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Abstract

This doctoral thesis is focused on the development of the DAΦNE lattice to collide in the

second interaction point where the FINUDA detector was installed in 2003. Modelling

of the second interaction region and of the modified wigglers are described in detail.

The constraints to be fulfilled by the lattice and the agreement between the model and

the beam measurements are discussed. A model dependent technique for beam based

alignment has been implemented for the main rings. The developed procedure and its

results are presented.

iii





Contents

1 Introduction 1

2 General design of the Φ-factory 5

2.1 DAΦNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Definition of the coordinate system . . . . . . . . . . . . . . . . . . 8
2.1.2 Interaction regions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Arc cells and dispersion function . . . . . . . . . . . . . . . . . . . 15
2.1.4 Long, Short and “Y” straight sections . . . . . . . . . . . . . . . . . 17
2.1.5 The injection system . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Theory of the DAΦNE luminosity performances 19

3.1 Design luminosity of DAΦNE . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Hourglass effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Beam-beam interaction . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Crossing angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Numerical simulations of the DAΦNE luminosity: choice of the

working point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Development of the DAΦNE optics model 27

4.1 Lattice model of the main rings for MAD . . . . . . . . . . . . . . . . . . . 28
4.1.1 Bending dipoles and splitters . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 Quadrupoles, sextupoles and octupoles . . . . . . . . . . . . . . . . 32

4.2 Modelling of the FINUDA IR from magnetic measurements . . . . . . . . . 33
4.2.1 FINUDA and compensating solenoids . . . . . . . . . . . . . . . . . 34
4.2.2 Permanent and electromagnetic quadrupoles . . . . . . . . . . . . . 34

4.3 Hard-edge model of the modified wigglers . . . . . . . . . . . . . . . . . . . 37
4.3.1 Linear properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Linear and non-linear field perturbations as thin lenses . . . . . . . 44
4.3.3 Results of the MAD model . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.4 Radiation integrals and other remarks . . . . . . . . . . . . . . . . 50

5 Lattice setting for FINUDA and KLOE 52

5.1 Lattice set-up for collisions in FINUDA . . . . . . . . . . . . . . . . . . . . 52
5.1.1 Injection section: betas, phase advance and dispersion . . . . . . . . 53

v



vi CONTENTS

5.1.2 Arc cell: chromatic sextupoles, dispersion and emittance . . . . . . 55
5.1.3 Interaction regions: betas and trajectories . . . . . . . . . . . . . . 57

5.2 Interaction regions for collisions in KLOE . . . . . . . . . . . . . . . . . . 60

6 Optics measurements and model results 63

6.1 Optics measurements at DAΦNE . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.1 Beam position monitors . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.2 Dispersion measurements . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.3 Beta measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 DAΦNE model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Beam based alignment 73

7.1 The BBA technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.1.1 Closed orbit response to quadrupole strength variation . . . . . . . 75

7.2 Experimental equipment and data taking . . . . . . . . . . . . . . . . . . . 77
7.2.1 Power supply control . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2.2 Closed-orbit response measurement . . . . . . . . . . . . . . . . . . 78

7.3 Analysis and errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3.1 BBA analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3.2 BBA results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Summary 90

Acknowledgements 93

Bibliography 95

A Transport matrices of the magnetic elements 99



Chapter 1

Introduction

The Double Annular Φ-factory for Nice Experiments (DAΦNE) is an electron-positron

circular collider at high luminosity working at the energy of the Φ mass resonance (1.020

GeV) [47, 48]. The design of the collider is based on two high current symmetric rings,

97 metres long, crossing at a horizontal angle in two interaction regions 10 metres long

(the low beta insertions), which alternatively housedifferent experiments. The lattice of

the rings consists of four achromatic arcs, each housing a 2 metres long, 1.8 T normal

conducting wiggler magnet which doubles up the synchrotron radiation emitted in dipoles.

The major physics motivation for the construction of DAΦNE is the observation of di-

rect CP-violation in KL decays, i.e. the measurement of the parameter ǫ′/ǫ with accuracy

in 10−4 range by the KLOE detector [21]. The other experiments which have been using

the DAΦNE luminosity are FINUDA [20], for hypernuclear spectroscopy, and DEAR [19],

for exotic atoms physics.

The KLOE detector, with its solenoidal field, has been installed on the first interaction

region (IR1) since 1999. The second interaction region (IR2) has been shared between

FINUDA, which has also a solenoidal field, and DEAR, which has external targets around

the vacuum chamber, non interfering with the ring optics.

1



2 CHAPTER 1. INTRODUCTION

Two experiments can be installed contemporaneously in DAΦNE, but since the com-

missioning period of the collider (1998) it was clear that optimizing the luminosity in two

interaction points was critical and the collider has always worked for one experiment per

time, keeping the beam trajectories vertically separated at the non-colliding interaction

point.

Many are the effects that can limit the luminosity in a multibunch collider: nonlin-

earities in the magnetic fields, parasitic crossings between the opposite beams, instability

thresholds of the currents etc.

In the original design one key point was the crossing angle at the interaction point.

DAΦNE, together with KEK-B, is the first collider originally designed with a horizontal

crossing angle that allows to store up to 120 bunches per ring avoiding parasitic crossings

between the outgoing bunches after collision and the incoming bunches of the opposing

beam in the interaction region. However the crossing angle θx must be small enough to

avoid synchro-betatron resonances (this condition is generally expressed by the Piwinski

angle φ that must be kept small [35]: i.e. φ = θx · σ∗

x/σz ≪ 1, where σ∗

x and σz are the

horizontal and longitudinal beam sizes at the collision point). The design value of the

crossing angle chosen to fit this condition was θ = ±12.5 mrad.

