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i

Zwei Dinge sind unendlich:

Das Universum und die menschliche Dummheit.

Aber bei dem Universum bin ich mir noch nicht ganz sicher.

(Due cose sono infinite: l’universo e la stupidità umana.

Ma sull’ universo non sono poi cos̀ı sicuro).

A.Einstein
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Chapter 1

Introduction

Motivation for this work and original contri-

bution

This thesis is an experimental work on the thermo-optical characterization

of a prototype of the LARES Earth satellite, designed for a precision test of

General Relativity (GR, 1916): the measurement of the Lense-Thirring effect

(1918) or “frame dragging”, as Einstein used to call it. This is the precession

of the satellite orbit due to the rotation of the central attracting body, Earth,

which drags the space-time around with it. This effect is different from GR

phenomena like the precession of Mercury’s orbit around the Sun or the

deflection of the path of photons passing nearby the Sun, which are due

to the presence of a large static mass, which curves the space-time. On

the contrary, the Earth angular momentum generates additional space-time

curvature and “drags” around nearby gyroscopes (spins) and satellite orbits

(orbital angular momenta). If the angular momentum of Earth (JEarth) would

be zero, than no frame dragging would be observed. The Lense-Thirring rate

for the node orbital element, Ω, is:

Ω̇ =
2GJEarth

c2 a3 (1 − e2)3/2
, (1.1)

(where G is the gravitational constant, a and e are the orbit semi-major axis

and eccentricity; the node is the intersection of the Earth’s equatorial plane

with the satellite’s orbit).
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The amount of this precession is tiny: ∼ 2 meters per year (33 milliarc-

sec/year) for the semi-major axis of 12000 Km of the LAGEOS satellites.

This value is more than a factor of ten smaller than the precession of Mer-

cury’s perihelion, which is 430 milliarcsec/year. The Lense-Thirring effect is

formally (i.e. mathematically) similar to the precession induced by a cen-

tral sphere of rotating electric charge on a discrete dipole moment or on the

dipole moment of a closed electric current loop. For this reason, it is also

referred to as “gravitomagnetism”.

The candidate started her work right at the beginning of the Research

and Development (R&D) performed by the LARES group of the Laboratori

Nazionali di Frascati dell’INFN (INFN-LNF). LARES is a modern, second

generation satellite, which was proposed to INFN by an international Col-

laboration at the end of 2004 and is expected to be launched in early 2008.

This R&D program includes:

(i) the full plan of tests, the study of an improved satellite design and of

two different launch options;

(ii) the design of the basic “3×3” prototype and the complete simulation of

its thermo-optical properties using a specialized software of aerospace

engineering, deployed by several space agencies and aerospace engineer-

ing companies;

(iii) the construction of the “3× 3” prototype and its mechanical assembly;

(iii) the preparation of the Thermal Vacuum Test (TVT) chamber (vac-

uum at 77 Kelvin), equipped with Solar simulator and Earth infrared

simulator, to reproduce and study the space environment;

(v) the optical and geometrical characterization of the “3 × 3” prototype

with techniques of ground-based metrology.

While the candidate participated to all the phases of this R&D program,

her original contribution was the design, the simulation of the prototype and

its thermo-optical characterization. In particular, she devoted her 6-months

work at LNF to the study of the time behavior of the thermal relaxation
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time of the LARES optical sensors in space, both in orbital conditions and

in the TVT and climatic chamber at LNF. The position of these sensors, the

Cuber Corner Reflectors (CCRs), is tracked (“ranged”) by means of pulsed

lasers on Earth and then used to measure the satellite orbit with a cm-

level precision. The simple and precise geometry of LARES allows the most

effective determination of its center of mass during its revolution around

Earth.

Figure 1.1: LARES satellite, new design.

Over typical times of a few years, the precession of the orbit of LARES can

be determined accurately enough to measure the Lense-Thirring effect. How-

ever, this requires the knowledge of the deviation of the Earth geo-potential

from the pure 1/r law and knowledge of the tiny, but relentless, perturbations

of the orbit due to the Sun radiation pressure and to the infrared thermal

radiation emitted by Earth. Only if these two contributions are subtracted

from the raw precession rate, the Lense-Thirring effect can be extracted with

success. The geo-potential is nowadays mapped with unprecedented detail

by other on-going space missions. The thermal perturbations (“thrusts”)

are experimentally not well-known. This thesis work is the first attempt to

directly model and estimate the thermal relaxation time of the CCRs when

exposed to Sun and Earth. This is a key ingredient in order to subtract the

effect of thermal thrusts and to be able to measure Einstein’s frame dragging
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with 1% precision.

Finally, another important application of LARES, its ancestors, LAGEOS

and LAGEOS II, and similar “laser-ranged” satellites, is in the field of Satel-

lite Geodesy. The fine perturbations of their orbits allow the accurate de-

termination of transient variations of the time and space (re-)distributions

of masses on the Earth crust. This is relevant in view of the observations of

precursor phenomena of extreme meteorological events, like El Nino and the

anomalous melting of the polar ice caps.

The Lense-Thirring effect was first observed in 1998, 80 years after its

prediction, using one NASA satellite (LAGEOS, 1976) and one ASI satel-

lite (LAGEOS II, 1992), by the same Collaboration which is now proposing

LARES to INFN, together with INFN-LNF, INFN-Lecce and the “Scuola

di Ingegneria Aerospaziale” of the University of Rome I, “La Sapienza”. It

is quite exciting that in 2005, during the Centennial of Einstein’s ”‘Annus

Mirabilis”’ and the World Year of Physics, an experiment on the Lense-

Thirring effect is in preparation to test this prediction of General Relativity

at the level of 1% accuracy.



Chapter 2

The LARES experiment

2.1 Measurement of Lense-Thirring effect

Einstein’s general theory of relativity predicts the occurrence of peculiar

phenomena in the vicinity of a spinning body, caused by its rotation. When

a clock that co-rotates very slowly around a spinning body returns to its

starting point, it finds itself advanced relative to a clock kept there at rest

(with respect to a distant star). Indeed, synchronization of clocks all around

a closed path near a spinning body is not possible, and light co-rotating

around a spinning body will take less time to return to a fixed point than light

rotating in the opposite direction. Similarly, the orbital period of a particle

co-rotating around a spinning body would be longer than the orbital period

of a particle counter-rotating on the same orbit. Furthermore, an orbiting

particle around a spinning body will have its orbital plane “dragged” around

the spinning body in the same sense of the rotation of the body, and small

gyroscopes that determine the axes of local, freely falling, inertial frame, will

rotate with respect to “distant stars” because of the rotation of the body.

This phenomenon, called “frame dragging”, is also known as Lense-Thirring

(LT) effect. In GR, all these phenomena are the result of the rotation of

the central mass [5]. Until now two different methods have been planned to

measure the Lense-Thirring effect according to the effect it has on gyroscopes

and on orbital angular momentum.

Gravity Probe B (GP-B) was developed by NASA and Stanford Uni-
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versity and launched on April 20, 2004 after a few decades of planning (the

total cost was several hundred million US$). It contains four, almost perfectly

spherical, spinning gyroscopes suspended in a vacuum. Indeed according to

Newtonian physics, a perfect gyroscope, which experiences no external forces

will not drift. In GP-B this would mean that once a gyroscope is spinning in

alignment with the guide star, it would stay aligned with that star forever.

GP-B has been built to measure two distinct effects of general relativity.

The first, the geodesic effect, should cause the spin axis orientation of a gy-

roscope, cycling the Earth in a polar orbit, to change by a tiny angle of 6.6

arcsec (0.0018 degrees) in a year, relative to a distant guide star. The sec-

ond effect, the LT, should cause the gyroscope axis to change orientation in

the plane of Earth’s rotation (orthogonal to the orbit plane) by a minuscule

angle of 0.041 arcsec (0.000011 degrees) in a year. Conceptually the GP-

B experiment is quite simple. An optical telescope faithfully points to its

guide star, 6th-magnitude IM Pegasi. Initially the gyroscopes’ spin axes are

aligned through the bore side of the telescope to this guide star. A set of

superconducting readout systems detect minute changes in each gyroscope’s

spin axis orientation. Changes in the spin axis alignment of the gyroscopes

are a direct measurement of the geodetic and/or frame dragging effects of

general relativity. GP-B gyroscopes limit any drift resulting from electrical

and mechanical imperfection or forces acting on them. The GP-B instrument

is designed to measure changes in gyroscopes spin axes orientation to better

than 0.5 milliarcsec over a one year period [6].

LAGEOS (Laser Geodynamics Satellite), developed by NASA, was launched

in 1976 with a Delta-2 rocket, while LAGEOS II, built by ASI (see fig. 2.1),

was launched in 1992 with the Space Shuttle.

LAGEOS is a passive satellite. It carries no electronic equipment or mov-

ing parts. Mounted on the spherical satellite are 426 corner cube reflectors

(CCR) that give LAGEOS its golf ball-appearance. The CCR carried by

LAGEOS are three-dimensional prism that have the property to reflect light

back to its source almost regardless of the angle the light is received by the

satellite. The aim of the two LAGEOS satellite is to measure the “frame

dragging” which should cause for a satellite with an orbital semi-major axis

of 12000 km, like LAGEOS, a tiny shift of its node of about 33 mas in a year,
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Figure 2.1: The LAGEOS II satellite, built in Italy in the 1990’s.

that is nearly 1.9 m a year. Using the technique of laser ranging with CCR

to send back the short laser pulses (see par. 2.3), it is possible to measure

distances to a point of the moon with a precision of few centimetres, and

distances to a small artificial satellite with a precision of a few millimetres.

Furthermore, the instantaneous position of the two satellites can be measured

with a precision of few millimetres and their orbits, with semi-major axes of

12270 km for LAGEOS and 12210 km for LAGEOS II, can be predicted, over

15-day periods, with a root mean-square-error of a few centimetres. The LT

effect has been measured for the first time in 1998 and the value obtained

was in agreement with general relativity, with an error much larger than the

laser ranging resolution, arising from:

(i) the deviation of the geo-potential from the perfect 1/r behavior;

(ii) the following non gravitational perturbations (NGPs): the thermal

thrusts (TTs) due to solar radiation pressure, the Earth albedo and

the Earth infrared radiation.

In year 2004 the preliminary 2002 EGM from GRACE data and a re-analysis

of 11 years of LAGEOS and LAGEOS II data, see fig 2.2, allowed a decrease
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of the LT uncertainty to 10% (including also underestimated and unknown

sources of error). This is to be compared to the uncertainty of the 1998

result, based on older geo-potential models, which is generally considered to

be in the range 20-40%.

Figure 2.2: The two LAGEOS and the two GRACE satellites.

2.2 The measurement technique

The satellite laser ranging (SLR) experiments, like LAGEOS, carry on board

numerous CCRs which are used for tracking (ranging) their position along

their orbits. CCRs are special mirrors which always reflect an incoming light

beam back in the direction it came from; fig 2.3.

The satellite ranging is achieved by shining from Earth multiple laser

beams (each associated with a telescope for aiming at the satellite) managed
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Figure 2.3: Total internal reflection [8].

by the International Laser Ranging Service (ILRS). The reflected laser beam

is also observed with a telescope, providing a measurement of the round trip

distance between Earth and the satellite. A number of ranging experiments

during the past three decades have provided important geodesy measure-

ments, including the Earth Gravity Model (EGM) and its time variations.

The ancestor of the SLR technique was the Lunar Ranging Retro Reflector

(LRRR) experiment deployed by the Apollo 11, 14 and 15 mission to the

moon (a similar device was on board of the Soviet Union Lunakhod 2). This

is the only Apollo experiment that is still returning data from the moon.

The laser beam has a 7 km diameter when it reaches the moon and about

20 km back to the Earth. The moon distance has been determined with an

accuracy of 3 cm (the average distance is 384400 km). The LRRR experiment

improved the knowledge of :

(i) the Moon’s orbit;

(ii) the rate at which the Moon is receding from the Earth (currently 3.8

cm in a year);

(iii) variations in the rotation of the Moon;

(iv) changes of the Earth’s rotation rate;

(v) the precession of the Earth spin axis (nutation).
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In addition, the LRRR data have been used to measure the De Sitter

or geodetic precession predicted by GR to an accuracy of 0.35%. This shift

arises from the effect of the gravitational fields on the velocity of an orbiting

gyroscope.

The data collected from LAGEOS and LAGEOS II with the laser ranging

technique need to be processed. First, the orbit position and speed {x, y, z,

ẋ, ẏ ,ż} as function of time is determined. This task is accomplished using

a software called GEODYN II, developed at NASA Goddard Space Flight

Center in the past 30 years. The software allows fitting the range data with a

suitable set of models, accounting for the various forces acting on the satellite,

together with all the information useful to a correct data processing (such as

a model for atmospheric delay of laser pulses). During the fitting procedure,

it is usually necessary to estimate a number of parameters, in order to achieve

the best accuracy possible. The process of extracting the set {state vectors,

other parameters} is called data reduction. This is done by GEODYN for

each arc (and analysis period), employing a numerical integration of the orbit

and consequent adjusting of related parameters. The complexity inherent in

the accurate description of satellite’s orbit requires use of numerical models

to take into account the following physics contributions:

(i) Gravitational perturbations (geo-potential, tides, De Sitter effect);

(ii) Non gravitational perturbations;

(iii) Reference frame;

(iv) Observation conditions and corrections.

Each of the previous points specializes into a number of separate models

and parameter specifications.

2.3 The Geo-potential

SLR has been until recently the most important tracking data type for the

mapping of the terrestrial gravity field with space techniques. SLR data

are not only of high quality and unambiguous nature, they are also highly
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sensitive to any change in the location of mass of Earth and orientation of

the terrestrial figure axis, as well as the positions and motions of the track-

ing sites. These unique attributes make SRL the clear choice for system

that provides the reference frame information within the gravity model so-

lutions. The recent increase of interest in the climate change processes on

Earth has highlighted the unique contribution of SRL targets, and in partic-

ular of the two LAGEOS’ in that area: the determination of tiny variations

in the very-very low multipoles of terrestrial gravity field. These variations

are directly related to mass redistribution in the terrestrial system (land,

oceans, atmosphere). The international geophysical community has identi-

fied that as one of the present research areas of utmost importance. The

media coverage of the worldwide devastation caused by El Nino underlined

its importance to all and resulted in an unprecedented increase in public

awareness for the problem as well as the efforts to better understand it and

forecast it in the future. To better accomplish that, the international com-

munity is continuously striving to improve both the space segment as well as

the ground segment of systems observing global climate change. Some of the

most important “weapons” are the recently launched dedicated gravity map-

ping CHAMP and GRACE. They have already delivered new global models

for gravitational field of Earth with unprecedented accuracy. Grace in par-

ticular, is now delivering multiple models covering monthly periods with half

wavelength of about 250 km. This therefore has in part launched the era

of temporal gravity monitoring at a previously unheard-of spatio-temporal

resolution.

2.3.1 Other perturbations and error budget

We consider now additional gravity-related perturbations that affect the orbit

of LAGEOS satellites and we quote the errors estimated in [7] for 11 years

of LAGEOS and LAGEOS II.

The first one is another GR effect called “De-Sitter” effect or “geodetic

precession”. It produces a shift on a gyroscope that has been measured to an

accuracy of about 0.35% using the Moon’s orbit (LRRR experiment). This

shift arises from the effect of the gravitational field on the velocity of an
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orbiting gyroscope. However, the De Sitter effect, which amounts to about

17 milliarcsec per year on the nodes of LAGEOS satellites, is today measured

with 0.7% accuracy. Thus, the final error is about 0.4% of the Lense-Thirring

effect.

Another source of error in measuring the LAGEOS orbit are the tides

and the geo-potential errors. The error budget due to these perturbations is

about 2% of the Lense-Thirring effect [7].

Finally, we consider random and stochastic errors and measurement er-

rors. These include stochastic errors such as seasonal variations of the Earth

gravity field, thermal drag (thrusts) and observation errors (both systematic

and statistic). The budget for this class of uncertainties is about 2% of the

Lense-Thirring effect [7].

