1-y 

< d
Z

A
(x,y)>= {  (1-x) Σk=0,3{ k

Z

A
d  (4-k 

kA
C ) +4

0
d

AZ

A
max(0,1-

kA
W ) +4

4
d

AZ

A
max[0, (k

kA
W -1)/(4-k)]} pk

[4](y) }  
/ {  (1-x) Σk=0,3{(4-k

kA
C )        +4         max(0,1-

kA
W ) +4         max[0, (k

kA
W -1)/(4-k)]} pk

[4](y) }  
< d
Z

B
(x,y)>= {    x  Σk=1,4{ k

BZ

B
d  (4-k 

kB
C ) +4

4
d

BZ

B
max(0,1-

kB
W ) +4

4
d

AZ

B
max[0, (k

kB
W -1)/(4-k)] }pk

[4](y) } 
/ {  x  Σk=1,4{ (4-k 

kB
C )         +4         max(0,1-

kB
W ) +4         max[0, (k

kB
W -1)/(4-k)] }pk

[4](y) } 
< d
A

Y
(x,y)>= {  y  Σk=0,3{ k

AY

Z
d (4-k 

kZ
C ) +4

0
d

AY

Z
max(0,1-

kZ
W ) +4

4
d

AY

Z
max[0, (k

kZ
W -1)/(4-k)] }pk

[4](x) }  
/ {y Σk=0,3{(4-k

kZ
C ) +4        max(0,1-

kZ
W )           +4         max[0, (k

kZ
W -1)/(4-k)] }pk

[4](x) }  

< d
B

Z
(x,y)>= { y  Σk=1,4{ k

BY

Z
d     k 

kZ
C  +4

4
d

BY

Z
max(0,1-

kZ
W ) +4

4
d

BY

Z
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kZ
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[4](x)} 
/ { y Σk=1,4{     k 

kZ
C         +4        max(0,1-

kZ
W ) +4         max[0, (k

kZ
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[4](x) } 
 
Table-A4. The two parallel hierarchy frequency sequences 
CdTeω<139.5-145.6

>
 [38, 39 p.227]  (= TeSe

TeCd

,

4,04:
! = CdMn

CdTe

,

4,04:
! ) < TeSe

TeCd

,

3,13:
! < TeSe

TeCd

,

2,22:
!  < TeSe

TeCd

,

1,31:
!  

< TeSe

SeCd

,

3,11:
! < TeSe

SeCd

,

2,22:
!  < TeSe

SeCd

,

1,33:
!  < ( TeSe

SeCd

,

0,44:
! = CdMn

CdSe

,

4,04:
! ) 

=CdSeω<165� 173.5> [39 p.213, 40 p.3724], � < CdMn

CdSe

,

3,13:
! < CdMn

CdSe

,

2,22:
!  < CdMn

CdSe

,

1,31:
!  < 

CdMn

MnSe

,

3,11:
! < CdMn

MnSe

,

2,22:
!  < CdMn

MnSe

,

1,33:
!  ( CdMn

MnSe

,

0,44:
! = TeSe

SeMn

,

0,44:
! ) 

=MnSeω<205� 220>[40 p.3724]  
CdTeω<139.5-145.6> [38, 39 p.227] ( = CdMn

CdTe

,

4,04:
! = TeSe

TeCd

,

4,04:
! ) < CdMn

CdTe

,

3,13:
! < CdMn

CdTe

,

2,22:
! < 

CdMn

CdTe

,

1,31:
! < CdMn

MnTe

,

3,11:
! < CdMn

MnTe

,

2,22:
! < CdMn

MnTe

,

1,33:
! < ( CdMn

MnTe

,

0,44:
! = TeSe

TeMn

,

4,04:
! ) 

=MnTeω<185.7� 191.2> [38, 41 p.10938, 42 p.60]  < TeSe

TeMn

,

3,13:
! < TeSe

TeMn

,

2,22:
!  

