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Abstract 
 

A syncytium model to study some electrical properties of the eye is proposed in the 
attempt to explain the phenomenon of anomalous Light Flashes (LF) perceived by astronauts in 
orbit. The crystalline lensis modelled as an ellipsoidal syncytium having a variable relative 
dielectric constant. The mathematical model proposed is given by a boundary value problem for 
a system of two coupled elliptic partial differential equations in two unknowns. We use a 
numerical method to compute an approximate solution of this mathematical model and we show 
some numerical results that provide a possible (qualitative) explanation of the observed LF 
phenomenon. In particular, we calculate the energy lost in the syncytium by a cosmic charged 
particle that goes through the syncytium and compare the results with those obtained using the 
Geant 3.21 simulation program. We study the interaction antimatter-syncytium. We use the 
Creme96 computer program to evaluate the cosmic ray fluxes encountered by the International 
Space Station. 
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1  INTRODUCTION 
In the next few years the average time spent on the International Space Station by human 

beings will substantially increase. For this reason the safety of human life in the space 
environment is crucial. There is a need to study the effects of cosmic rays particles on the 
human body and particularly on the functionality of the Central Nervous System (CNS).  

The visual system has been chosen to “probe” the CNS because it is particularly sensitive 
to space environment. In missions Apollo 11 through 17, Skylab 4, Apollo-Soyuz, Mir, Iss, the 
astronauts, after some minutes of dark adaptation, observed brief flashes of white light (LF 
phenomenon) with the shape of thin or thick streaks, single or multiple dots, clouds, etc. (1-3). 

The specific mechanism of the interaction between ionizing particles and the visual 
system remains uncertain. In order to evaluate the LF phenomenon it is necessary the 
simultaneous determination of time, nature, energy and trajectory of the particle passing 
through the cosmonaut eyes, as well as the cosmonaut LF perception time. Some previous 
experiments are described in (4-6). 

A future experiment, named ALTEA (7-10), will be activated on the International Space 
Station in 2005. The ALTEA project is aimed at the study of the transient and long term effects 
of cosmic particles on the astronaut cerebral functions. It has been funded by the Italian Space 
Agency (ASI) and by the italian National Institute for Nuclear Physics (INFN) and “Highly 
recommended” by the European Space Agency (ESA). The experiment is an international and 
multidisciplinary collaboration. 

The basic instrumentation is composed by a series of active particles telescopes, an 
ElectroEncephaloGrapher (EEG) and a visual stimulator, arranged in a helmet shaped device. 
This instrumentation is able to measure simultaneously the dynamics of the functional status of 
the visual system, the cortical electrophysiological activity, and the passage through the brain 
of those particles whose energy is included in a predetermined window. The three basic 
instruments can be used separately or in any combination, permitting several different 
experiments. 

In this paper we analyze a mathematical model able to describe some electrical properties 
of the eye. It is based on a mathematical model of syncytial tissues, that is tissues where many 
cells are electrically coupled one to the other and to an extracellular medium. We note that 
multicellular syncytia are used to model important tissues such as, for example, the eye lens 
(11-14). We use the model of syncytial tissues presented in (12), (14) to suggest a mathematical 
explanation of the LF phenomenon. We note that the eye lens is only apart of the eye and that 
in the scientific literature more sophisticated models of the eye exist, see for example (15). 
Finally we have pointed out the sensitivity of the electrical behaviour of the proposed 
syncytium model respect to the direction of the particle passing through the astronaut visual 
system. In particular, we have calculated the energy lost in the syncytium by a cosmic charged 
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particle going through the syncytium as a function of the direction of motion of the particle and 
we have compared the results obtained with the syncytium model with those obtained using the 
Geant 3.21 simulation program. 