2.4 Non gravitational perturbations

Among the various perturbative forces acting on a LAGEOS-like satellite, a

crucial role is played by the effect of non gravitational perturbations (NGPs).

These perturbations are generally characterised by complex and subtle long

term effects in the satellite orbital elements, with periodicity which depends

on the ascending node longitude, Ω, on the argument of perigee, ω, on the

Sun longitude, λ as well as on their combinations. NGPs are proportional

to the area-to-mass ratio of the orbiting body. That is why the LAGEOS

satellites are characterised by a very small value of this ratio. To calculate

the numerical value of the NGP, the Gauss perturbative equations on the

satellite node and perigee have been used:

Ω̇ =
W

H sin I
r sin(ω + f) (2.1)

ω̇ =

√
1− e2

nae
[−R cos f + T (sin f +

1√
1− e2

sinu)]− Ω̇ cos I (2.2)

where r represents the satellite distance from the Earth, H the orbital

angular momentum, per unit reduced mass, of the two body problem, R , T

and W are the Gauss perturbative accelerations in the radial, transverse (in

the orbital plane and positive sense) and normal (out-of-the-orbital-plane,
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perpendicular to the other two) directions. Finally, f, u, e, I, n, and a are

the true anomaly, the eccentricity anomaly, the eccentricity, the inclination,

the mean motion and the semimajor axis of the satellite orbit [10].

2.4.1 Visible radiation effect: direct solar radiation

pressure

For LAGEOS-type satellites, the largest non-gravitational force is due to

the direct solar radiation pressure. By direct we mean the net acceleration

resulting from the interaction (refraction, diffusion and absorption) of the

incoming sunlight with each element of the satellite. Equation 2.3 gives

the magnitude of the corresponding acceleration on a spherical and passive

satellite:

~a� = −CR
AΦ�

mc
(
D�

R�
)2ŝ (2.3)

with ŝ the sun unit vector direction. a� = 3.6 · 10−9m/s2 , where A/m =

6.95 · 10−4m2/kg is the area-to-mass ratio, c is the velocity of light , CR is

the dimensionless radiation coefficient (∼= 1.12), and Φ� is the radiative flux

(approximately the solar constant ∼= 1.38 · 103Watt/m2). The last squared

term is due to the modulation coming from the eccentricity of Earth orbit

around the Sun, where D� represents the Earth-Sun average distance while

R� is the instantaneous Earth-Sun distance.[10]

2.4.2 Visible radiation effects: Earth albedo

By Earth albedo we mean the radiation pressure from Earth-reflected sun-

light. Compared to the case of direct radiation pressure, modeling this force is

more difficult and complicated. At LAGEOS altitudes the average flux from

Earth is about 1/15 of the direct solar flux. The intensity and the direction

of the albedo force are complex functions of position and time, since the lo-

cal optical behavior of the Earth’s surface and atmosphere is highly variable,

related both to surface composition and to meteorological and seasonal ef-

fects. Equation 2.4 gives a simplified albedo formula useful to determine the

periodicities of the albedo perturbations on the orbital elements:
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~aal = (arr̂ − asŝ) Θ(f) (2.4)

where ar and as are the components of the acceleration in the radial and the

Sun directions, while Θ(f) represents the so called albedo-shadow function

[10].

2.4.3 Thermal thrust effects

Thermal thrust (TT) results from an anisotropic emission of thermal radi-

ation by the satellite surface: on LAGEOS, this arises from a non-uniform

temperature distribution over the surface. During the first years after launch,

the LAGEOS spin period was short compared to the thermal heating and

cooling time constants for its surface components, so the surface tempera-

tures did not change appreciably over the spin period. The result is that any

TT component perpendicular to the spin axis averages to zero over the spin

period; only the thrust component along the spin axis is significant. The

axial thrust depends on the temperature difference between the two surface

hemispheres centered on each end of the spin axis; we will refer to these two

hemispheres as ’north’ and ’south’. The temperature difference arises from

unequal heating of the hemispheres when the spin axis is not perpendicular

to the heating source directions; the heat sources are solar radiation and

infrared radiation emitted by the Earth. We are particularly interested in

time variations with the orbit period in the temperature difference since the

resulting axial thrust variations give secular changes to the orbit semi-major

axis, inclination and node position [9].

The Solar-Yarkovsky effect

The Solar-Yarkovsky effect arises from the non-uniform absorption of the

incoming visible solar radiation. In the assumption of a rapidly spinning

satellite equation 2.5 gives the perturbation acceleration due to this thermal

effect under this approximation:

~aY S = −AY SΓ(ζ) cos(ξ)Ŝ (2.5)
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where AY S is the magnitude of the perturbing acceleration when the satel-

lite is in full sun light, ξ represent the angle between the sun direction and

the spin axis direction Ŝ, finally Γ represents the so-called physical shadow-

function which depends on the satellite longitude, ζ, measured from the

orbital ascending node. The purpose of the Γ function is to model the decay

of the incoming visible solar radiation when the satellite enters the Earth’s

shadow, as well as the growth of this flux, and consequently of the pertur-

bative acceleration, when the satellite exits from the shadow. This means

that the shadow-function is related to the satellite thermal relaxation time:

in particular to the inertia of the CCRs [10].

The Earth-Yarkovsky or Rubincam effect

Consider the heating of the spacecraft north hemisphere by earth-infrared

radiation as the spacecraft moves along the side AB of its orbit as shown in

Figure 2.4.

Because of thermal relaxation time, the hemisphere is not warmest at orbit

position A when the spin axis points mostly directly toward the earth, but

rather at a later time when the satellite is at position B. The maximum

TT occurs at this position; this maximum has a non-radial component that

always points in the backward direction, that is, the thrust always has a drag

(deceleration) component here. The north hemisphere then cools through

radiation to space and the heating process repeats for the south hemisphere

as the spacecraft moves along the arc CD; the maximum TT occurs at D

and gives again a drag component. This periodic heating and cooling each

hemisphere gives rise to the periodic ’Earth-Yarkovsky’ or Rubincam effect

[9]. The orbit position of the maximum TT is described by the so-called

“thermal lag” angle, θ, whose expected value for LAGEOS is 55o. The value

of θ is related to the time thermal relaxation time of the CCRs (expected

value ≈ 2000 sec) and to the satellite orbital period, 13300 sec. One of the

main goals of this thesis is to directly model the CCR thermal relaxation

time with a full blown simulation of the thermo-optical properties of the

CCR, housed in the LAGEOS-type aluminum cavity, when exposed to the

appropriate radiation sources (all available in SINDA-Fluint). The results
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Figure 2.4: The Earth-Yarkovsky or Rubincam effect.

from this simulation will then be compared to the direct measurements taken

with the LNF TVT and climatic facility.

Equation 2.6 gives the Rubincam perturbative acceleration:

~aEY = AEY cos(ψ)Ŝ (2.6)

where Ŝ represents the satellite spin unit vector, ψ is the angle between the

satellite spin unit vector and the delayed unit position vector of the satellite.

The asymmetric reflectivity effect

The asymmetric effect is due to a small discrepancy in the effective re-

flectivities of the two hemispheres of the LAGEOS satellite. Indeed, in the
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case of the older LAGEOS, a small difference in the specular albedos of the

two hemispheres,of about 1.5 %, produces a regular pattern of alternating

peaks and troughs, of comparable magnitude, that reproduces many of the

observed and unexplained along-track oscillations.

2.4.4 LAGEOS structure and calculation of TTs

The LAGEOS spacecraft structure is the sphere formed from two separate alu-

minum hemispherical pieces which meet at LAGEOS equatorial plane. The

hemispheres surround a cylindrical beryllium-copper core with little space

between components; this gives a spacecraft interior filled with solid mater-

ial to minimize the area-to-mass ratio. The core cylindrical axis is coincident

with the polar axis. Each hemisphere contains 213 CCRs embedded in the

surface.

Figure 2.5: CCR assembly.

We consider the 426 CCRs in the space craft as made of fused silica even

through four are made of germanium. Each CCR is held by ring assembly

within a cylindrical cavity bored radially into the hemisphere. Two mount-

ing rings machined from clear, transparent KEL-F fluoroplastic encircle the

CCR. An aluminum retainer ring on the top of the upper mounting rings

cover the open space between the cavity wall and the CCR and shields the
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plastic mounting rings from direct outside radiation, see fig.2.5. Three Al

machined screws pass through holes in all the three rings to press the ring

assembly against the Al shoulder of the cavity.

We now discuss the steady-state solution, presented by Slabinsky [9], for

the LAGEOS I temperature and TTs. We assume a circular orbit and a

spherical earth with a cylindrical shadow for simplicity.

Figure 2.6: Temperature variation for LAGEOS components at sunlit pole

[9].

Figures 2.6 and 2.7 show the steady-state temperature variation around

an orbit that intersects the earth shadow. The first one shows that surface

elements which are directly heated by the sun have a marked temperature

drop following the interruption of solar heating when the satellite enters the

Earth’s shadow; these components show a marked temperature rise when

the satellite leaves the shadow. The second one shows that polar CCR has

a slight temperature variation with the orbit period as that CCR alternates

between being heated by Earth infrared radiations it faces the Earth for half

an orbit period, and than cooling as that region faces away from the Earth.

The sunlit Al retainer ring in Figure shows the largest temperature vari-

ation following shadow entry and egress because of its small heat capacity.

The aluminum hemispheres show very little temperature variation around
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Figure 2.7: Temperature variation for LAGEOS components at dark pole

the; the spin axis points toward sun and lies in the orbit plane [9].

the orbit because of their very large heat capacity.

Figure 2.8: Thermal thrust due to the elements considered in figure 2.6 and

2.7; the spin axis points toward the sun and lies in the orbit plane [9].

Figure 2.8 shows the resulting net axial force on LAGEOS contributed by

the different surface components. The CCRs make the largest contribution

because of their high infrared emittance and the large difference in CCR
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temperature between hemispheres; because of their thermal isolation, the

sunlit CCRs attain a much higher temperature than the CCRs near the

rotation pole facing away from the sun. The Al retainer rings, whose coverage

of the outer LAGEOS surface is one-half that of the CCRs, contribute only

one third as much to the net axial surface force because of their low emittance

results in less thermal radiation than is emitted by the CCRs.

The aluminum hemispheres contribute very little to the net force because

the two hemispheres show a temperature difference of only 5 K with a result-

ing nearly equal thermal thrust on each hemispheres. Since the two thrusts

are oppositely directed along the spin axis, the two thrusts nearly cancel.

2.4.5 Estimates of the error budget

The contributions of the previously computed NGPs to the final error budget

have been analyzed in the following two cases: i) the sum of the nodes of

LAGEOS and LARES, and ii) the nodes of LAGEOS satellites together with

that of LARES, see equations 2.7 and 2.8:

Ω̇LAGEOS + Ω̇LARES = 61.7µLT (2.7)

Ω̇LAGEOS + k1Ω̇
LAGEOSII + k2Ω̇

LARES = 61.5νLT (2.8)

with k1 = 0.003 and K2 = 0.99. Notice the small contribution of the LA-

GEOS II nodal rate to the relativistic measurement in the equation 2.8. This

means that the final NGP error budget would be approximately the same for

the two proposed combinations. Table 2.1 summarizes the contribution of

each NGP to the error budget in the measurement of the LT effect for a time

span of 7 years, relative to the Rubincam effect, taken as reference since it is

the largest [10].

The error due to the Rubincam effect has been recently estimated in a pub-

lished analysis of about 11 years of LAGEOS and LAGEOS II data [7] to be

2%.

We focus now on our main goal, that is reducing the error in the mea-

surement of the LT to less than 1%, in relation to the error budget reported

above.
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Perturbation Error

Direct solar radiation 0.13%

Earth albedo 0.22%

Solar Yarkovsky 0.16%

Earth Yarkovsky 2%

Asymmetric reflectivity 0.0014%

Table 2.1: Non-gravitational perturbations: error budget.

The thermal thrust effects on the node of the satellite have a very long

period amplitude of the order of 2 milliarcsec/year, whose uncertainty is

dominated by the uncertainty on the value of the CCR thermal relaxation

time, τCCR. This is defined as the time needed for the CCR to reach about

2/3 of ∆T , the difference between the initial and asymptotic temperature

(1/e for a pure exponential behavior). τCCR has never been measured before.

Its computed values in the literature span between 2000 sec and 7000 sec, i.e.

an uncertainty of about 250%. However, the orbital thermal thrust effects are

periodical and, as such, are averaged out over very long periods to the level

of 90%. Ths is, the residual uncertainty is 25% = 250% × 0.1. Since the long

period nodal perturbation of the thermal thrusts are linearly proportional

to τ , corresponding to a very long period amplitude of the effect of the order

of 2 milliarcsec/year, we have a relative uncertainty on the measurement of

the LT effect of the order of 1% or 2% only from the thermal relaxation time

! The new simulation made with Thermal Desktop and the use of the TVT

and climatic chamber at LNF allow thermometry with an uncertainty of a

fraction of 1 K. This translates into a measurement of τCCR with an error of

2%, under the Sun illumination and 6% under Earth IR radiation (see 3.7).

2.5 LARES, a new generation satellite

With its 30 centimeter diameter, 100 kg weight and 102 CCR placed on the

aluminum outer surface, LARES is a new generation satellite for a measure-

ment of the Lense-Thirring effect within an error ≤ 1%.
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Conservative approach In order to make such a precise measure, two

different approach have been developed.

Following this idea, LARES has the same structure of the two LAGEOS

satellites and the improvement in the measurement will be achieved by an

accurate characterization of the spacecraft before the launch. The thermo-

optical and the mechanical properties as well as their variation in space along

the years will be input to Thermal Desktop, a specialized thermal software

for satellites, and, ultimately also inserted into GEODYN to reduce associ-

ated errors. The main goal of this work is to suppress, when possible, or to

accurately estimate TTs on the LARES satellite.

Innovative approach In order to suppress a large part of the TTs acting

on the external surface of the satellite, a different mounting of the CCRs can

be adopted; see fig. 2.9. In LAGEOS the aluminum retainer rings are fixed

to the half sphere by means of three screws. Due to the poor thermal contact

the retainer rings can be considered thermally insulated from the rest of the

spacecraft. As a consequence, we find a 70 K difference between the rings in

the ”day” and ”night” regions corresponding to the satellite being eclipsed

or not by the Earth.

Figure 2.9: CCR cavity in the innovative approach.
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In the innovative approach the CCR is inserted in its housing from the

inside part of the spacecraft. Upper and lower mounting rings geometry can

be maintained identical to LAGEOS. A retainer spacer fixes the assembly

from the back part of the CCR. With this solution the TTs due to the

LAGEOS retainer rings are completely null, since now the retainer element

(a retainer seat) is mechanically machined from the spacecraft structure itself

[11].

In addition to the different configuration of the satellite also the same

analysis of the conservative approach will be done to be able to describe and

simulate the forces experienced by LARES.



Chapter 3

Thermal simulations and

planned experimental tests

3.1 Importance of the knowledge of the tem-

perature distribution

Laser ranging shows that LAGEOS experiences an non-gravitational along-

track acceleration with large fluctuations; this acceleration has a mean of

about -3.4 pm/s2, where the minus sign denotes a drag acceleration. This

corresponds to a decrease in the semi-major axis of the orbit at a mean rate

of 0.4 m/yr. We note that this force may actually vary around the orbit and

also give acceleration components not tangent to the orbit, thereby producing

secular perturbations to the other orbital elements.

The drag force required for this perturbation is much larger than predicted

by the atmospheric density measured at lower altitudes and extrapolates to

the LAGEOS 5900 km altitudes, an altitude with no other measurements of

drag effects.

The most plausible mechanism to explain this drag phenomenon is the

thermal trust due to the re-radiation of the absorbed earth-infrared radiation

by the CCRs [9].