< TeSe

TeMn

,

1,31:
! < TeSe

SeMn

,

3,11:
! < TeSe

SeMn

,

2,22:
!  < TeSe

SeMn

,

1,33:
! < ( TeSe

SeMn

,

0,44:
! = CdMn

MnSe

,

0,44:
! )  

=MnSeω<205-220> [40 p.3724] 

Gray shade indicates the fourteen frequencies corresponding to the seven tetrahedron 
configurations { TeSe

Mn
T

,

2,2
, CdMn

Se
T

,

2,2
, CdMn

Se
T

,

1,3
, TeSe

Cd
T

,

2,2

TeSe

Cd
T

,

1,3
, CdMn

Te
T

,

2,2
, CdMn

Te
T

,

1,3
} that have 

evanescent probabilities of formation because of extreme site occupation preferences, as per the 
Ck values derived from the EXAFS data. The ranges of uncertainty for the binary configuration 
frequencies (taken from the literature) are indicated in this inequality sequence as subscripts and 
serve to define the initial fit- frequencies for the binary configurations. In a quaternary these 
frequencies do shift, but these values indicate the range within which the four-ternary eight-
spectrum bands should be confined, namely ≈<139-200> cm1.  
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Fig.1  Occupation preferences in GaxIn1-xAsySb1-y [5]. Experimental value  points: y=0.10 

(triangles up),  y=0.05 (triangles down). Comparison of best fit curves by the strained 
tetrahedron (solid curve) vs. the semi-empirical (dashed curve) model approximations and 
the random distribution (dotted 4x-line). 
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Fig.3A Reflectivity spectra of  Fig.3B    ε2(ω,T) KK- derived spectra of  

 
three Cd1-xMnxSeyTe1-y samples measured at different temperatures K: 

a) Cd0.9Mn0.1Se0.2Te0.8 , b) Cd0.95Mn0.05Se0.1Te0.9 , c) Cd0.85Mn0.15Se0.1Te0.9. 
Curves: dotted: 300 K, solid: 10 K or 30 K 
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approximation 
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Table-1 Comparison of NN values for GaInAs(as T) [20,1] with those of GaInAs(in Q). The last line 

(in italics) reports data obtained using the semi-empirical approach [7] 
 

GaInAsySb1-y 
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k

In
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d  
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3 
GaInAs(in Q)              

yAs =0.05 
xGa={0.2, 0.5, 

0.65, 0.8, 
0.95}  

1.88 1.54 1.32 

0.71 0.46 0.05 

2.81 2.45 - 2.66 2.53 - 

yAs =0.10 
xGa={0.1, 0.5, 0.9}  

1.93 1.59 1.33 
0.69 0.41 0 

2.84 2.34 - 2.65 2.49 - 

both together  1.89 1.56 1.33 0.70 0.44 0 2.80 2.44 - 2.65 2.52 - 
GaInAs(as T)  1.05  0.25 0.58 0.85  0.25 0.58 2.49 2.42 2.48 2.59 2.60 2.61 

Semi-empiric 
model  2.19 1.07 1.64 0.60 0.93 0 

      

 

Table-2  Cd1-xMnxSeyTe1-y: comparison of NN values for CdMnTe(as T) [20,1] with those of 
GaInAs(in Q). Last raw (in italics): data obtained using the semi-empirical approach [7] 
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 CdMnSe(in Q) Se 2.18 0 1.33 0.54 0 0 
 CdSeTe(in Q) Cd 2.38 0 1.33 0.54 0 0 
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3.23 
0.68 

0 
1.33 
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0.26 
0.68 

0 
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0 
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CdMnSeTe(as T) 
Semi-empiric model  1.9 1.6 1.3 0.70 0.40 0 

 
Table-3 Comparison of s2 of best-fits of 8+8 and 4+4 approximations for all nine Cd1-

xMnxSeyTe1-y spectra, with different temperatures 

 
Sample T K s2

8+8  s2
4+4  

x=0.1, y=0.2 30 4.1E-03 4.0E-03 
x=0.15, y=0.1 10 1.9E-01 2.4E-01 
x=0.05, y=0.1 10 1.0E-02 9.1E-02 
x=0.05, y=0.1 300 5.3E-03 3.2E-02 
x=0.15, y=0.1 300 6.5E-03 3.0E-02 
x=0.1, y=0.2 300 2.3E-03 4.4E-03 
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