In section 2 we describe a mathematical model of a syncitial tissue that describes some 
electrical properties of the crystalline lens and a numerical method to approximate the solution 
of the model presented. In section 3 we describe the relative dielectric constant of the 
crystalline lens. In section 4 we show some numerical results obtained from the numerical 
solution of the model that could provide a qualitative explanation of the LF phenomenon. In 
section 5 we describe the interaction between antimatter and syncytium. In section 6 we show 
the cosmic ray fluxes within the Iss obtained using the Creme96 program. In section 7 we 
describe the Geant simulation of the phenomenon under scrutiny and compare the results 
obtained with Geant 3.21 with those obtained using the syncytium model. In section 8 we 
calculate the adsorbed and equivalent energy doses in the crystalline lens due to cosmic 
radiation. In section 9 some simple conclusions are drawn. 

 
 

2  THE SYNCYTIUM MODEL AND THE FINITE DIFFERENCE APPROXIMATION 
Let us introduce some notations. Let R be the set of real numbers, n be a positive integer 

and Rn be the n-dimensional real Euclidean space. Let x !  Rn be a generic vector. Let C be the 
set of complex numbers. Let z !  C, we denote with Re(z) the real part of z and with Im(z) the 
imaginary part of z.  

Let us consider an ellipsoid of rotation D = { x = (x, y, z)t є R3: 1
2
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with a syncytial tissue. Let !D be the boundary of D. We choose the eccentricity of the 
ellipsoid e = 3 /2. Then we have b = a 2

1 e! . Let  εr(x) be the relative dielectric constant in x 
!  D. Let us apply on a point xI !  !D a time harmonic electric current having modulus 
proportional to I, direction vI and frequency f. Let Ri ≥ 0 be the resistivity of the intracellular 
medium, Re ≥ 0 be the resistivity of the extracellular medium, Ym = Gm + i 2πfCm !  C be the 
specific admittance of the cell membrane, that is the membrane that separates the intracellular 
medium from the extracellular medium. We note that Ym depends on f, but we suppose Ri, Re, 
Ym to be independent of the space variables x !  D. Let αm !  R be the fraction of the volume 
occupied by the cell membrane per unit volume of tissue. As a consequence of the application 
of the electric current described above to the syncytium we have the generation of two different 
electric potentials: one in the intracellular compartment, the other in the extracellular 
compartment. These potentials can be seen as two complex functions having the same support 
D. Let U(e)(x), U(i)(x), x !  D be the electric potentials in the intracellular and extracellular 
compartments respectively, then we have (12): 
 
 ! · [εr(x)!U(e)(x)] + ReαmYm[U(i)(x) – U(e)(x)] = 0,       x !  D,  (1) 
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! + Ys U(i)(x) = 0,      x ! !D, (4) 

 
where! denotes the gradient operator, · denotes the scalar product, δ(x) denotes the Dirac delta 
and )(ˆ xn  is the outward unit normal vector to !D in x !  !D. Note that the boundary 
condition given in eq.(3) states that the electric current can flow from the extracellular medium 
through the outer membrane located on ! D with admittance equal to zero; eq.(4) states that the 
electric current can flow from the intracellular medium through the outer membrane located on 
! D with admittance Ys = Gs + i 2iπ f Cs !  C, this admittance depends on f, but it is supposed 
to be constant with respect to the space variables x !  !D. The term on the right hand side of 
eq.(2) represents the application of the current on the tissue, this term represents the effect of 
the charged particles passing through the astronauts visual system and the costant I that appears 
in (2) is proportional to the charge of the particles, vI represents the direction of motion of these 
particles. This mathematical model is similar to the model derived in (14), so that we omit its 
derivation and we suggest to look at (12), (14), for a detailed explanation of the elementary 
physics that explains the model.  

The boundary value problem (1), (2), (3), (4) has a unique solution pair U(e)(x), U(i)(x), x !  
D. However this solution can not be computed explicitely and an approximation method must 
be used to evaluate U(e)(x), U(i)(x) in D. In particular for the computation of an approximation 
of U(e)(x), U(i)(x) in D we have rewritten problem (1), (2), (3), (4) in spherical coordinates and 
we have approximated the solution using the finite difference method. Let ρ!  [0, a], θ!  [0, π], 
φ !  [0, 2 π) be the spherical coordinates. Let Nρ, Nθ, Nφ > 1 be the number of points of the 
uniform discretization grid in spherical coordinates used in the finite difference method along 
the coordinates ρ, θ, φ respectively, then from problem (1), (2), (3), (4) we obtain a linear 
system of  (2Nρ - 1)(Nθ - 1)Nφ equations in (2Nρ - 1)(Nθ  - 1)Nφ unknowns.  