To address this issue we need an analysis that gives the temperature of

each CCR and its mounting rings and allows for the poor conductivity across

the equatorial joint between the two structural hemispheres in finding their
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temperatures. This is done both by means of software simulation (Sinda-

Fluint) and by constructing a prototype of the satellite and testing it into

the LNF TV and climatic chamber.

3.2 Planned thermal tests

The experimental tests on a single CCR and on the 3x3 matrix prototype

aim to reproduce as realistically as possible the space and launch conditions

through a TVT chamber, a solar simulator, an infrared Earth simulator and a

vibration test. The IR camera and discrete temperature probes will measure

temperatures and IR spectra emitted by CCRs and retainer rings under the

different configurations. The data thus obtained will be inserted in SINDA-

Fluint and used in a numerical integration for an evaluation of the expected

TTs. Ultimately, the tests will be repeated on a full scale prototype, possibly

with some spin.

A detailed characterization of the thermal behavior of the CCRs includes

the estimate of different parameters:

(i) τCCR, the time needed by the CCR to reach 1/e of ∆T , the difference

of the initial and the asymptotic temperature, when exposed to the

Sun or the Earth IR radiation. This definition assumes the following

exponential behavior:

TCCR(t) = P1 + P2× e−t/P3, (3.1)

where P1 = T(∞), P2 = T(0) - T(∞), P3 = τCCR;

(ii) τRR, the time needed by the retainer ring to reach 1/e of ∆T , the

difference of the initial and the asymptotic temperature, when exposed

to the Sun or the Earth IR radiation (see eq. 3.1). Note that the

thermal relaxation time of the aluminum shell is irrelevant since its

temperature and TT gradients have a negligible magnitude.

(iii) T(∞), the asymptotic temperature of the CCR;

(iv) evaluation of the IR emitted from the front of the CCRs;
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(v) vibration test and re-measurement of all the above to investigate the

effect of the launch on the satellite.

To achieve the above goal, we foresee two sets of measurements of T and

of IR emission of the CCR and its assembly components.

1) Steady state (equilibrium) condition. We will get from the RadCad-

SINDA simulation and the Slabinski calculation (see [9]) the expected

temperature of the prototype in three basic geometric configurations:

a) sun-facing;

b) space-facing;

c) 45o to sun exposure.

Then we will set the prototype base at the temperature calculated in

each of these configurations and measure the temperature of the CCRs

and the difference in kelvin between the CCRs and the aluminum shell.

2) Start at the three previous equilibrium temperatures and track the

temperature evolution with time, turning on and off the solar simula-

tor. Additional runs will be performed with small offsets in starting

temperatures.

The RadCad-SINDA model will be tuned as necessary (and as possible) to

reach a satisfactory agreement between simulation results and experimental

data.

The required accuracy for this measurement campaign is 0.3 K for the

IR camera (the LNF model has a 0.1 K accuracy) and a calibrated intensity

of the solar simulator of a few % (again, achieved thanks to the available IR

camera).

These tests will be crucial for LARES and will provide for the first time

an experimental measurement of physical quantities directly related to the

TTs experienced LAGEOS and LAGEOS II.

The climatic facility will also be used to characterize the proposed innov-

ative satellite configuration (see par.2.5) without the aluminum retainer ring.
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τRR will be compared to τRetainerSeat to demonstrate the decrease of the over-

all thermal thrusts by about 1/3. Everybody in the LARES Collaboration

agrees that this would be a significant improvement and must be done.

3.2.1 Matrix design

The model of the 3×3 aluminum matrix has been built trying to reproduce as

much as possible the geometrical arrangement of the CCRs on LAGEOS. The

matrix surface is 153.6×153.6 mm2 with a height of 50 mm. This thickness

have been chosen to minimize the power of the thermo-cooler needed to

stabilize the temperature of the aluminum. The distance from the center

of one reflector to the nearest one, 51.2 mm, is the average value of the

distances on LAGEOS. The orientation of adjacent CCRs (and their assembly

components) are rotated by 26o as on LAGEOS.

Figure 3.1: The 3×3 matrix.

As figure 3.1 shows, the CCR is held in its location by different mounting
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elements. Starting from the top there is an aluminum retainer ring with

three holes for the screws. For the simulation we have simply modeled a ring

of aluminum and we have insert a contact resistance between three nodes of

its external surface and the circular base of the aluminum site. Since data

for calculation of thermal resistance between the base and the screws are not

available we consider this value equal to the conductance between screw head

and retainer ring from [14]. Since we used nodes belonging to the aluminum

ring to behave as screws, no thermal resistance between them and the ring

can be modeled.

Going down in picture 3.1 we have the upper mounting ring. a KEL-F ring

with three posts. Posts and ring have been simulated separately considering

a conductance of 1 between their surfaces in contact.

The lower mounting ring is also made of KEL-F and and has thermal

exchanges both with the posts of the upper ring and the base of the matrix.

Since the CCR is fit floating between the two KEL F rings properly

shaped it can be considered thermally isolated from the rest of the assembly

so table 3.1 reports only the values of conductance between the interfaces of

the rings, the screws and the aluminum base [14].

first element second element Conductance [W/K]

Al Base Screws Unknow

Screws head Retainer ring 0.16

Retainer ring Upper mounting ring 0.46

Upper mounting ring Lower mounting ring 0.44

Lower mounting ring Base 0.46

Table 3.1: Thermal conductance.

3.2.2 Matrix hardware prototype

Once the matrix prototype was built (fig 3.2), different measurements were

made on it in order to test the accuracy of the geometry. Figure 3.3 shows

the two instrument used for that purpose: the 3D measurement machine

with its mobile arm and the theodolite on the right.
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Figure 3.2: The 3×3 matrix.

27 point on the aluminum support have been measured with the ruby tip

of the mobile arm and elaborated by a specific software to obtain the average

plane that is to say the plane that minimizes the average distance of each

test point from it. The same work was repeated for the aluminum rings and

the CCRs; for each element three points have been considered. Table 3.2

shows the average distance of the point from the plane and the maximum

distance detected.

Plane of average deviation (mm) max deviation (mm)

Aluminum base support 0.002 0.007

Aluminum retainer rings 0.0053 0.237

CCRs 0.036 0.142

Table 3.2: Results from the 3D measurement machine.
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Figure 3.3: The 3D measurement machine and the theodolite

The results of table 3.2 confirm a good planarity of the aluminum support

while a larger error on the plane of the CCRs and aluminum rings has to be

attributed to a non-optimal tightening of the screws.

For a second type of measurement, the matrix was put on a vertical posi-

tion on a leveled granite plane, and a theodolite with an embedded distance-

meter was used to measure the horizontal distance between itself and each

CCR. This measurement is based on the same light retro-reflection feature

exploited by the ILRS lasers on Earth for any CCR in space. In table 3.3

we find the values obtained in millimeters; the position of the number in

the table reflects the position of the CCR in the matrix as seen from the

theodolite, whose measurement accuracy is 0.1 mm.

As expected the CCRs belonging to the same column have almost the

same distance from the theodolite and the difference between the columns is

due to growing of the distance moving away from the perpendicular to the

matrix surface.
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1832.4 1831.8 1832.7

1832.5 1831.8 1832.8

1832.4 1832.0 1832.8

Table 3.3: Results from theodolite measurements

3.3 The LNF Space Climatic Facility

The long term goal of the LARES R&D at LNF is to tune the simulation to

reproduce the thermal behavior of a single CCR (and its assembly compo-

nents) as measured with the climatic chamber. This will be repeated for a

prototype made by a 3×3 matrix of CCRs. Experimental measurements will

be done using a Sun simulator and an Earth infrared simulator. These will

be turned on alternatively or simultaneously. The Sun and Earth radiation

will be varied according to the known uncertainties and expected seasonal

variations. After a satisfactory tuning of the software model, this will be used

to predict the thermal behavior of the full satellite along its orbit, under the

combined heat inputs of the Sun and the Earth. The combination of the TVT

and climatic chamber plus the dedicated thermal simulation and CAD mod-

elization software (described in the following sections) are the “LNF Space

Climatic Facility” for low and medium Earth orbits. The construction of the

CTF started in 2005.

3.4 The thermo-vacuum and climatic test

chamber

In April 2005, the LARES LNF group started building a thermo-vacuum

chamber using an existing dismissed cryostat designed to work with helium

at 4.4 K. The cryostat is about 1 meter diameter and 2 meter length and is

quite flexible due to many input/output ports and to its modular structure.

To reach the temperature of 77 K needed for our tests, an absorptive copper

shield is used. The liquid nitrogen runs through a coiled pipe joint brazed to

the shield.
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The LNF mechanics and cryogenics groups have re-commissioned the

cryostat and then using thermo-pumps reached a vacuum condition of about

10−4 mbar. During this operation they performed helium sniffing to find

leaks in the many access flanges of the cryostat. The process of cooling to

77 K is driven by the maximum pressure of the dewar and the proximity to

the nitrogen supply. For the initial cooling we expected that about 40 liters

will be consumed in several hours. At the steady state about 20 liters per

hour will be required.

The duration of the measurement depends on: the CCR time constant,

usually taken to be of the order of 0.8 hr (3000 sec; uncertainty of 250% and

the satellite revolution time of about 3.8 hr (13700 sec).

We present now the configuration of the inside of the cryostat with the

basic components of the tests: the prototype (single CCR, CCR matrix or

30 cm sphere) the solar simulator and the infrared simulator.

3.4.1 The Sun simulator

The solar simulator is a 25 cm diameter device positioned in front of the

prototype at a distance of 0.9 m; see fig. 3.4

Figure 3.4: Solar simulator in the TVT chamber.
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Figure 3.5: IR simulator in the TVT chamber.

3.4.2 The Earth simulator

The IR or Earth simulator is an aluminum disk, black painted and kept at

250 K. Its radius will be equal to its distance from the prototype in order

to reproduce the 60o viewing angle of Earth seen by LARES/LAGEOS; see

Figure 3.5.

In a chamber at 77 K the simulator will cool down below the effective

temperature of the Earth’s upper atmosphere, 250 K. The black disk needs

to be heated up by ∼ 30 W, the amount of heat lost to the shield from initial

250 K. This can be carried out through a copper connection to AN outside

temperature controlled heater or with a temperature controlled heater inside.

Like for the Sun simulator, the prototype working temperature will be

controlled in order to perform the measurements around the target 300 K.

3.4.3 Thermometry and calibrations

Temperature measurements will be performed with an IR camera and with

thermocouples. The IR camera, fig. 3.6, will be calibrated with a white

“flat-field” device in the chamber and cross-checked by comparison with the
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thermocouples.

Figure 3.6: The TVT chamber. The solar simulator is inside the chamber

while the IR camera is outside it.

The infrared camera will be located outside the cryostat. A germanium

window is needed for the IR camera since other materials will absorb the

wavelength of IR making the measurement not possible. The window will

have a few cm diameter and 0.8 cm thickness. There are two possible po-

sitions for the camera, as shown in the picture. Probably, the side position

will be chosen, while the other one will be equipped with a quartz window

to allow visual inspection from the outside.

Thermography measurements require special training. A NEC TH7100

series IR camera (and the associated software) are owned by another LNF

research group, which will kindly lend the equipment to our project. This

camera has a good accuracy: 0.1 o C in the range [-20,+100]o C. Personnel

from our group has taken the class and the certification of “First Level Ther-

mography Operator” in order to be able to operate the device and interpret

the results.

The intensity of the chosen solar simulator beam has a relative uniformity

of 10% over its area, which is not sufficent for the % level thermometry we are

interested in. Therefore, we will map the beam intensity on a black-painted
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stainless steel disk using the IR camera. This disk represents a reference,

“flat-field” black body. The collected map will then be input into the sim-

ulation software and taken into account in the analysis of the experimental

data. The NEC camera has a good enough accuracy to provide the required

% level relative calibration. This procedure will also provide the absolute

temperature calibration and it will be cross-checked with the thermocouples.

3.5 The simulation software: Thermal Desk-

top and RadCad

Thermal Desktop is a program, produced by C&R (Cullimore and Ring),

that allows the user to quickly build, analyze, and post process sophisti-

cated thermal models taking advantage of abstract network, finite difference

and finite element modeling methods. The Thermal Desktop offers the user

full access to CAD-based geometry and CAD model building methods.This

program can analyze thermal models consisting of 3D faces, regular MxN

meshes, and arbitrary polyface meshes. These surfaces may be created di-

rectly, or by using various mesh generation commands such as surfaces of

revolution, ruled surfaces, and edge defined patches. Thermal Desktop is not

limited to just conic surfaces like many other thermal programs, it can also

import, display, and analyze existing IGES, STEP and ANSYS models.

The main feature the user have to deal with are the nodes. Nodes repre-

sent a point at which energy is conserved. Each node has a single character-

istic temperature T. Nodes may represent the temperature of a finite volume

of material. They may be used more abstractly to represent boundary condi-

tions, massless interfaces or edges, effective thermal radiation environments,

etc. There are three types of nodes, classified by their capacitance or ability

to transiently store or release thermal energy. Diffusion nodes have a finite

capacitance C, usually equal to the product of mass and specific heat (mCp

or VCp). Diffusion nodes may represent a finite cell within a meshed volume,

or may represent a higher level component such as an electronics chip, a en-

tire card, an entire chassis, a person, a vehicle, etc. Boundary nodes have

an infinite capacitance, and hence usually represent sources or sinks, large
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masses, or ideally controlled temperature zones. Arithmetic nodes have zero

capacitance: energy flowing into an arithmetic node must balance the energy

flowing out at all times. Arithmetic nodes may be used to represent edges,

interfaces, negligibly small masses (e.g., radiation shields or foils), and any

other temperature to which no mass can or should be assigned.

Once defined the model, the user may direct the software to calculate the

temperature with a steady state or a transient calculation. If both steady

state and transient are selected, then the steady state is performed before

transient is started. The transient run will begin with the temperatures

computed from the steady state analysis [12]. Thermal Desktop will then

give a plot to represent the temperature or the incident heat of each single

element (node) and, for a transient solution, it is possible to obtain a graph

of the behavior of a node through time.

3.6 Thermal simulation

3.6.1 The software package

Before starting to use the new software Thermal Desktop for the simulation

of the satellite, we perform some simple calculation to getting use to it.

The most interesting was to reproduce a calculation made with ANSYS to

evaluate which is the most efficient heat transfer mode comparing radiation

and radiation transferred by conduction between two plates. This will be

used for the new solution proposed for the construction of LARES (see 2.5).

Two square aluminum plates (50×50 mm2)have been simulated at 150 mm

distance, one at 301 K and the other at 300 K and an aluminum prism is

placed in between facing the plates with 5 mm gap; we impose that the whole

radiation exiting the two plates is absorbed by the prism.

The result of the steady state solution is illustrated in figure(3.7). The

aluminum prism has now a temperature between 300 and 301 K and is hotter

near the surface facing the 301 K plate.
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Figure 3.7: Aluminum prism exercise.

3.6.2 Building the software model of the matrix pro-

totype

The model of the matrix was built using the following assumptions:

(i) We do not consider the conduction between the rings and the aluminum

matrix;

(ii) We do not consider the conduction between the rings and the CCR;

For the optical properties of the different LARES components (see table

3.4) we referred to the parameters employed by Slabinski for his calculation

on LAGEOS I [9].

Specific heat, density and conductivity of the material (see table 3.5) are

also requested by Thermal Desktop in order to perform its analysis. We

employed the specific heat of Slabinski’s work [9] and we found the others

properties on the website [13]
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solar spectrum IR spectrum

material α τ refr index ε τ refr index

Aluminum 0.42 0 1 0.2 0 1

Suprasil 0.15 0.85 1.46 0.81 0 1

KEL-F 1 0 0 0.93 0 1

Table 3.4: Optical properties.

material specific heat J/(kg K) density kg/m3 conductivity W/(mK)

Aluminum 900 2702 167

Suprasil 753 2200 0.85

KEL-F 900 2130 0.2088

Table 3.5: Thermal properties.