In the numerical experience described here we have computed the solution of this linear 
system using the biconjugate gradient method. See (16), for a description of the method. The 
components of the vector solution of this linear system are an approximation of the functions 
U(e)(x), U(i)(x), on the previously described grid points. 

The values of the parameters appearing in eqs. (1), (2), (3), (4) are shown in Table 1. 
These values are taken from (12) and they are relative to the frog eye. This is a starting 

point. The study of the problem with parameters relative to the human eye will probably give 
results qualitatively similar to those obtained with the data of  Table 1. However the values of 
the human eye parameters are not available to us at the moment. Moreover we have chosen xI = 
(0, 0, 1.6)t mm and Nρ = Nθ = Nφ = 30. In the next sections the values of the electric current, 
frequency and relative dielectric constant used in our work are shown. 
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Table 1: Electrical and morphological parameters of the crystalline lens of the frog eye. 
 

a 1.6 mm 
Ri 6.25 · 103 Ωmm 
Re 4.85 · 105 Ωmm 
Gm 4.38 · 10-9 Ω-1mm-2 
Cm 0.79 · 10-8 Fmm-2 
Gs 2.14 · 10-6 Ω-1mm-2 
Cs 9.75 · 10-8 Fmm-2 
αm 6 · 102 mm-1 

 
 
3  THE RELATIVE DIELECTRIC COSTANT 

In the macroscopic approach the biological tissues are generally considered as media that 
interact with the electric field induced by the external environment in two different ways: (1) 
generating electric currents of conduction that increase with the conductivity of tissues; (2) 
producing polarization effects that depend on the local dielectric constant. For this reason, from 
an electromagnetic point of view, biological tissues can be considered as dielectric media able 
to store and dissipate the energy of the electromagnetic fields involved. According to 
electromagnetic theory the physical quantity that characterizes these mechanisms is the 
complex relative dielectric constant. The real part of this constant takes into account the 
temporary storage of energy in the medium, while the imaginary part, depending on the 
conductivity σ, is responsible for the dissipation of the electromagnetic energy.  

In this work we assume the crystalline lens of the frog eye to be a perfect dielectric (σ = 0), 
so that the relative dielectric costant εr(x) has not imaginary part and is the square of the 
refraction index. The crystalline has the shape of a thin biconvex lens, is constituted by a very 
transparent and very elastic substance and has a concentric shell structure. Since the crystalline 
lens has variable density, εr(x) is variable too.   

Applying the finite difference method, we obtain a series of ellipsoidal shells with constant 
eccentricity equal to e. Let ρ to be the distance from the centre of the ellipsoid D (origin of the 
coordinates system) calculated along a semiaxis. A shell is determined by a value of the 
variable ρ. Then we suppose εr(x) to be costant whithin every shell and given by: 
 
 εr(x) = εc – 

a

! (εc -  εs), (5)  
 
where εc = 1.98 and εs = 1.89 are the values in the centre (ρ = 0) and on the boundary of the 
ellipsoid (determined by the shell having ρ = a) respectively. The variation of εr(x) between the 
centre and the boundary of the ellipsoid is 4.76\%. Figure 1 shows the relative dielectric costant 
vs. ρ. 

Let l to be the index corresponding to a value of the ρ variable. Then l determines the 
values of the semiaxes of the lthshell, al and bl. In this way the distance between a point on shell 
and the origin is:  
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 rl = rl(θ) = 
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+
,       θ !  [0, π]. (6)  

 
 
The variable that enters in the equations of the electric potentials is rl. In the case of the 

spherical syncytium (14) we have rl = al when θ !  [0, π].  
A theory describing the ocular lens as a radially nonuniform spherical syncytiym is 

proposed, solved and described as a simple equivalent circuit in (13). In this paper the 
syncytium consists of a nucleus with one effective intracellular resistivity surrounded by a 
cortex with another resistivity. 