In order to model the solar and the infrared simulator we used two sur-

faces, parallel to the external face of the matrix, shotting rays normal to their

surface and so parallel one to the other. The solar simulator emits in the

solar spectrum a flux of 1370 W/m2. To calculate the emissive power of the

Earth simulator we consider that the Earth emits 221.4 W/m2 in proximity

of the crust and that the the ray of the Earth is 6350 Km and the distance

from the Earth surface to the satellite 6000 Km. The formula to obtain the

flux results to be:

Q6000 =
SEarth ∗ 221.4

S12350

= 58.5 W/m2 (3.2)

Where Q are the watt pro squared meter received by a surface at 6000

km from the Earth, SEarth is the surface of the Earth and S12350 the surface

of a ball of 12350 km of ray.

3.6.3 CCR model: checks of the total internal reflec-

tion

As already said, CCRs have the typical property to reflect an incident beam

(in the solar spectrum) back to its source. This is due to a total internal
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reflection on its 90◦ surfaces. Once we have built the model of the CCR we

wanted to test this characteristic on it. First we put a solar lamp emitting

normal from its surface in front of the external face of the reflector. The

result of the test are in figure 3.8.

Figure 3.8: Total internal reflection.

The red incoming beams entering the surface, are partially absorbed by it

and become yellow (the color, from red to dark blue, represent the intensity

of the ray) then they have three complete reflection on the internal surface

and exit the reflector perpendicular to the external face (a part from a little

error due to the precision of the software), as they entered .

It is interesting to note that the an incident beam on the reflector not

always comes back to its source. If the angle between the incoming ray and

the normal to the surface is too large, (about 70◦) the rays simply enter the

CCR and exit from the first surface it find experiencing no reflection.

In the other case if the angle is between 70◦ and 0◦ there could be no

complete internal reflection depending on the point the ray encounter the

entering surface. Figure 3.9 shows a solar lamp placed 45◦ inclined. Only

the rays entering the portion of CCR nearer to the source experience total
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Figure 3.9: Reflection with inclined rays.

internal reflection and we can see green rays exiting from the top, that explain

why the surface of the satellite is entirely covered by the CCRs so that we are

sure that the ray send from the laser ranging stations comes back. Others

rays simply exit the CCR from some lateral surface since during the reflection

the incident angle grows and passes 70◦.

3.7 Results of the simulation work

Before discussing the results we present a picture of the elements used for

the simulation in Thermal Desktop (fig. 3.10). The complete 3×3 matrix,

employed in the last simulations, was obtained by making an array of the

previous piece and merging the coincident nodes.

The goal of this work is to perform a simulation of the thermal behavior

of prototypes as described in section 3.2.
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Figure 3.10: Model used for the simulation in Thermal Desktop. The CCR

is modeled with 25o nodes.

3.7.1 Results from the single CCR model

We first study three different steady state solutions of one CCR and its

aluminum cavity in a 3 K environment without the interaction of sun or

IR radiation from Earth. We very the temperature of the aluminum (held

fixed during the simulation) from 280 to 300 and 320 K and let the program

find the asymptotic state for the CCRs. The pictures show the temperature

distribution over the CCR in each of the different configurations.

Figure 3.11 represents the steady state condition when the temperature

of the aluminum is fixed at 300 K, the expected average temperature of the

LARES external aluminum surface in space.

Pictures 3.12 and 3.13 represent the solution for aluminum held first at a

temperature of 280 K then at 320 K.
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Figure 3.11: Steady state condition for 300 K aluminum.

From a comparison between the three pictures we note that the temper-

ature distribution over the CCR is always the same and only the maximum

and the minimum temperature change. It is interesting to underline that

the internal gradient of the CCR increase with the growth of the aluminum

temperature. In fact the temperature difference between the top and the

bottom nodes is 3, 4 and 5 K when the aluminum is held at 280, 300 and

320 K, respectively.

We present now the transient analysis performed starting from different

initial states and performed trying to reproduce the conditions the CCR will

find in space and which can be tested most directly i n the TVT and climatic

chamber. For each simulation we report a graph that illustrates the evolution

vs. time of the temperature of a node placed at the center of the superior

surface of the CCR. A panel at the top right corner of the graph shows the

results of an analytical fitting procedure based on the χ2 method: the fi-

nal temperature of the node (P1), τCCR (P3) and T(0)-T(∞) (P2). Next

to each of these quantities the 1-standard deviation error (68% probability)
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Figure 3.12: Steady state condition for 280 K aluminum.

Figure 3.13: Steady state condition for 320 K aluminum.



3.7 Results of the simulation work 44

on the fitted values is reported. All fits have been performed assuming an

uncertainty of 0.5 K on the values of the simulated temperatures. This is a

conservative assumption, since we foresee, ultimately, a better experimental

accuracy For the first case only we also present a temperature plot of the final

condition of the transient analysis and a graph reporting the temperature vs.

time of four different nodes on the external surface of the CCR.

a. From sun and IR off to sun on and IR off

Figure 3.14: CCR temperature distribution at the end of a 12000 seconds

transient analysis.

Picture 3.14 is the final state of the CCR after a transient analysis of

12000 seconds. At the beginning the sun and the IR lamps were turned off

and a steady state solution have been calculated, then, starting from that

condition, the solar lamp have been turned on.

The graph 3.15 is the evolution of the temperature of a node on the surface

during the simulation while figure 3.16 shows a comparison between different

nodes, the green line represent a node at the center of the top surface, the
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Figure 3.15: Temperature evolution vs. time.

Figure 3.16: Temperature evolution for 4 different nodes.

red one is the node at the bottom of the CCR, the violet a node over a tab

and the blue a node on the edge of the top surface.

The last picture of this section (fig. 3.17) shows the previous graph 3.15
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with the value of the fit χ2/ndf (ndf = number of degrees of freedom = num-

ber of measurements - number of fitted parameters - 1). Note that this and

all other χ2/ndf are much less than unity. This is because the simulated

temperature values have not been smeared according to the 0.5 K accuracy

assumed in the fitting procedure.

Figure 3.17: χ2/ndf, which is a measure of the fit quality.
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b. From sun and IR off to sun off and IR on

Picture 3.18 shows the temperature evolution vs. time of a node over

the top surface. At the beginning the solar and IR lamps are turned off,

then once reached the steady state solution the IR lamp is turned on and a

transient analysis is performed for 12000 seconds.

Figure 3.18: Temperature evolution vs. time.

c. From sun on and IR off to sun and IR on

Picture 3.19 shows the temperature evolution vs. time of a node over the

top surface. At the beginning the solar lamp is on while the IR lamps is

turned off, then once reached the steady state solution the IR lamp is turned

on and a transient analysis is performed for 12000 seconds.

d. From sun off and IR on to sun and IR on

Picture 3.20 shows the temperature evolution vs. time of a node over

the top surface. At the beginning the solar lamp is off while the IR lamp

is turned on, then once reached the steady state solution the solar lamp is
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Figure 3.19: Temperature evolution vs. time.

turned on and a transient analysis is performed for 12000 seconds.

Figure 3.20: Temperature evolution vs. time.
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e. From sun off IR off to sun and IR on

Picture 3.21 shows the temperature evolution vs. time of a node over the

top surface. At the beginning the solar and the IR lamps are turned off, then

once reached the steady state solution the solar and the IR lamps are turned

on and a transient analysis is performed for 12000 seconds.

Figure 3.21: Temperature evolution vs. time.

f. From sun on IR off to sun and IR on (aluminum at 280 K)

Picture 3.22 shows the temperature evolution vs. time of a node over the

top surface. At the beginning the solar lamp is on and the IR lamp is off,

then once reached the steady state solution the solar and the IR lamps are

turned on and a transient analysis is performed for 12000 seconds.
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Figure 3.22: Temperature evolution vs. time.

We report now in table 3.6 the results of the simulation in terms of thermal

relaxation time and error on it,

Case τCCR error on τCCR

a 2387 43

b 2737 200

c 2116 200

d 2238 41

e 2270 33

f 2779 43

g 2023 41

h 3321 216

i 2408 49

Table 3.6: Results

where the last cases are:

g. From Sun off IR off to Sun on IR off (aluminum at 320 K)

h. From Sun off IR off to Sun on IR on (aluminum at 280 K)

i. From Sun off IR off to Sun on IR off (Sun at 45o)
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3.7.2 Results from the 3×3 CCR matrix model

Due to the time needed to perform a complete transient simulation, two of

the above configurations have been calculated for the whole matrix. We start

from the steady state obtained when the matrix is in a 3 K environment, the

aluminum is held at a temperature of 300 K and no solar or IR lamps are on

(fig 3.23).

Figure 3.23: Matrix steady state solution for aluminum at 300 K.

We present now in table 3.7 the time constants for the whole matrix in

cases:

1. From Sun off IR off to Sun on IR off

2. From Sun off IR off to Sun off IR on

Case τCCR error on τCCR

1. 2375 40

2. 2717 180

Table 3.7: Results for the matrix
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3.7.3 Discussion of the results

The fits show that under Sun irradiation a temperature statistical accuracy

of 0.5 K provides an uncertainty on τCCR of about 2% (40/2400). For Earth

IR irradiation the uncertainty on τCCR is about 8 % (200/2400). In the

experimental measurements we expect to reach an accuracy of 0.1-0.3 K

and, therefore, to reduce the contribution of temperature errors below 5%,

which is our ultimate goal.

Note that a reliable estimate of the systematic error on τCCR will only be

possible using experimental data. However, to understand the size and the

different sources of systematic error the simulation work will be very useful.

Assuming that both Sun and Earth IR irradiation are governed by a

single thermal relaxation time, its central values from this simulation work

is τCCR = 2400 sec. The results are in good qualitative agreement with the

Slabinski simulation for the LAGEOS satellites. The spread of the fit values

of τCCR (about 2100 to 2700 sec) is larger that the statistical errors from each

single configuration. This is due to the known variation of thermal relaxation

times with 1/(Tr)
3, where Tr is a typical average temperature value in the

temperature range under consideration.

Without taking into account this explicit dependence of τCCR from tem-

perature, and just as an exercise, we can quote:

τCCR = 2400sec± 300sec, (3.3)

where we take half of the spread of the fit values as error. This is an

estimate of τCCR with a relative uncertainty of 12%, which is to be compared

with the spread of 250 % among the computed values found in the literature.

This 12% uncertainty would give a 0.1% contribution of thermal thrusts to

the error budget on the measurement of the Lense-Thirring effect in General

Relativity.
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3.8 Conclusions

This simulation work has been very successful. A basic but complete mod-

elization of the components which govern the thermal behavior of the past

LAGEOS and future LARES satellites has been performed.

Figure 3.24: LARES satellite, new design.

The results obtained give a clear and very promising indication of the

soundness of the experimental project of using a thermo-vacuum and cli-

matic chamber to characterize the thermal properties of the satellites. They

also show that the statistical power of the project satisfies the requirements

imposed by the physics: the Lense-Thirring effect predicted by General Rel-

ativity can be measured with an accuracy of 1% or better only if the contri-

bution of the thermal thrusts to the error budget is of the order of a few per

1000 or below. The simulation work started with this thesis, together with

the experimental measurements appears well adequate to reach this goal.

An improved understanding of thermal thrusts will help the re-analysis of

the LAGEOS and LAGEOS II data. It will also be the basis for an improved

new design of the LARES structure, like shown in figures 3.24, 3.25.

Finally, controlling and reducing the effect of the thermal thrusts to un-

precedented lower levels compared to the LAGEOS design, will make LARES

a good approximation of the ideal point-like test particle in orbit around
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Earth, subject only to the gravitational effects of the deviation of the geo-

potential from the pure 1/r behavior. Thus the LARES perigee could be

used to search for additional precession due to new physics beyond General

Relativity.

Figure 3.25: LARES satellite, new design.



Chapter 4

Appendix

GENERAL RELATIVITY1

The equations

Rab = 8π(Tab −
1

2
Tgab) + Λgab (4.1)

are called the Einstein’s equations, often written in the equivalent form

(Rab −
1

2
Rgab) + Λgab = 8πTab. (4.2)

Here Rab denotes the Ricci tensor of the Lorentzian metric gab on the four-

dimensional manifold M , R is the trace of Rab (scalar curvature), Tab is the

energy-momentum tensor, T its trace, and Λ ∈ R is given. The constant 8π

(in our units, otherwise 8π G
c4

) is determined by requiring coincidence with

the classical limit. Since both sides are symmetric, (4.1) forms a set of ten

coupled second order partial differential equations in the unknowns (M, gab).

The right hand side of (4.2) satisfies suitable compatibility conditions (in

the form of conservation laws). In general the energy-momentum tensor

depends on gab. System (4.1) must be coupled with suitable initial conditions

(for instance, a three dimensional submanifold, a positive definite metric on

it and a symmetric tensor of type (0, 2)). When Tab ≡ 0 (4.1) are called

vacuum Einstein’s equations. Einstein’s equations are invariant with respect

to diffeomorphisms (coordinate transformations), namely if g solves (4.1) and

1This appendix has been written in collaboration with Giovanni Bellettini
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x′(x) is a diffeomorphism of M , then the transformed metric through x′ still

satifies (4.1).

Even if in general topological properties of M may be influenced by the

metrics that one can assign on M (recall for instance the Gauss-Bonnet The-

orem, or the Hamilton’s program [18] and Perelman’s further achievements

toward the classification of three manifolds [23], [24], [25]) for simplicity here

we will think of M to be fixed and given; we therefore disregard singularities

where possible changes of topologies of M could be required (a singularity

could appears when some geometric invariant, such as RabcdR
abcd, blows up).

Because of this assumption, we consider gab as the only unknown in (4.1)

(up to diffeomorphisms of M). In this appendix we (very briefly) recall the

origin of equations (4.1) and some basic facts of General Relativity.

Remark 4.0.1. In view of the experimentally observed deflection of light, it

turns out that a conformally flat metric, i.e., a metric of the form gµν(x) =

λ(x)ηµν (where ηµν is the flat metric and λ(x) is a positive factor) is not

compatible with the presence of a gravitational field, since it defines the

same light cones as ηµν , see [28].

Remark 4.0.2. In a neighbourhood of any point x0 ∈ M , there exists a

coordinate system (called inertial coordinate system) such that gµν(x0) =

ηµν and all the Christoffel symbols evaluated at x0 are zero. The metric g

describes the behaviour of clocks and measuring sticks in this local inertial

system exactly as in special relativity. Hence, in this system, the usual laws

of electrodynamics and mechanics in the special relativistic form are locally

valid.

4.1 Preliminaries on differential geometry

We will mainly follow the notation and the statements in [30], to which we

refer for all details. Except for Remark 4.2.4, we always will assume Λ = 0.

Unless otherwise specified,M denotes a four dimensional smooth Lorentzian

time-oriented noncompact manifold (for instance R×R3). A Lorentzian met-

ric gab on M (called also metric tensor, or metric for short, or also inner
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product) is a sufficiently smooth assignement of a non-degenerate quadratic

form of index 1 (i.e., signature − + ++) in TpM , where TpM denotes the

tangent space to M at p. Recall that gab : TpM × TpM → R is a symmetric

tensor of type (0, 2). We sometimes shorthand gab with g.

Recall also that a totally antisymmetric tensor field of type (0, l) on M

is a differential l-form, i.e., an element of ΛlTM , where TM denotes the

tangent bundle of M .

A hypersurface H is called space-like if at each p ∈ H the induced metric

g|TpH is positive definite.

A curve is called time-like (resp. null) if the norm of its tangent vector is

everywhere negative (resp. zero), gabT
aT b < 0 (resp. gabT

aT b = 0).

Remark 4.1.1. Vectors va (contravariant or controvariant) and covectors

ωa (dual vectors, covariant) must be kept distinct. However, recall that

using the quadratic form gab we can define the duality mapping (in this case

even a linear isomorphism TpM → (TpM)∗ for any p ∈ M) TM → (TM)∗

which allows to identify vectors and covectors based at p as follows. Given

v = va ∈ TpM we can associate with v the element v∗ ∈ (TpM)∗ where

v∗(w) := g(v, w) for any w ∈ TpM . Note that v∗ = gabv
b, which is denoted

usually by va (by raising in particular the ∗ and using the lower roman index).

Similarly, we can define the mapping (TpM)∗ → TpM using the inverse gab

of gab, i.e., by associating with ωb the element ωa ∈ TpM , where ωa := gabωb.

Duality between covectors and vectors is sometimes denoted by 〈·, ·〉.

Remark 4.1.2. More generally (see [2]) one could consider a sufficiently

smooth function φ : TM → [0,+∞), which is positively one-homogeneous

in v, i.e., such that φ(p, λv) = λφ(p, v) for any p ∈ M , λ ≥ 0, v ∈ TpM (a

so-called Finsler norm), and define

gab(p, v) :=
1

2
∂2
vavb(φ(p, v)2). (4.3)

Note that the duality mapping TpM → (TpM)∗ acts as

v 7→ ω = φ(p, v)∂vφ(p, v) = gab(p, v)v
b, (4.4)

in accordance with Remark 4.1.1. The pseudo-Riemannian (or Lorentzian)

case considered in the present chapter is when gab does not depend on v, i.e.,
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gab(p, v) = gab(p). Equivalently, the Cartan tensor

Cabc =
1

4
∂3
vavbvc(φ

2) =
1

2
∂vcgab

is identically zero.

In the following ∇ denotes the Levi-Civita connection on M (or affine

connection, or metric derivative, referred here as the covariant derivative)

which, once gab is given, is the unique torsion-free derivative operator on M

[30, pag. 31] compatible with the metric, namely such that

∇agbc = 0, (4.5)

which is equivalent to parallel transport, i.e., given vector fields va and wb

with ta∇av
b = 0 = ta∇aw

b, ta the tangent vector to a curve, then

ta∇a(gbcv
bwc) = 0 (4.6)

(the inner product gabv
awb remains unchanged if we parallel transport them

along a curve).

Recall that, if f is a function defined on M , ∇af is a covector (hence

∇af is the generalization of the usual differential of f).

Recall that ∇av
b is a tensor of type (1, 1), that when contracted with a

vector field wc (i.e., wa∇av
b) produces the vector field usually denoted by

∇wv, the derivative of v along w.

The covariant derivative is torsion free, i.e.,

∇a∇bf = ∇b∇af, (4.7)

where f is a function defined on M .

Finally, recall that ∇ug(v, w) = g(∇uv, w) + g(v,∇uw).

We set

G = det(gµν). (4.8)

We recall the expression of the connection coefficients (or Christoffel symbols,

or Cartan connection coefficients) in terms of gab,

Γcab =
1

2
gcd{∂agbd + ∂bgad − ∂dgab} = Γcba, (4.9)
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where ∂a is defined by the coordinate system (ordinary derivative). Therefore,

Γρµν =
1

2
gρσ
{
∂gνσ
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

}
=< ωρ,∇eµeν >, (4.10)

where eα (resp. ωβ) is a basis of the vectors (resp. covectors) in a neighbour-

hood of p.

In particular

Γaaµ =
∂

∂xµ
log(

√
|G|),

It turns out that

∇at
b = ∂at

b + Γbact
c, (4.11)

∇aωb = ∂aωb − Γcabωc, (4.12)

and so on.

The tangential divergence of a vector field T a can be written as

∇aT
a = ∂aT

a + ΓaabT
b =

1√
|G|

∂

∂xµ
(
√
|G|T µ)

The tangential laplacian of a function f reads as

∆f =
1√
|G|

∂

∂xµ
(
√
|G|gµν ∂

∂xν
f)

In the Riemannian case it is the Laplace-Beltrami operator with respect to

the metric. In our (Lorentzian) case, it is the d’Alambertian with variable

coefficients.

Recall that there are two other notions of derivative in M , namely the

exterior derivative (denoted by d) and the Lie derivative (denoted by L).

We recall that a vector field K is called a Killing vector field (see [30,

pag. 439]) if it generates a group of isometries of M . The Lie derivative

LKg of the metric g with respect to K is identically zero, more precisely the

following Killing’s equation holds:

0 = LKgab = 2∇(bKa). (4.13)

It can be shown [19, pag. 43] that (4.13) characterizes Killing vector fields,

i.e., a vector field K which satisfies (4.13) is a Killing vector field. The

importance of Killing’s vector fields is that they give raise to constants of the

motion [30, pag. 442].
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Remark 4.1.3. In a Riemannian manifold N , the metric tensor gab can be

obtained from the metric, as follows: given p ∈ N , setting η(q) := dist(p, q)2,

then η is smooth at p = q, the first differential of η vanishes as p, ∇η(p) = 0,

and the second differential ∇2η(p) of η at p is a quadratic form on TpN

which coincides with gab. In view of the expressions (4.10), (4.24) it would

be interesting to invert the expression of the Riemann tensor of N in terms

of the derivatives of η up to order four. See also [26].

Given a subset B ⊆ M covered by a single chart (or coordinate system)

ψ : M → R4, we define∫
B

dµg =

∫
ψ(B)

√
|G(x1, . . . , x4)|dx1 . . . dx4,

where dx1 . . . dx4 is the Lebesgue measure in R4, (see for instance [16, pag.

103]). µg is the natural volume element induced by a metric tensor which is

obtained from gab by “reversing” the minus sign in gab.

Remark 4.1.4. When N is a Riemannian manifold and B ⊆ N , it turns

out that
∫
B
dµg is the Hausdorff measure Hg(B) of B with respect to the

distance induced on N by g. In addition, if g′ is another Riemannian metric

on N , then

Hg′(B) =

∫
B

µ({x ∈ TpM : φg(p, x) ≤ 1})
µ({x ∈ TpM : φg′(p, x) ≤ 1})

dHg(B)

where φg is the convex metric on the fiber bundle to M induced by g and µ

is any translation invariant Radon measure on the tangent spaces.

The length lφ(γ) of an absolutely continuous curve γ : [0, 1] → N con-

necting two points p, q ∈ N , N a Riemannian manifold, is given by

lφ(γ) :=

∫ 1

0

φ(γ(t), γ̇(t)) dt,

and the distance between two points p, q ∈ N is given by

dφ(p, q) = inf l(γ), (4.14)

among all absolutely continuous curves γ : [0, 1] → N such that γ(0) = p

and γ(1) = q. The arc length parameter τ of the curve γ is given by τ(t) :=∫ t
0
φ(γ(σ), γ̇(σ)) dσ.
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In the case of the Lorentzian manifold M , for a nonspacelike curve γ,

l(γ) :=
∫ 1

0

√
−γ̇a(t)γ̇a(t) dt, and it is necessary to substitute the infimum

with the supremum in (4.14). For instance, we can consider

dg(p, q) = sup

∫ 1

0

√
−γ̇a(t)γ̇a(t) dt (4.15)

where the supremum is taken among all nonspacelike curves connecting p

and q. τ(t) is called proper time (ar affine parameter), and sometimes is

denoted by s(t).

Stationary points of the functional on the right hand side of (4.14) satisfy

the geodesic equations (which is a way to introduce the Christoffel symbols)

in the parameter t,

d2γi

dt2
+ Γimn(γ)

dγm

dt

dγn

dt
− dγi

dt

d log(φ(γ, γ̇))

dt
= 0. (4.16)

The geodesics equivalently satisfy ∇tat
a = 0, and in the arc length parameter

(ta = dγ
ds

) (4.16) becomes

d2γi

ds2
+ Γimn(γ)

dγm

ds

dγn

ds
= 0. (4.17)

4.1.1 The Riemann tensor

One of the possible ways to introduce the Riemann tensor is in terms of the

failure of successive operations of differentiation to commute when applied

to a dual vector field:

∇a∇bωc −∇b∇aωc = Rabc
dωd. (4.18)

Note that (∇a∇b − ∇b∇a) defines a linear map from dual vectors at a

point p to tensors of type (0,3); i.e. its action is that of a tensor of type

(1,3). In view of its antisymmetry (see (4.21)) we can think of the Riemann

tensor also as a two-form, i.e., Rµν is the two-form corresponding to Rabµν .

From the definition it follows

Rabc
d = −Rbac

d (4.19)

We also recall

R[abc]
d = 0 (first Bianchi′s identity) (4.20)
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the property

Rabcd = −Rabdc (4.21)

and

∇[aRbc]
e
d

= 0 (second Bianchi′s identity). (4.22)

It follows from the above properties that

Radcd = Rcdab (4.23)

The expression of the Riemann tensor in a coordinate (holonomic) basis

(which in general is not necessarily orthonormal) is given by

R σ
µνρ =

∂

∂xν
Γσµρ −

∂

∂xµ
Γσνρ + ΓαµρΓ

σ
αν − ΓανρΓ

σ
αµ. (4.24)

Therefore the Ricci tensor, defined as

Rac = R b
abc , (4.25)

can be computed as

Rµρ =
∂

∂xν
Γνµρ −

∂

∂xµ
Γννρ + ΓαµρΓ

ν
αν − ΓανρΓ

ν
αµ. (4.26)

Recall that the scalar curvature R is given by

R = R a
a = gabRab, (4.27)

By equation 4.23, Rab satisfies the symmetry property

Rac = Rca (4.28)

The tensor

Gab := Rab −
1

2
Rgab (4.29)

is called the Einstein’s tensor. Such a tensor satisfies a conservation law.

Lemma 4.1.5. We have

∇aGab = 0. (4.30)
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Proof. Contraction of the second Bianchi’s identity (4.22) leads to

∇aRbcd
a +∇bRcd −∇cRbd = 0 (4.31)

Rising the index d with the metric and contracting over b and d, we obtain

∇aRc
a +∇bRc

b −∇cR = 0 (4.32)

Remark 4.1.6. We remark that equation (4.29) is a geometric property, and

does not depend on the validity on any type of partial differential equations

involving fields and the metric tensor.

We finally recall that a space-time metric is called of constant curvature

if Rabcd = 1
12
R(gacgbd − gadgbc), equivalently Rab = 1

4
Rgab. It follows that R

is constant. Note that Gab = Rab − 1
2
Rgab = −1

4
Rgab, so that we can think

that g solves Einstein equations in vacuo with Λ = 1
4
R.

Remark 4.1.7. Another way of introducing the Riemann tensor is to com-

pute the expression of the second variation of arc length.

4.1.2 Connection one forms

Another way, beside (4.24), to compute the Riemann tensor is to use the

tetrad method, namely using a noncoordinate orthonormal basis (also called

nonholonomic basis) of smooth vector fields (eµ)
a, where orthonormality

means (eµ)
a(eν)a = ηµν := diag(−1, 1, 1, 1). One introduces a sort of analog

of the Christoffel symbols (see (4.10)), called connection one-forms, ωaµν (i.e.,

for any µ, ν, ωaµν is a one-form), defined as

ωaµν = (eµ)
b∇a(eν)b. (4.33)

The components

ωλµν = (eλ)
a(eµ)

b∇a(eν)b

are called Ricci rotation coefficients. The compatibility condition (4.5) be-

tween the metric and the derivative operator here is related to the ansisym-

metry of Ricci rotation coefficients, i.e.,

ωaµν = −ωaνµ,
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(see [30, pag. 50] for explanations) while the torsion free condition (4.7) is

related to the commutation relation

ωµσν − ωνσµ = (eσ)a[eµ, eν ]
a.

In addition it is possible to show (see [30, pag. 51]) that (note the operator

∂a)

∂[a(eσ)b] = ηµν(eµ)[aωb]σν (4.34)

which in differential forms notation becomes

deσ = eµ ∧ ω µ
σ . (4.35)

Finally,

Rρσµν = (eρ)
a(eσ)

b{∇aωbµν −∇bωaµν − ηαβ[ωaβµωbαν − ωbβµωaαν ]} (4.36)

which in differential forms notation becomes

R ν
µ = dω ν

µ + ω α
µ ∧ ω ν

α (4.37)

(4.35) and (4.37) are called the structure equations.

Note the following advantage: the Ricci tensor can be computed via

Rρµ = ησνRρσµν . (4.38)

4.1.3 Some examples

It is often useful to think of immersed manifolds instead of abstract manifolds.

In this respect we recall the following results.

Remark 4.1.8. If B denotes the second fundamental form of the immersed

smooth Riemann hypersurface N ⊆ Rn, then (see for instance [15, pag. 112])

we have the Gauss equations

Rαβγδ = BαγBβδ −BαδBβγ, (4.39)

which relate the intrinsic and the extrinsic curvatures. In this respect, note

that in spite of the fact that for a manifold immersed in Rn the second

fundamental form can be written in terms of the second derivatives of the

immersion, the Riemann tensor involve the second derivatives of the metric

tensor g (hence, were the manifold immersed, the third derivatives of the

immersion).
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Remark 4.1.9. If N ⊂M is a hypersurface, we also recall the equations of

Codazzi-Mainardi (or Gauss-Codazzi):

(3)R d
abc = h f

a h
g
b h

k
c h

d
jR

j
fgk −BacB

d
b +BbcB

d
a ,

DaB
a
b −DbB

a
a = Rcdn

dh b
c ,

(4.40)

where hab is the induced metric on N , (3)Rabcd is the Riemann tensor of N ,

na is a unit normal vector field to N , Bab is the second fundamental form of

N , and Da is the derivative operator on N induced by h.

On the basis of Gauss’s equations we have the following examples.

Example 4.1.10. Let us consider the n-sphere of radius R embedded in

Rn+1 (with the induced metric). Then (see also [20, pag. 274])

Rijkl = (gikgjl − gilgjk)/R
2,

and

Rjl = (n− 1)gjl/R
2, R = n(n− 1)/R2.

Example 4.1.11. Let M be a three-dimensional Riemannian manifold. De-

fine Hij = 2R(i+1)(i+2)(j+1)(j+2) (sum modulo 3). The operator H describes

the Riemann operator. Assume that there is a basis for which both gij and

the curvature operator are in diagonal form. Then

Hij =


λ 0 0

0 µ 0

0 0 ν


where λ, µ, ν are twice the sectional curvatures, and

Rij =
1

2


µ+ ν 0 0

0 λ+ ν 0

0 0 λ+ µ

 R = λ+ µ+ ν.
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Example 4.1.12. Let M be a three-dimensional embedded manifold in R4,

and let α, β, γ be the principal curvatures of M at a point p ∈ M . Define

Hij = 2R(i+1)(i+2)(j+1)(j+2) (sum modulo 3). Assume that there is a basis for

which both gij and the second fundamental form are in diagonal form. Then

Hij =


2αβ 0 0

0 2αγ 0

0 0 2βγ


and

Rij =
1

2


α(β + γ) 0 0

0 β(α+ γ) 0

0 0 γ(α+ β)

 R = 2(αβ + βγ + αγ)

Example 4.1.13. In the particular case of the three-sphere in R4 we have

Hij = 2Id, Rij = 2Id. In the case of the cylinder S2 × R,

Hij =


2 0 0

0 0 0

0 0 0

 Rij =


1 0 0

0 1 0

0 0 0


4.2 Derivation of Einstein’s equations

Let us consider the functional (sometimes called Hilbert action)

S(g,Ω) =

∫
Ω

Rdµg (4.41)

defined on smooth Lorentzian metrics g on an open subset Ω of M . The func-

tional S(·,Ω) has not good coerciveness properties (namely, is not bounded,

see for instance [1]) which would guarantee the existence of minimizers in

suitable spaces. However, we can look for stationary points of S. We now

list two lemmas which can be used to prove Theorem 4.2.3.
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Lemma 4.2.1. Let g(s) be a one-parameter family of metrics, and set G(s) =

detgab(s). Then dG
ds

= Ggab ∂gab

∂s
.