 
Figure 1: Relative dielectric costant of the eye vs. ρ. 

 
 
4 THE ELECTRIC POTENTIAL AND THE ENERGY LOST IN THE SYNCYTIUM 

We study the electric potentials of the syncytium with variable density as a function of 
the incidence direction of the cosmic charged particle. The incidence point xI = (0, 0, z)t ! !D 
is located on the North pole of the ellipsoidal syncytium. 

Let α be the incidence angle on the crystalline lens measured respect to the positive z axis. 
When α = 90° the particle direction of motion is tangent to the ellipsoid and the interaction 
effect is minimum. When α = 180° the particle direction of motion is along the semiaxis of 
length a and the interaction effect is maximum.  
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Figure 2 shows the electrical behavior of the syncytium model respect to the choice of three 
different directions for the electric current when f = 3 Hz and I = 7 µA. This value of the 
electric current comes from the comparison  with the Geant 3.21 simulation if we imagine that 
the incident cosmic particle is a proton (see section 7, Table 2). In Figure 2 we can see the 
shining effect when the electric potentials assume high values. 

We have calculated the gradients of the electric potentials using the finite difference 
method in spherical coordinates. The energy lost by a cosmic charged particle in the 
intracellular and extracellular compartments of the syncytium is respectively: 
 
 \ΔE(i) = 

e

i

V

r
dVU

e

2)(0 ||
2

!"#
# , (7)  

and 
 ΔE(e) = 

e

V

e

r
dVU

e

! " 2)(0 ||
2

#
# , (8)  

  

where ε0 = 8.854 · 10-12 
2

2

Nm

C  (SI units) is the vacuum dielectric constant and Ve is the volume 

of the ellipsoid D. 
The total energy lost in the syncytium is:  

 
 ΔE(t) =  ΔE(i) +  ΔE(e). (9)  
 

Figure 3 shows the behavior of the energy lost in the intracellular compartment (I), in the 
extracellular compartment (E) and in the whole syncytium (T) vs. frequency of the electric 
current. We suppose εr(x) to be constant in the range of frequencies considered. We have 
chosen α = 45° in order to have a mean trajectory of the cosmic particle in the syncytium.  

In Figure 5 the most important result of this paper is shown, that is the energy lost in the 
syncytium vs. incidence angle α of the cosmic charged particle. These are symmetric curves 
respect to the line α = 90° because the system is symmetric with respect to the z axis. We can 
see that the energy lost reaches the maximum value when the incidence angle of the cosmic 
charged particles is 180°. The minimum value is reached for α = 90°. Based on this fact we can 
suppose that the LF phenomenon occurs when cosmic charged particles pass through the 
astronaut visual system with a incidence angle of approximately 180°.  

Figure 4 shows the behavior of the energy lost vs. intensity of the electric current when α = 
45°. 
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Figure 2: The electric potentials U(e)(x), U(i)(x), in the plane x = 0. We have chosen the 
directions α = 60°, 90° and 180° the frequency f = 3 Hz and the electric current I = 7 µA. In 
order to do a comparison between the potentials corresponding to different incidence 
directions, in each column the values of the potentials are normalized to the absolute maximum 
and minimun values. In this way the resulting values are dimensionless and are represented on 
a grey scale between 0 (dark grey) and 1 (bright grey). The bars are drawn with the 
normalized values. Then in each column the same linear greyscale is used, but for figures on 
different columns different scales are used. But the numbers written below the bars are the real 
maximum and minimum values of the electric potentials and they are expressed in millivolts. 
We can see that when these values are high a shining effect exists. 
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Figure 3: Energy lost in the syncytium vs. frequency. 

 

 
 

Figure 4: Energy lost in the syncytium vs. electric current. 
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Figure 5: Energy lost in the syncytium vs. incidence angle of cosmic charged particle. 

 
 
5 INTERACTION ANTIMATTER-SYNCYTIUM 
 

When we consider the interaction between antimatter and syncytium, the right hand side 
of eq.(2) must be changed because of the possible annihilation process. We can write: 
 

! · [εr(x)!U(i)(x)] + RiαmYm[U(e)(x) – U(i)(x)] = -IRi )(
I

I

xx
v

!
"

"# + k δ(x - xI) ,       x !  D,(10) 

with  
k = 2 m c2 g,      (11) 

 where m is the mass of the antiparticle and g is a constant depending on the antiparticle 
expressed in V/N. This constant will be determined experimentally in space. It is linked to 
cross section of the annihilation process. When g = 0 we are considering matter; when g = 1 we 
suppose that all the antiparticles entering in the syncytium undergo the annihilation 
phenomenon. The true value of g is much smaller than 1 since the antiparticles that we consider 
are flying. 

In order to study the antimatter effect in the syncytium, we have chosen the most 
favourable case (g = 1). We have seen that the effect of the annihilation process on the value of 
energy lost in the syncytium is negligible. In fact the source term kδ(x - xI) in eq.(9) is much 
smaller than the other term when the current intensity I is of order of  µA (see section 7, Table 
2). 
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6 THE EVALUATION OF THE COSMIC RAY FLUXES 
We used the Creme96 computer program to evaluate the cosmic ray fluxes within the 

International Space Station. Creme96 is a package of computer programs to create numerical 
models of the ionizing radiation environment in near Earth orbits and to evaluate the resulting 
radiation effects on electronic systems in spacecrafts and in high altitude flying aircrafts (17-
19). 

The differential fluxes, in minimum solar condition, are shown in Figure 6. There is a 
strong predominance of protons and alpha particles with respect to heavier nuclei and a great 
predominance of protons with respect to alpha particles when the kinetic energy is below 1 
GeV/nucl. The maximum value for protons flux is near 102 MeV/nucl. The remaining particles 
have maximum values near 103 MeV/nucl. 

 
Figure 6: Cosmic ray differential fluxes vs. kinetic energy within the ISS. 

 
 
7 THE GEANT SIMULATION 

In order to control the reliability of the syncytium model, we have developed a simulation 
with the Geant 3.21 program. 

The Geant 3.21 program simulates the passage of elementary particles through matter. This 
program originally designed for High Energy Physics experiments (HEP), today it has found 
applications also outside this domain in areas such as medical and biological sciences, 
radioprotection and astronautics. 

The principal applications of Geant in HEP are: 
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(1) the transport of particles through an experimental setup for the simulation of the 
detector response; 

(2) the graphical representation of the setup and of the particle trajectories. 
These two functions are combined in the interactive version of Geant. This is very useful, 

since the direct observation of what is happening to a particle inside the detector makes the 
debugging easier and may reveal possible weakness of the setup. 

The Geant 3.21 program system can be obtained from CERN, European Organization for 
Nuclear Research, in http://cernlib.web.cern.ch/cernlib/version.html and the program runs 
everywhere the CERN Program Library is installed. 

 
Figure 7: Events distribution vs. energy lost when a cosmic proton hits a sphere of water. The 
energy is expressed in MeV. 
 

We remember that in (6) at least two causes of Light Flashes are hypothesized, one due to 
protons and the other due to heavy nuclei. For this reason we have developed a lot of 
simulations using the Geant 3.21 program. 

In our simulation the incident particles are generated in a random way and isotropically on 
a big spherical surface with the crystalline lens in the centre. The lens is represented by a 
uniform sphere of water with the ray equal to a because the Geant 3.21 program can not 
simulate an ellipsoid. The energy of a particle is chosen in a random way within the cosmic ray 
spectrum obtained using the Creme96 program (Figure 6), so that events are distributed 
according to this spectrum. The direction of a particle is isotropically generated in a random 
way. 
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Figure 7 shows events distribution vs. energy lost for cosmic protons that hit a sphere of 
water obtained by using the Geant 3.21 program. 