Lemma 4.2.2. Let g(s) be a one-parameter family of metrics and set vij =
∂
∂s
gij. Then

∂

∂s
Γkij =

1

2
gkl(∇ivjl +∇jvil −∇lvij) (4.42)

Theorem 4.2.3. Let ψ : R ×M → M be a smooth map, and set ψλ(x) :=

ψ(λ, x). Given a metric tensor g, define gλ := g ◦ ψλ. Assume that ψ0 = id

and that ψλ = id in M \ Ω. Then

d

dλ
S(gλ)|λ=0 =

∫
M

(Rab −
1

2
Rgab)X

abdµg,

where Xab := ∂
∂λ
gabλ λ=0.

Imposing stationarity of the action S with respect to all variations ψλ we

obtain the vacuum Einstein’s equations

Gab := Rab −
1

2
Rgab = 0. (4.43)

Remark 4.2.4. Let Λ ∈ R; if we consider, instead of S, the functional∫
Ω

Rdµg + Λ

∫
Ω

dµg (4.44)

imposing stationarity as above yields the modified equations

Rab −
1

2
Rgab = Λgab. (4.45)

Remark 4.2.5. Einstein’s equations are of second order in gab and not of

fourth order, despite the fact that R contains also second derivatives of gab.

The vacuum Einstein’s equations are a system of nonlinear partial differ-

ential equations. The initial data could be, for instance, the metric g0 on a

time-slice hypersurface Σ0 together with the second fundamental form of Σ0.

The unknown is gab (see the initial discussion).
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Remark 4.2.6. Taking the trace of vacuum Einstein’s equations and recall-

ing that the trace of gab equals 2 gives R = 0. Therefore if (4.43) are satisfied

then

Rab = 0. (4.46)

Note carefully that this does not imply flatness of space, which is obtained

by imposing that the whole Riemann tensor vanishes.

Remark 4.2.7. Other variations are possible concerning the action func-

tional. For instance, the Palatini method consists in looking at the action

as a functional of g and of the connection coefficients Cc
ab separately, and to

perform variations also with respect to Cc
ab. See [30, Appendix E].

Remark 4.2.8. If in Theorem 4.2.3 we do not assume that ψλ is the identity

on M \ Ω, a boundary contribution appears in the computation of the first

variation of the action.

We can add to the functional (4.44) a term depending on some field, and

this is a way also to define the momentum-energy tensor, see [19]. More

precisely, denote by L a Lagrangian density, L = L(Ψ,∇Ψ), where Ψ is a

(scalar or tensor) field Ψ, and consider the action

Lfield(Ψ; Ω) :=

∫
Ω

L(Ψ,∇Ψ) dµg. (4.47)

Definition 4.2.9. Assume that Sfield is invariant under diffeomorphisms of

M . We say that the symmetric tensor Tab is the energy-momentum tensor

(or the stress-energy-momentum tensor) of the system if

d

dλ
Sfield(λ)|λ=0 =

∫
Ω

TabX
ab µg, (4.48)

where Sfield(λ) is the functional Sfield considered as a function of g(λ).

Definition 4.2.10. The fields equations are the equations for Ψ obtained by

imposing stationarity of Sfield in the sense of variations of Ψ, see [19, (3.4)].

Remark 4.2.11.

(i) Note that Tab = 0 for the vacuum Einstein’s equations.
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(ii) It is possible to prove (see for instance [19]) that if Ψ solves the field

equations then

∇aTab = 0. (4.49)

Remark 4.2.12. We will not discuss the issue of positivity properties of the

energy-momentum tensor.

Example 4.2.13. We give the canonical example of a scalar field. Take

Lfield(ψ,∇ψ) := −∇aψ∇bψg
ab − m2

h2
ψ2, (4.50)

where m,h ∈ (0,+∞). Then the field equations read as

∇a∇aψ −
m2

h2
ψ = 0 (4.51)

(relativistic Klein-Gordon equation) and the energy momentum tensor is

given by

Tab = ∇aψ∇bψ −
1

2
gab(∇cψ∇cψ +

m2

h2
ψ2). (4.52)

Before passing to the next example, we briefly recall the relativistic form

of Maxwell’s equations [31]. Maxwell’s equations classically read as

divE = 4πρ,

rotB =
∂E

∂t
+ J,

divB = 0,

rotE = −∂B
∂t
.

(4.53)

Let us introduce the tensor

(F µν) =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 (4.54)

Then the first and the second equations in (4.53) can be written (jµ is the

current 4-vector jµ = (ρ, J)) as

∇αF
αβ = −4πjβ. (4.55)
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while the third and the fourth equations in (4.53) can be written as

∇λFµν +∇µFνλ +∇νFλµ = 0. (4.56)

The electromagnetic force on a charged particle is

fα = eFα
γ

dxγ

dτ

and the time derivative dp
dt

of the energy-momentum 4-vector is equal to f ,

so that
dp

dt
= e(E + v ×B).

Thanks to the Poincaré Lemma and to (4.56), we can introduce locally the

electromagnetic potential Aµ (vector potential) such that

Fγδ =
∂Aδ
∂xγ

− ∂Aγ
∂xδ

. (4.57)

Recalling that F is defined up to a gradient, Aγ can be defined in such a way

that ∂αAα = 0, and we obtain

�Aα = −Jα.

We also briefly recall the formulation of electrodynamics with differential

forms. Let F be the two form defined as

F =
1

2
Fµνdx

µ ∧ dxν .

Then (4.57) reads as F = dA, where A is the one form A = Aµdx
µ. Equation

(4.56) reads as

dF = 0.

The current J is a one form defined as

J = jµdx
µ.

Example 4.2.14. We give the canonical example of the (source-free) elec-

tromagnetic field. Take

L(A) := − 1

8π
FabF

ab = − 1

2π
∇[aAb]∇[aAb], (4.58)
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where the electromagnetic tensor field F = 2dA (d the exterior differential

of the one-form A, i.e., Fab = 2∇[aAb]). Then the field equations are

∇aFab = 0, (4.59)

and the energy-momentum tensor is given by

Tab =
1

4π
(FacF

c
b −

1

4
gabFdeF

de). (4.60)

We recall once more that equation (4.59) together with dF = 0 (i.e.,∇[cFab] =

0) are the Maxwell equations for the source-free electromagnetic field.

Example 4.2.15. A perfect fluid in special relativity is described by a stress-

energy tensor of the form

Tab = ρuaub + P (ηab + uaub)

where ua is a unit timelike vector field representing the 4-velocity of the fluid,

ρ is the mass energy density and P the pressure of the fluid.

In General Relativity, the expression of the stress energy momentum ten-

sor may be the sum of the tensors illustrated in Example (4.2.13), (4.2.14),

(4.2.15).

Remark 4.2.16. It is possible to expand the action S around a background

metric, see for instance [21].

Remark 4.2.17. We recall the following result, which is (roughly) called

Noether’s theorem. If the action is invariant under a continuous group

of transformations, then the solutions (i.e., solutions of the corresponding

Euler-Lagrange equations) satisfy conservation laws determined by these in-

variances.

4.3 The linearized theory of gravity

By means of a formal (i.e., non rigorous) asymptotic expansion, in this sec-

tion we show how Einstein’s equations reduce to Newton’s equations in the

weak gravity regime and for small velocities. These two assumptions allow



4.3 The linearized theory of gravity 72

two different expansions, one is the linearization around the flat metric, the

other is an expansion essentially in powers of 1/c. The first one (weak-field

approximation) treats the field (i.e., the metric) in a lower order approxima-

tion, but does not necessarily assume that the matter moves nonrelativisti-

cally (hence it is suitable for gravitational waves). The second one treats a

system of slowly varying moving particles under the gravitational force (such

as the solar system).

In this section we perform both the expansions at the same time to first

order. We assume that g is static, namely that g admits a timelike Killing

vector field K which is orthogonal to a family of spacelike surfaces (that may

be regarded as surfaces of constant time and may be labelled by the parameter

t). In particular, M admits a global inertial system of coordinates.

We recall that Einstein’s equations are gauge invariant, i.e., they are

invariant under coordinate transformations.

Let us assume that in a sufficiently large region we have

gab = ηab + γab + o(γab), |γab| << 1, (4.61)

ηab = diag(−1, 1, 1, 1) the Minkowski metric, and γab the deviation from flat-

ness (sometimes denoted also by hab). We do not assume that the derivatives

of γab are small. Note carefully that we are not performing an expansion in

terms of powers of 1
c

(in the present discussion we set c = 1).

We adopt the following notation: ∂a is the derivative operator associated

with ηab; g
ab is, as usual, the inverse of gab. Note that

gab = ηab − γab + o(γab). (4.62)

We raise and lower tensor indices with ηab and ηab and not with gab and gab.

We define

γab := γab −
1

2
ηabγ, (4.63)

where

γ := γ c
c = ηabγab. (4.64)

Note that

γab = γab −
1

2
ηabγ, (4.65)

where γ := ηabγab.
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Theorem 4.3.1. We have

∂bγab = 0 (4.66)

and

∂c∂cγab = −16πTab, (4.67)

where we recall that ∂c∂c is (if we assume M to be R × R3) the usual

d’Alembertian operator (also denoted by �).

Proof. We want to substitute (4.61) into (4.2) and retain only the linear

terms in γab (linearized theory). Recalling that ∂aη = 0 and (4.9), we find

Γcab(g) =
1

2
ηcd{∂aγbd + ∂bγad − ∂dγab}+ o(γab), (4.68)

where we have neglected the terms γab∂cγde. From (4.26) we can neglect the

products between two Christoffel coefficients, hence

Rab(g) = ∂cΓ
c
ab + ∂aΓ

c
cb + o(γab). (4.69)

Recall that ∂(bγa)c = 1
2
(∂bγac+∂aγbc), so that ∂c∂(bγa)c = 1

2
(∂c∂bγac+∂

c∂aγbc).

Observing that ηcd∂c∂aγbd = ∂d∂aγbd, using (4.68) it follows

∂cΓ
c
ab = ∂c∂(bγa)c −

1

2
ηcd∂c∂dγab = ∂c∂(bγa)c −

1

2
∂c∂cγab. (4.70)

Note now that

∂aΓ
c
cb =

1

2
∂a∂bγ. (4.71)

Indeed using (4.68) and rearranging terms

∂aΓ
c
cb(g) =

1

2
ηcd∂a∂bγcd +

1

2
ηcd{∂a∂cγbd − ∂a∂dγcb}. (4.72)

Since γ = ηcdγcd and ∂a∂cγbd = ∂a∂dγcb, (4.71) follows from (4.72).

From (4.69), (4.70) and (4.71) it follows

Rab(g) = ∂c∂(bγa)c −
1

2
∂c∂cγab −

1

2
∂a∂bγ + o(γab). (4.73)

We also observe that

R = ∂c∂dγcd − ∂c∂cγ + o(γab). (4.74)
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Indeed, from (4.73) it follows

R = ηab∂c∂(bγa)c −
1

2
ηab∂c∂cγab − ηab

1

2
∂a∂bγ + o(γab). (4.75)

Since ∂c∂cγ = ηab∂c∂cγab, using (4.75) it follows that to prove (4.74) it is

enough to show

ηab∂c∂(bγa)c +
1

2
ηab∂a∂bγ = ∂c∂dγcd −

1

2
∂c∂cγ. (4.76)

Recalling the expression ∂c∂(bγa)c = 1
2
(∂c∂bγac∂

c∂aγbc) and observing that

ηab∂a∂bγ = ∂c∂cγ, (4.76) reduces to 1
2
ηab∂c∂bγab + 1

2
ηab∂c∂aγbc = ∂c∂dγcd,

which is an identity since ηab = ηab. Then (4.74) is proved. From (4.73)

and (4.74) and recalling the definition (4.29) of the Einstein tensor Gab, we

deduce

Gab = ∂c∂(bγa)c−
1

2
∂c∂cγab−

1

2
∂a∂bγ−

1

2
ηab(∂

c∂dγcd−∂c∂cγ)+o(γab). (4.77)

In terms of (4.63), we obtain

Gab = −1

2
∂c∂cγab + ∂c∂(bγa)c −

1

2
ηab∂

c∂dγcd + o(γab). (4.78)

Therefore, the linearized Einstein equations read as

−1

2
∂c∂cγab + ∂c∂(bγa)c −

1

2
ηab∂

c∂dγcd = 8πTab (4.79)

Let us show how to obtain the Lorentz gauge (4.66), see also [21]. Note that

∂bγab = ∂bγab −
1

2
ηab∂

bγ = ∂bγab −
1

2
∂aγ. (4.80)

In place of γab let us consider γab + ∂aξb + ∂bξa, for a suitable vector field to

be selected later (see (4.82)). Then

∂bγab = ∂b(γab + ∂aξb + ∂bξa)−
1

2
∂a(γ + 2∂bξb). (4.81)

If we assume that ξa satisfies

∂b∂bξa = −∂bγab, (4.82)

using ∂a∂b = ∂b∂a and (4.81), formula (4.66) follows. As explained in [30, pag.

75] (see also [22, Chapter 18]), the modification of γab into γab + ∂aξb + ∂bξa

does not affect, to first order, the result. Therefore,taking into account (4.66),

we have that (4.79) takes the form (4.67).
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Remark 4.3.2. Without assuming c = 1 and G = 1, (4.67) reads as

∂c∂cγab = −16πG

c4
Tab. (4.83)

Remark 4.3.3. As a consequence of (4.66) and (4.67) it follows ∂aTab = 0

(note the presence of the ordinary derivative).

Remark 4.3.4. For a more general expansion of a metric around any fixed

metric we refer to [30] and [21].

4.3.1 The Newtonian limit

We assume in this section that in a suitable coordinate system

(i)

Tab ' ρtatb, ta = (
∂

∂x0
)a. (4.84)

We therefore neglect time-space components (“small” velocities) and

space-space components (“small” stresses) of the energy momentum

tensor.

(ii)
∂

∂x0
γab = 0. (4.85)

(iii) if τ denotes the proper time then τ ' t (t the coordinate time), and
dxα

dτ
' (1, 0, 0, 0).

From (4.67) and the above assumptions we deduce

∆γµν = 0, (µ, ν) ∈ {0, 1, 2, 3}2 \ {(0, 0)}, (4.86)

∆γ00 = −16πρ. (4.87)

We then get (using reasonable growth assumptions on γµν at infinity)

γµν = 0, (µ, ν) ∈ {0, 1, 2, 3}2 \ {(0, 0)}. (4.88)

Set

φ := −1

4
γ00,
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in such a way that

∆φ = 4πρ. (4.89)

Recalling (4.65) we also have

γab = −4(tatb + 2ηab)φ. (4.90)

The equation (4.17) then becomes

d2xµ

dt2
= −Γµ00. (4.91)

Neglecting the time derivative of φ, from (4.90) we get for µ = 1, 2, 3,

Γµ00 = −1

2

∂γ00

∂xµ
=

∂φ

∂xµ
. (4.92)

Thus the motion of test bodies is governed by the equation

d2x

dt2
= −∇φ(x). (4.93)

Equations (4.89) and (4.93) are the equations of Newtonian mechanics.

Remark 4.3.5. There is an equivalent way to end up with equations (4.89)

and (4.93) starting from the geodesic equation, see for instance [31, pag. 77].

Let us consider a particle moving slowly in a weak stationary gravitational

field. We consequently assume

(i) dx
dτ

is negligible with respect to dt
dτ

(slow motion);

(ii) all time derivatives of gµν vanish (stationary field);

(iii) the expansion (4.61) holds (weak field assumption).