Table 2 shows the comparison between the Geant simulation and the syncytium model. We 
remember that the sphere has radius a and the ellipsoid has semiaxes a and a/2. In the first 
column we report the kind of particle considered in the Geant simulations. The second column 
shows the average energy lost in a sphere of water of radius a calculated by Geant. In the third 
column there is the electrical current that in a uniform spherical syncytium with εr(x) = 1 yield 
a lost of energy (fourth column) almost equal to the one calculated by Geant. The fifth, sixth 
and seventh columns show the energy lost in the intracellular and extracellular compartments 
and in the whole ellipsoidal syncytium respectively having the parameters reported in Table 1 
and the variable density described in section 3. In the last column we show the ratio between 
the energies lost in the spherical and ellipsoidal syncytia. We can see that the energy lost in an 
uniform spherical syncytium is almost three times greater then the energy lost in the ellipsoidal 
syncytium having variable relative dielectric constant described previously. This difference is 
due to the difference in volume and in the dielectric constant εr(x). 

The comparison between the Geant simulation and the syncytium model indicates the 
reliability of the latter in the study of some electrical properties of the eye. 

 
Table 2: Comparison between the syncytium model and the Geant simulation. The energy is 
expressed in MeV. The electric current is expressed in µA. The values of the parameters are f = 
3 Hz and α = 45°. 
 

Particle ΔEG I ΔEs ΔEI
e ΔEE

e ΔET
e ΔEs/ΔET

e 
p 2.329 7 2.329 0.351 0.490 0.841 2.77 
α 1.833 6 1.909 0.258 0.360 0.618 3.09 

7Li3 4.044 9 4.295 0.581 0.809 1.390 3.09 
10B5 11.54 15 11.93 1.615 2.249 3.864 3.09 
12C6 16.46 17 15.32 2.074 2.888 4.962 3.09 
14N7 22.21 20 21.21 2.871 3.998 6.869 3.09 
16O8 28.80 23 28.05 3.801 5.286 9.087 3.09 

56Fe26 308.2 76 306.3 41.50 57.72 99.22 3.09 
 
 
8 THE SPACE RADIATION EFFECTS 

The health risk to astronauts from cosmic rays radiation determines the maximum lenght 
of space missions. As a consequence it is very important to evaluate the effects of charged 
particles on organs of the human body. It is necessary to have a set of dosimetric codes to 
convert the radiation environment within spacecrafts into radiation protection quantities, which 
can be used to evaluate astronaut risk when exposure limits have been established. These limits 
exist for Low Earth Orbit (LEO) only. For missions beyond the protection of the Earth's 
magnetic field, risk increases. In each case the shielding of spacecrafts is basic. 

We studied the effects of cosmic radiation on an “eye” simulated by Geant 3.21 program. 
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We remember some definitions. The absorbed dose D1 is the quantity which measures the 
total energy absorbed per unit mass and is the fundamental parameter in radiological 
protection. Then we have: 
 

 D1 = 
G

G

M

E!
,  (12)  

 
where MG is the mass of the uniform sphere of water simulated by Geant. The unit of D1 is the 
Gray which is defined as 1 Gy = 1 J/kg. 

The absorbed dose describes the physical effect of the incident radiation, but it gives no 
information on the rate of absorption and on the specific type of the radiation. These factors are 
very important when considering the biological effects of radiation, then D1 is an inadequate 
quantity. For example, an absorbed dose of α particles produces more damage than an equal 
dose of protons, and a given dose of protons produces more damage than a similar dose of 
electrons or γ-rays. In fact different particles deposit locally different energy per unit path 
lenght. Thus the particles with bigger ionizing power yield a greater local biological damage. 

For considering this effect, to each radiation type is assigned a radiation weighting factor, w 
(20). The factors are independent from tissue type, are experimentally determined and have 
stochastic character. The quality factor of a radiation type is defined as the ratio between the 
biological damage produced by the absorption of 1 Gy of that type of radiation and the 
biological damage produced by 1 Gy of X or γ radiation. 

Then the equivalent dose, H, is obtained multiplying the value of the absorbed dose, 
averaged over the entire tissue or organ, by the radiation weighting factor: 
 
 H = D1 × w. (13)  
 

The equivalent dose expresses longterm risk (primarily cancer and leukemia) from low-
level chronic exposure. 

The unit of equivalent dose is the Sievert (Sv) which has the same dimensions as the Gray 
(J/kg), but now 1 Sv of α particles produces approximately the same effect as 1 Sv of X or γ 
rays, etc. Howewer the equivalent dose is not a quantity directly measurable while the 
absorbed dose is directly observable. 

If more than one radiation type is present, the total biological effect suffered by a tissue or 
organ is: 
 
 Htot = ∑R DR wR, (14)  
 
where DR is the average absorbed dose received by the organ from the radiation type R having 
a weighting factor equal to wR. 

Table 3 shows the absorbed and the equivalent dose in the crystalline lens (uniform sphere 
of water) relative to the average energy lost calculated by the Geant simulation. Then we obtain 
Htot = 74.575 µSv. 
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Table 3: Absorbed and equivalent energy doses in the crystalline lens corresponding to the 
average energy lost calculated by Geant simulation. The energy is expressed in MeV. Absorbed 
and equivalent energy doses are expressed in µGy and in µSv respectively. 

 
Particle ΔEG [MeV] D [µGy] w H [µSv] 

p 2.329 0.022 5 0.110 
α 1.833 0.017 20 0.347 

7Li3 4.044 0.038 20 0.766 
10B5 11.54 0.109 20 2.186 
12C6 16.46 0.156 20 3.118 
14N7 22.21 0.210 20 4.207 
16O8 28.80 0.273 20 5.456 

56Fe26 308.2 2.919 20 58.385 
 

Table 4 shows the absorbed and the equivalent dose in the crystalline lens relative to the 
average energy lost in one year calculated by the Geant simulation. Here q is the interactions 
number per second occurring in the lens and ΔEG

s = ΔEG × q is the mean energy lost in one 
second. Without protons we obtain Htot = 96.4 mSv/yr. 

 
Table 4: Absorbed and equivalent energy doses in the crystalline lens corresponding to the 
average energy lost in 1 year calculated by Geant simulation. 

 
Particle q ΔEG [MeV] ΔEs

G [eV] D [mGy/yr] H [mSv/yr] 
p 1.508 2.329 3.51 × 106 1.048 × 103 5.24 × 103 
α 3.79 × 10-3 1.833 6950 2.08 41.6 

7Li3 1.83 × 10-5 4.044 74.0 2.21 × 10-2 0.442 
10B5 3.03 × 10-5 11.54 349 10.45 × 10-2 2.1 
12C6 10.2 × 10-5 16.46 1679 50.15 × 10-2 10 
14N7 2.71 × 10-5 22.21 602 17.98 × 10-2 3.6 
16O8 9.76 × 10-5 28.80 2811 83.97 × 10-2 16.8 

56Fe26 1.19 × 10-5 308.2 3668 109.6 × 10-2 21.9 
 

In order to give an idea of character of the numbers of Table 4, we cite the dose limits as 
recommended by the International Commission on Radiological Protection (ICRP) (20). Two 
sets of limits are defined: one for individual exposed occupationally and one for the general 
public. For the lens of eye the limits are 150 mSv/yr (occupational) and 15 mSv/yr (general 
public). These are allowable doses in addition to the natural background dose. In radiotherapy 
the doses given to the tumour are typically around 100 to 200 Sv per treatment. 

Examples of use of codes for calculating the dosimetric quantities for several near Earth 
environments can be found in (21). 
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Results of measurements of the absorbed and equivalent dose on board aircrafts, spacecrafts 
and space station Mir can be found in (22). A discussion of the planned radiation measurement 
on the International Space Station is given in (23). 
 
 
9 CONCLUSIONS 

The comparison with the results obtained with the Geant simulation program shows that 
the modellization of part of the human visual system with an ellipsoidal syncytium is 
promising. The work presented in this paper suggests that this model can be used in the 
qualitative study of some unexpected phenomena such as the Light Flashes observed by the 
astronauts. 
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