Form (i) and (4.17) we get

d2xµ

dτ 2
+ Γµ00

(
dt

dτ

)2

= 0. (4.94)

From (ii) and (4.10) we have

Γµ00 =
1

2
gµσ
{
∂g0σ

∂x0
+
∂g0σ

∂x0
− ∂g00

∂xσ

}
= −1

2
gµσ

∂g00

∂xσ
. (4.95)
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Using (iii), from (4.95) we may write

Γµ00 = −1

2
ηµσ

∂γ00

∂xσ
. (4.96)

Inserting (4.96) into (4.94) gives

d2x

dτ 2
=

1

2

(
dt

dτ

)2

∇γ 00, (4.97)

and finally
d2x

dt2
=

1

2
∇γ00, (4.98)

in accordance with (4.93) if we choose

γ00 = −2φ (4.99)

so that

g00 = −(1 + 2φ). (4.100)

4.3.2 Gravitational waves

Following [21], we briefly recall some facts on gravitational waves. Gravita-

tional waves arise as solutions of a wave equation, using a first order expan-

sion of the background metric gab. Indeed, we recall (see (4.83)) that, in a

suitable reference frame, we have that the expansion of gab to first order in

|γab| around the flat metric ηab gives (in vacuum)

�γab = 0. (4.101)

As explained in [21], it is possible to find a coordinate system (the so-called

transverse traceless gauge) where the metric in (4.101) takes a particular

simple form:

γab = γab,

and

γ0µ = 0, γλλ = 0, ∂νγλν = 0, µ, ν ∈ {0, . . . , 3}. (4.102)
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Essentially, the nonzero space-components (orthogonal to the direction n =

e3 of the wave) reduce to

γTTab (t, z) =

(
h+ h×

h× −h+

)
ab

cos(ω(t− z/c)) (4.103)

a, b indices in the (x, y)-plane, k = (ω,k), k the wave vector, ω = c|k|. The

expression of the corresponding metric can be found in [21, formula (1.36)], to

which we also refer for what concerns a discussion on the physical meaning of

the transverse traceless reference frame. In these notes we do not discuss the

expansion of a metric around a given fixed (non necessarily flat) metric; we

just recall [21] that this is an issue related to fluctuation problems, and that

expansions around ηab seems to be too restrictive. In addition, computations

and various averaging procedures show that interactions between the various

terms in the formal asymptotic expansion around a nonflat metric lead to a

new phenomenon: the effect of gravitational waves on the background curva-

ture, which can be identified with the presence of a new energy-momentum

tensor (denoted by tµν). Such an energy-momentum tensor can therefore be

associated with gravitational waves.

Remark 4.3.6. Also in this case it appears that there could be some rela-

tions between the averaging procedures described in [21] concerning gravita-

tional waves and the theory of homogenization.

4.4 Exact solutions

When one is faced with a differential equation, it is always important to find

special solutions (for instance, solutions with suitable symmetries). We refer

to [27] for informations on exact solutions to Einstein’s equations. It is clear

that the Minkowski metric is a trivial solution to vacuum Einstein equations,

see [19, Section 5.1] for a complete description of such a metric.

4.4.1 The Robertson-Walker solution

Let S3 (resp. H3) be the three dimensional sphere (resp. the three dimen-

sional hyperbolic space). We recall the classifications of three dimensional
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manifolds of constant curvature: R3 in case of zero curvature, S3 in case of

positive curvature, H3 in case of negative curvature. We assume

(1) M = R× R3 (resp. M = R× S3, M = R×H3)

(2) ds2 = −dτ 2 + a2(τ)(dx2 + dy2 + dz2) (resp. ds2 = −dτ 2 + a2(τ)(dψ2 +

sin2 ψ(dθ2+sin2 θdφ2)), ds2 = −dτ 2+a2(τ)(dψ2+sinh2 ψ(dθ2+sin2 θdφ2))).

(3) Tab = ρuaub + P (gab + uaub).

ρ, P are assigned at time zero, as well as gab with its time derivative. We look

for ρ, P and gab at subsequent times. A computation starting from (4.2) and

(4.9) (see for instance [30, Section 5.2]) yields, under the further assumption

Λ = 0, 
3ȧ2

a2
= 8πρ− 3k

a2

3ä

a
= −4π(ρ+ 3P ),

(4.104)

where k = 0 (resp. k = 1, k = −1); additionally, from (4.49)

ρ̇+ 3(ρ+ P )
ȧ

a
= 0. (4.105)

Expanding (resp. contracting, static) universe means ȧ > 0 (resp. ȧ < 0,

ȧ = 0). The function H(τ) := ȧ(τ)
a(τ)

is called Hubble’s “constant”.

Remark 4.4.1. The space R× S3 with the Robertson-Walker metric

ds2 = −dτ 2 + a2(τ)(dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)),

can be isometrically embedded in (R5, diag(+ + + +−)) [27, pag. 584] via

x1(τ, ψ, θ, φ) = a(τ) cosψ,

x2(τ, ψ, θ, φ)a(τ) sinψ cos θ,

x3(τ, ψ, θ, φ) + ix4(τ, ψ, θ, φ) = a(τ) sinψ sin θeiφ,

x5(τ, ψ, θ, φ) =

∫ √
1 + a′(τ)2dτ
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Remark 4.4.2. It would be interesting to see whether it is possible to use

homogenization theory in connection to the above described model. In this

respect we recall that the one-dimensional wave equation can be obtained

as the homogenized equation of a first order PDE with discontinuous coeffi-

cients.

4.4.2 The Schwarzschild solution

In this section we look for solutions to the Einstein’s equations (4.46) in

vacuum of the form

ds2 = −f(r)dt2 + h(r)dr2 + r2(dθ2 + sin2 θdφ2), (4.106)

(we normalize units in such a way that c = 1); see the discussion [30, p.

119-120] for the geometrical meaning of such a choice of the metric tensor.

Here we only recall that M is foliated in three-dimensional spacelike surfaces

Σt, each Σt being the image through an isometry of a given spacelike surface

Σ, and t (the “time” component) labels Σt. We also recall that we assume

the existence of a vector field ξa orthogonal to each Σt. Each Σt is, in turn,

supposed to be foliated in two-spheres, which are parameterized through the

parameter r; the meaning of r is r2 = A
4π

, where A is the area of the unit two-

sphere. On the other hand, the induced metric on each r-two-sphere takes

the form r2(dθ2 + sin2 θdφ2), where (θ, φ) are spherical coordinates on Σ. In

(4.106) the unknown f(r) equals −ξaξa. The coordinate system (t, r, θ, φ) is

not well defined at the north and the south poles of the spheres, at those

points where ξa = 0, at those points where ∇ar = 0, and more generally at

those points where ξa and ∇ar become collinear. See the discussion in [30,

Chapter 6] for the interesting meaning of this kind of singularities, as well as

for the possibility of continuing the solution beyond singularities.

Summarizing, we assume

(1) M = R× (R3 \ {0});

(2) the metric is as in (4.106)

(3) Tab = 0.
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Theorem 4.4.3. Under the above assumptions we have

g = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2).

r = 2M is called the Schwarzschild radius.

Proof. In order to write the Einstein’s equations, we use the tetrad method.

A orthonormal basis of dual vectors for the metric is

(e0)a = f 1/2(dt)a, (e1)a = h1/2(dr)a, (e2)a = r(dθ)a, (e3)a = r sin θ(dφ)a

Orthonormality can be sees as follows: (e0)a(e0)
a = gab(e0)

b(e0)
a = −ff−1 =

−1, the other computations being similar. We compute, recalling that ∂a

reduces to compute the differential,

∂a(e0)b = ∂a(f
1/2(dt)b) =

1

2
f−1/2f ′(dr)a(dt)b, (4.107)

so that

∂[a(e0)b] =
1

2
f−1/2f ′(dr)[a(dt)b]. (4.108)

Moreover, since h = h(r),

∂[a(e1)b] = 0. (4.109)

Also

∂[a(e2)b] = (dr)[a(dθ)b],

and

∂[a(e3)b] = sin θ(dr)[a(dφ)b] + r cos θ[a(dφ)b].

Step 1. Computations of the connection one forms. We have

ωb01 =
f ′

2(fh)1/2
(dt)b,

ωb02 = 0,

ωb03 = 0,

ωb12 = −(h)−1/2(dθ)b,

ωb13 = −(h)−1/2 sin θ(dφ)b,

ωb23 = − cos θ(dφ)b.

(4.110)
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Observe that ∂a(e0)b contains a dt-term, see (4.107), so that ωa00 contains a

dt-term (see (4.33)) so that (e0)aωb00 = 0. From this observation, (4.34) and

(4.108) we deduce

∂[a(e0)b] =
1

2
f−1/2f ′(dr)[a(dt)b] =

3∑
µ=ν=0

ηµν(eµ)[aωb]0ν =
3∑

µ=ν=1

ηµν(eµ)[aωb]0ν

= h1/2(dr)[aωb]01
+ r(dθ)[aωb]02 + r sin θ(dφ)[aωb]03.

(4.111)

Similarly, using (4.109), (4.34) and the observation that ∂a(e1)b contains a

dr-term,

0 = ∂[a(e1)b] =
3∑

µ=ν=0

ηµν(eµ)[aωb]1ν =
∑

µ=ν∈{0,2,3}

ηµν(eµ)[aωb]1ν

= f 1/2(dt)[aωb]10
+ r(dθ)[aωb]12 + r sin θ(dφ)[aωb]13.

(4.112)

Moreover

∂[a(e2)b] = (dr)[a(dθ)b] =
3∑

µ=ν=0

ηµν(eµ)[aωb]2ν =
∑

µ=ν∈{0,1,3}

ηµν(eµ)[aωb]2ν

= −f 1/2(dt)[aωb]20
+ h1/2(dr)[aωb]21 + r sin θ(dφ)[aωb]23,

(4.113)

∂[a(e3)b] = sin θ(dr)[a(dφ)b] + r cos θ(dθ)[a(dφ)b] =
3∑

µ=ν=0

ηµν(eµ)[aωb]3ν

=
∑

µ=ν∈{0,1,2}

ηµν(eµ)[aωb]2ν

= −f 1/2(dt)[aωb]30
+ h1/2(dr)[aωb]31 + r(dθ)[aωb]32.

(4.114)

Equations (4.111), (4.112), (4.113), (4.114) together with some further com-

putations (see [30, pag. 122]) lead to (4.110).



4.4 Exact solutions 83

Step 2. We have

Rab01 =
d

dr

(
f ′

(fh)1/2

)
(dr)[a(dt)b]

Rab02 = f−1/2h−1f ′(dθ)[a(dt)b],

Rab03 = f−1/2h−1f ′ sin θ(dφ)[a(dt)b],

Rab12 = h−3/2h′(dr)[a(dθ)b].

Rab13 = sin θh−3/2h′(dr)[a(dφ)b].

Rab23 = 2(1− h−1) sin θ(dθ)[a(dφ)b]

(4.115)

Since from (4.110) we have ωcβ0 = −ωc0β = 0 unless β = 1, so that

ηαβωcβ0ωdα1 = ηα1ωc10ωdα1 = η11ωc10ωd11 = 0, using (4.21) and (4.36) we

deduce

Rab01 = −Rab10 = (ea)
c(eb)

d{∂cωd01 − ∂dωc01 − ηαβ[ωcβ0ωdα1 − ωdβ0ωcα1]}
= (ea)

c(eb)
d{∂cωd01 − ∂dωc01}.

(4.116)

We now compute from (4.110)

∂cωd01 =
d

dr

(
f ′

2(fh)1/2

)
(dr)c(dt)d,

∂dωc01 =
d

dr

(
f ′

2(fh)1/2

)
(dr)d(dt)c.

(4.117)

Therefore, from (4.116) and the relations (ea)
c(dr)c = (dr)a, (eb)

d(dt)d =

(dt)b, we get

Rab01 =
d

dr

(
f ′

(fh)1/2

)
(dr)[a(dt)b]

(note that the factor 1/2 is not explicitly written since it appears in the

antisymmetrization of the indices [·]). Moreover

Rab02 = −Rab20 = (ea)
c(eb)

d{∂cωd02 − ∂dωc02 − ηαβ[ωcβ0ωdα2 − ωdβ0ωcα2]}
= −(ea)

c(eb)
d{ηαβ[ωcβ0ωdα2 − ωdβ0ωcα2]}

= −(ea)
c(eb)

d{η11[ωc10ωd12 − ωd10ωc12]}
= −(ea)

c(eb)
d[ωc10ωd12 − ωd10ωc12] = f−1/2h−1f ′(dθ)[a(dt)b].

(4.118)
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The remaining relations in (4.115) can be proved in a similar way. The proof

of step 2 is concluded.

We now recall (see (4.46)) the Einstein equations in vacuum can be equiv-

alently written as

0 = R00 = R11 = R22 = R33. (4.119)

From (4.119), (4.115), (4.38) and Rµν = Rab(eµ)
a(eν)

b we deduce

0 = R00 = R1
010 +R2

020 +R3
030

=
1

2
(fh)−1/2 d

dr
[(fh)−1/2f ′] + (rfh)−1f ′,

0 = R11 = −1

2
(fh)−1/2 d

dr
[(fh)−1/2f ′] + (rh2)−1f ′,

0 = R22 = R33 = −1

2
(rfh)−1 +

1

2
(rh2)−1‘h′ + r−2(1− h−1),

(4.120)

and (fortunately)

0 = Rµν , µ 6= ν.

Adding the first two equations in (4.120) yields

f ′

f
+
h′

h
= 0,

hence

f = Kh−1, (4.121)

K ∈ R. Possibly rescaling time we can assume K = 1. The third equation

in (4.120) then becomes

−f ′ + 1− f

r
= 0,

i.e., d
dr

(rf) = 1, so that

f = 1 +
C

r
. (4.122)

(4.121) and (4.122) solve completely the Einstein equation under the above

mentioned hypotheses. We refer to [30] for the physical implications of this

special solutions to Einstein’s equations. The Schwarzschild metric is some-

times written as

g = −(1− r0
r

)dt2 + (1− r0
r

)−1dr2 + r2(dθ2 + sin2 θdφ2),
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4.4.3 Interior Schwarzschild solutions (r ≥ 2m(r))

We now recall what is the interior Schwarzschild solution: assume that we

are in presence of a perfect fluid stress-energy tensor (for instance, inside a

star) of the form

Tab = ρuaub + P (gab + uaub), (4.123)

where ua = −f 1/2(dt)a. Recall that Tab satisfies a conservation law. Assume

that P = ρ = 0 outside the star, namely for r ≥ R, for some R > 0. The

idea is to find a solution of Einstein’s equations for r ≤ R, and then match

(since P = ρ = 0 for r > R) such a solution with the previously obtained

solution (in vacuum) for r > R, where we have set

M := 4π

∫ R

0

ρ(r)r2 dr.

From (4.2) (with Λ = 0), (4.123), (4.106) and (4.27) we find

8πT00 = 8πρ = R00 −
1

2
Rη00 = R00 +

1

2
R

= R00 +
1

2
(−R00 +R11 +R22 +R33) = R00 +

1

2
(−R00 +R11 + 2R22)

=
1

2
(R00 +R11 + 2R22) = (rh2)−1h′ + r−2(1− h−1),

(4.124)

where the last equality follows from the expressions in (4.120). In a similar

way (recall η11 = η22 = 1) we find

8πT11 = 8πP = (rfh)−1f ′ − r−2(1− h−1),

8πT22 = 8πP =
1

2
(fh)−1/2 d

dr
((fh)−1/2f ′) +

1

2
(rfh)−1f ′ − 1

2
(rh2)−1h′.

(4.125)

From (4.124) it follows,

h(r) = (1− 2m(r)

r
)−1, m(r) :=

∫ r

0

ρ(r′)r′
2
dr′, (4.126)

valid for r ≥ 2m(r). From the first equality in (4.125) it is possible to prove

[30, pag. 127] that

f = e2φ,
dφ

dr
=
m(r) + 4πR3P

r(r − 2m(r))
. (4.127)
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Finally, the last equation in (4.125) gives a compatiblity condition for P

(recall that the energy-momentum tensor satisfies a conservation law), i.e.,

dP

dr
= −(P + ρ)

m(r) + 4πr3P

r(r − 2m(r))
. (4.128)

Remark 4.4.4. The maximal analytic extension of the Schwarzschild solu-

tion was found via an embedding into a higher dimensional flat space [27,

pag. 581].

4.5 Post-Newtonian approximation

As already mentioned in Section 4.3, the post-Newtonian approximation is

concerned with a system of slowly moving particles bound together by grav-

itational forces. In this section we will closely follow [31, Chapter 9]; in

particular η = diag(−1, 1, 1, 1) (and in our units c = 1). Let us denote

by M , r, v the typical values of masses, separations and velocities of the

particles. We are looking for a formal asymptotic expansion in terms of

v2 ' GM/r, (4.129)

(or, if we restore c, in terms of v/c). We will also expand the metric g around

the flat metric η, as done in Section 4.3. However, the order of expansions

will be more accurate. We shall see that the computations, even if formal,

are rather involved; it is useful to note that they will lead to phenomena such

as precessions of perihelia, in agreement (and even more precisely) with the

prediction given by Schwarzschild solution (see Section 4.5.1 below).

The real validity and the domain of applicability of such formal expansions

should be carefully discussed; we refer to [17] and to the references in [3]. In

this section we denote by i, j, k, . . . (latin) indices running from 1 to 3; greek

indices µ, ν, λ . . . run from 0 to 4.

Since the scale of distance is of order O(r), we have that

∂/∂xi is of order 1/r; (4.130)

moreover, since the scale of times is of order r/v, we have that

∂/∂t is of order v/r. (4.131)
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Step 1. We have

d2xi

dt2
=−

(
Γi00 + 2Γi0j

dxj

dt
+ Γi jk

dxj

dt

dxk

dt

)

+

(
Γ0

00 + 2Γ0
0j

dxj

dt
+ Γ0

jk

dxj

dt

dxk

dt

)
dxi

dt
.

(4.132)

Arguing as in Remark 4.3.5, we begin by expanding (in (4.17)) d2xi

dt2
, and

it will be necessary to go to the order v4/r (instead that to the order v2/r,

as in Section 4.3). We have, using the rule d
dt

= d
dτ

dτ
dt

, and for i ∈ {1, 2, 3},

d2xi

dt2
=

d

dτ

(
dxi

dτ

dτ

dt

)
dτ

dt
=

(
dt

dτ

)−1
d

dτ

(
dxi

dτ

(
dt

dτ

)−1
)

=

(
dt

dτ

)−2
d2xi

dτ 2
−
(
dt

dτ

)−3
d2t

dτ 2

dxi

dτ
.

(4.133)

Using (4.17) we have

(
dt

dτ

)−2
d2xi

dτ 2
= −

(
dt

dτ

)−2

Γiνλ
dxν

dτ

dxλ

dτ
= −Γiνλ

dxν

dt

dxλ

dt
,

d2t

dτ 2
=
d2x0

dτ 2
= −Γ0

νλ

dxν

dτ

dxλ

dτ
= −Γ0

νλ

dxν

dt

dxλ

dt

(
dt

dτ

)2

.

(4.134)

Multipyling the second equality in (4.134) by dxi/dτ implies

−
(
dt

dτ

)−3
d2t

dτ 2

dxi

dτ
= Γ0

νλ

dxν

dt

dxλ

dt

dxi

dt
. (4.135)

Inserting the first equality of (4.134) and (4.135) in (4.133) we conclude

d2xi

dt2
= −Γiνλ

dxν

dt

dxλ

dt
+ Γ0

νλ

dxν

dt

dxλ

dt

dxi

dt
. (4.136)

Using j, k ∈ {1, 2, 3}, t = x0 and the symmetry property of the Christoffel

symbols, (4.136) can be rewritten separating the indices, and gives (4.132).
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Remark 4.5.1. The arguments of Remark 4.3.5 were concerned with only

the first addendum on the right hand side of (4.132), using also Γi00 '
−1

2
∂g00
∂xi . Since from (4.100) we see that g00 + 1 is of order GM/r, it follows

that ∂g00
∂xi is of order GM/(r2) (hence, thanks to (4.129), of order v2/r). In

the following we will go beyond such an order of expansion, namely to the

order v4/r.

Thanks to Remark 4.5.1, looking at the expression in (4.132), and recall-

ing that dxj/dt is of order v, we need

(i) Γi00 to order v4/r;

(ii) Γi0j to order v3/r;

(iii) Γi jk to order v2/r;

(iv) Γ0
00 to order v3/r;

(v) Γ0
0j to order v2/r;

(iv) Γ0
jk to order v/r.

We expand locally the metric g around the flat metric η in powers of v2.

Using the fact that the transformation t→ −t does not change (resp. change

sign to) g00 and gij (resp. g0i), we write, neglecting higher order terms,
g00 = −1 + g

2

00 + g
4

00 + . . . ,

gij = δij + g
2

ij + g
4

ij + . . . ,

gi0 = g
3

i0 + g
5

i0 + . . . ,

(4.137)

where the higher number n refers to the order in the corresponding power of

vn (compare (4.151) below for the conclusions).

Step 2. We have

R
2

00 =
1

2
∆g

2

00 + . . . ,

R
4

00 =
1

2
∆g

4

00 −
1

2

∂2g00

∂t2

2

− 1

2
g
2

ij

∂2g00

∂xi∂xj

2

+
1

2
(∆g00

2

)2 + . . . ,

R
3

0i =
1

2
∆g

3

i0 + . . . ,

R
3

ij =
1

2
∆g

3

ij + . . . .

(4.138)
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From (4.137) we have
g00 = −1 + g00

2

+ g00
4

= −1− g00
2

+ g00
4

+ . . . ,

gij = δij + gij
2

+ gij
4

= δij − gij
2

+ gij
4

+ . . . ,

gi0 = gi0
3

+ gi0
5

= gi0
3

+ gi0
5

+ . . . .

(4.139)

Using (4.10), (4.139), (4.140), it is possible to check that the required

expansion of the connection coefficients are as follows: Γi00,Γ
i
jk,Γ

0
0i do not

have odd exponents in powers of v, while Γi0j,Γ
0
00,Γ

0
ij do not have even

exponets in powers of v, precisely
Γµνλ = Γµνλ

2

+ Γµνλ
4

+ . . . for Γi00,Γ
i
jk,Γ

0
0i,

Γµνλ = Γµνλ
3

+ Γµνλ
5

+ . . . for Γi0j,Γ
0
00,Γ

0
ij,

(4.140)

where the higher number n refers to the order in the corresponding power of

vn/r. Hence we observe that

Γi00

2

= −1

2

∂g
2

00

∂xi

Γi00

4

= −1

2

∂g
4

00

∂xi
+
∂g

3

00

∂t
+

1

2
g
2

ij

∂g
2

00

∂xj
,

Γi0j
3

= −1

2

(
∂g

3

i0

∂xj
+
∂g

2

ij

∂t
−
∂g

3

j0

∂xi

)
,

Γi jk
2

= −1

2

(
∂g

2

ij

∂xk
+
∂g

2

ik

∂xj
−
∂g

2

jk

∂xi

)
,

Γ0
00

3

= −1

2

∂g
2

00

∂t

Γ0
0i

2

= −1

2

∂g
2

00

∂xi

Γ0
ij

1

= 0

(4.141)

Recalling (i), in view of (4.141) it follows that we need

(v) gij to order v2,

(vi) gi0 to order v3,
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(vii) g00 to order v4.

Using (4.26), (4.141), it follows
R00 = R

2

00 +R
4

00 + . . . ,

Ri0 = R
3

i0 +R
5

i0 + . . . ,

Rij = R
2

ij +R
4

ij + . . . ,

(4.142)

where the higher number n refers to the order in the corresponding power of

vn/r2.

Using the above expansions and normal coordinates around a fixed point

[31, pag. 216], it is possible to check that the Ricci tensor satisfies (4.138).

This concludes step 2.

Expanding 
T 00 = T 00

0

+ T 00
2

+ . . . ,

T i0 = T i0
1

+ T i0
3

+ . . . ,

T ij = T ij
2

+ T ij
4

+ . . . ,

(4.143)

where the higher number n refers to the order in the corresponding power of

(M/r3)vn, using (4.1) one finally gets [31, pag. 218]

∆g00
2

= −8πGT 00
0

∆g00
4

=
∂2g00

∂t2

2

+ g
2

ij

∂2g00

∂xi∂xj

2

−

(
∂g00

∂xi

2
)(

∂g00

∂xi

2
)
− 8πG[T 00

2

− 2g200T
00
0

+ T ij
2

],

∆gi0
3

= 16πGT i0
1

∆gij
2

= −8πGδijT
00
0

.

(4.144)

We deduce (see (4.100)) that{
g00

2

= −2φ,

gij
2

= −2δijφ,
(4.145)



4.5 Post-Newtonian approximation 91

φ the solution of the Poisson equation

∆φ = 4πGT 00
0

, (4.146)

vanishing at infinity, and therefore

φ(x, t) = −G
∫

R3

T 00(x′, t)
0

|x− x′|
dx′. (4.147)

In general, T 00(x′, t)
0

is not given, and must determined implicitely using an

iterative procedure, as explained below and in [31, pag. 225]. Moreover

gi0
3

= ζi, (4.148)

ζi(x, t) = −4G

∫
R3

T i0(x′, t)
1

|x− x′|
dx′. (4.149)

Furthermore (see [31]) the second equality in (4.144) can be transformed into

g00
4

= −2φ2 − 2ψ,

where

∆ψ =
∂2φ

∂t2
+ 4πG(T 00

2

+ T ij
2

),

hence

ψ(x, t) = −
∫

R3

[
1

4π|x− x′|
∂2φ(x′, t)

∂t2
+GT 00(x′, t)

2

+GT ij(x′, t)
2
]
dx′.

(4.150)

We conclude that 
g00 = −1− 2φ+ (−2φ2 − 2ψ) + . . .

gij = δij − 2δijφ+ . . . ,

gi0 = ζi + . . .

(4.151)

where φ, ψ, ζi have the expression in (4.147), (4.149), (4.150) respectively,

and, because of the use of normal coordinates,

4
∂φ

∂t
+ divζ = 0.
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Inserting the above expressions in (4.141) yields

Γi00

2

=
∂φ

∂xi
,

Γi00

4

=
∂

∂xi
(
2φ2 + ψ

)
+
∂ζi
∂t
,

Γi0j
3

=
1

2

(
∂ζi
∂xj

− ∂ζj
∂xi

)
− δij

∂φ

∂t
,

Γi jk
2

= −δij
∂φ

∂xk
− δik

∂φ

∂xj
+ δjk

∂φ

∂xi

Γ0
00

3

=
∂φ

∂t
,

Γ0
0i

2

=
∂φ

∂xi
.

(4.152)

Finally, the conservation law (4.49) reads (to the required order) [31, pag.

222]

∂T 00
0

∂t
+
∂T i0

1

∂xi
= 0, (conservation of mass)

∂T 0i
1

∂t
+
∂T ij

2

∂xj
= − ∂φ

∂xi
T 00

0

(conservation of momentum )

(4.153)

The following result is a consequence of the computations in (4.5).

Corollary 4.5.2. The dynamics of a freely falling particle, to the order v4/r,

is governed by a Lagrangian

L =
1

2
v2 − φ− 1

2
φ2 − 3

2
φv2 +

1

8
(v2)2 − ψ + ζ · v,

i.e.,
d

dt

∂L

∂vi
=
∂L

∂xi
. (4.154)

Proof. Inserting in (4.132) the expressions (4.152) implies

dv

dt
=−∇(φ+ 2φ2 + ψ)− ∂ζ

∂t
+ v × rotζ

+ 3v
∂φ

∂t
+ 4v(v · ∇)φ− v2∇φ,

(4.155)

which is equivalent to (4.154).
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Remark 4.5.3. The procedure to use the post-Newtonian approximation,

for instance in the case of a system {xn} of particles, is the following. The

first step consists in solving (if possible!) the Newton equations

dvn
dt

= −∇φ(xn)

∆φ = 4πGT 00
0

,

(4.156)

in the unknowns φ, xn (at this level T 00
0

is not yet known). The second step

consists in using the first step and the expressions of T 00
0

, T 00
2

, T i0
1

, T ij
2

for

the particular problem at hand to solve for T 00
0

, T 00
2

, T i0
1

, T ij
2

; for instance,

it may happen that T 00
0

depends only on xn, so that using the first step one

can solve for T 00
0

, and so on. The third step consists in using the first two

steps to solve (4.149) and (4.150) in the unknowns ζ and ψ. At this point

one corrects the trajectories xn using (4.155). The procedure then restarts

and so on.

4.5.1 Agreement with the Schwarzschild solution

Let us consider a distribution of energy T µν which vanishes for r := |x| > R.

Expanding
1

|x− x′|
=

1

r
+
x · x′

r3
+ · · ·

in (4.147), (4.149), (4.150) gives
φ = −GM

0

r
− Gx ·D0

r3
+ · · ·

M
0

=

∫
R3

T 00
0

dx, D
0

=

∫
R3

xT 00
0

dx,

(4.157)


ζi = −4GP

1

i

r
−

2GxjJ
1

ji

r3
+ · · ·

P
1

i =

∫
R3

T i0
1

dx, J
1

ij = 2

∫
R3

xiT j0
1

dx,

(4.158)
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
ψ = −GM

2

r
− Gx ·D2

r3
+ · · ·

M
2

=

∫
R3

(
T 00

2

+ T ii
2
)
dx, D

2

=

∫
R3

x

(
T 00

2

+ T ii
2

+
1

4πG

∂2φ

∂t2

)
dx.

(4.159)

Replacing φ by φ+ ψ (see [31, pag. 226]) it follows that
φ+ ψ = − GM

|x−D/M |
+ · · · ,

M := M
0

+M
2

, D = D
0

+D
2

.

(4.160)

Suppose

(i) the energy-momentum tensor does not depend on time.

Then [31, pag. 227] using (4.153) it follows

P i
1

= 0,

so that ζ in (4.158) becomes, out of the gravitating mass,
ζ =

2G

r3
(x× J) + · · ·

J
1

k =
1

2

∫
R3

εijkx
iT j0

1

.

(4.161)

If we suppose

(ii)

T µν(x, t) = T µν(|x|, t),

then |x−x′|−1 can be replaced by its mean value 1/r on the two-sphere, and

it turns out that 

φ = −GM
r
,

ζ = −4G
P
1

r
,

ψ = −GM
2

r
.

(4.162)

If we further assume
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(iii) the sphere at rest

then P
1

= 0, and we finally obtain

g00 = −1 +
2MG

r
− 2M2G2

r2
,

gi0 = 0,

gij = δij + 2δij
MG

r
,

(4.163)

in agreement with the Schwarzschild solution.

Let us now consider the sphere at rest, but rotating with angular fre-

quency ω(r). In this case, using (4.149), it is possible to prove that

ζ(x) =


2G

r3
(x× J) inside the sphere

x× Ω outside the sphere,
(4.164)

where

Ω =
16πG

3

∫ ∞

0

ω(r′)T 00
0

(r′)r′ dr′,

compare also (4.161).

The above computations allow to compute the precessions of planetary

orbits in the solar system, due to the presence of other planets, to the rotation

of the sun and so on. Let us denote by Ms the mass of the sun. The main

contribution to φ+ψ in (4.160) is due to the sun, and we consequently write

φ+ ψ = −GMs

r
+ ε(x, t), (4.165)

so that (4.155) becomes

dv

dt
= −GMsx

r
+ η + · · · , (4.166)

where

η = −∇(ε+ 2φ2)− ∂ζ

∂t
+ v × rotζ + 3v

∂φ

∂t
+ 4v(v · ∇)φ− v2∇φ. (4.167)

Set

A := −MsG
x

r
+ (v × h), h := x× v. (4.168)
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From (4.166) (see [31, Section 9.5]) it turns out that the rate of precession

of perihelia is caused by

dA

dt
= η × h+ v × (x× η), (4.169)

where η is essentially given by

η = −2∇φ2
s + 4v(v · ∇)φs − v2∇φs, φs := −GMs

r
(and ζs = 0).
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