During the first years of operation, it has become clear that with respect to the original

design the crossing angle could be increased and the beta functions at the interaction point

squeezed with benefit for the parasitic crossing and the increase of luminosity [11]. In 2003

a modified design of the first interaction region (IR1) has been then realized, changing

the original FDF quadrupole triplet scheme of the low beta insertion in a DF doublet

which is more flexible to vary the crossing angle in a wider range and to decrease the beta

functions.

Another specific feature of DAΦNE from the point of view of the lattice are the

wigglers, which in a low-medium energy collider as a Φ-factory are needed to shorten
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the damping times of transverse and longitudinal oscillations and to raise the instability

thresholds. The operation of the collider showed that wiggler magnets were sources of

strong nonlinearities (sextupolar, octupolar and higher order field components). The

evidence of those effects was pointed out experimentally observing the betatron tune shifts

when the beam orbit along the wigglers was varied with horizontal closed bumps [33].

Simulations confirmed that such nonlinearities in wigglers were responsible of limitations

both in the dynamic aperture and in the energy acceptance, i.e. in the transverse area

where the particle motion is stable and the energy range within which a particle is not lost

from the beam. Such effects resulted in a reduction of the beam lifetime and luminosity

performances.

In order to correct the non linear components in the wigglers, in 2003 the surface of

the wiggler poles has been modified in a curved shape which generate a flat behaviour of

the magnetic field in a larger range along the horizontal coordinate [37].

The work discussed in this PhD thesis concerns the study and the development of the

DAΦNE main ring lattice for two experiments (KLOE and FINUDA) I have carried out

from 2002 to 2004 at DAΦNE, with special attention to the linear optics model.

After a presentation of the general design of the collider, a discussion about the pa-

rameters that determine the luminosity performances in DAΦNE is introduced (Chap-

ters 2 and 3). My major activity has been the update of the model that describes the

DAΦNE main rings with the optics program MAD developed at CERN [26]. In this

framework I have completely modelled the second interaction region, where the FINUDA

experiment was installed in 2003, and the modified wigglers from the magnetic measure-

ments of the field performed on each magnetic element (Chapter 4). With this model I

calculated the new ring optics for FINUDA with the required parameters: lower emit-

tance (from 0.8 to 0.4·10−6 m·rad), lower vertical beta function at the interaction point

(from 4 to about 2 cm), optimized betatron phase advance between the magnetic elements
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etc. (Chapter 5).

The new DAΦNE model has been validated by comparing its predictions with the

beam measurements both for the linear optics (beta functions, betatron tunes, dispersion

function, closed orbits) and for nonlinear effects (chromaticity, dynamic aperture etc.).

In the framework of this optics study, I have also implemented a beam based alignment

procedure for the quadrupoles magnets (Chapter 7). Thanks to such model dependent

measurements we were able to easily find large misalignments of the quadrupoles and also

to check the correct operation of the other magnets in the first days of running after a

long machine shutdown.



Chapter 2

General design of the Φ-factory

The layout of the DAΦNE complex is shown in Fig. 2.1 and the parameters of the ac-

celerator are listed in Table 2.1. In this chapter the main components of the factory are

presented and the design of the collision rings on which this thesis is focused is described

in more detail.

2.1 DAΦNE

The luminosity in a circular collider is given by:

L = fcoll
N+

b N−

b

A
; (2.1)

where fcoll = frevnb is the frequency of collisions with nb the number of bunches, N+
b

and N−

b the number of particles of the colliding bunches and A the overlap function.

The transverse area A and the number of particles per bunch are determined by the

characteristics of the collider. Eq. (2.1) shows that to enhance the luminosity, in addition

to shrink A and increase Nb as much as possible, the frequency of collisions fcoll can be

raised by increasing the number of bunches nb per beam. In DAΦNE it is possible to store

5
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Figure 2.1: Layout of the DAΦNE complex.
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Figure 2.2: Layout of the DAΦNE main rings.

up to 120 bunches without increasing the number of crossing points, because electrons

and positrons circulate in two separated rings, laying on the same horizontal plane and

sharing two interaction regions where the experimental detectors are installed.

The layout of the DAΦNE main rings is shown in Fig. 2.2: two storage rings 97 metres

long, one for electrons and the other for positrons, crossing each other in two interaction

regions 10 metres long, where the opposing beams travel in the same vacuum chamber.

Each ring has an outer section, called Long, and one inner section, Short, both consisting

of two quasi achromatic arcs and a straight section. The four sections (Long and Short)

are connected to the interaction regions through four splitter magnets. A challenging

feature of the DAΦNE design is that there is no symmetry in the magnetic structure all

along the rings: this results in a more complicated handling of the optics functions. In

order to have the maximum flexibility in the set up of the ring optics, each of the 43
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quadrupoles per ring is individually powered.

The position of the beam along the rings is measured with 47 beam position monitors

(BPM) and can be steered and controlled with 31 horizontal and vertical corrector dipoles

per ring.

2.1.1 Definition of the coordinate system

Before presenting the design of the main rings of DAΦNE in more detail, the coordinate

system used throughout this thesis to describe the particle motion is introduced. The po-

sition of a particle along a ring is located by means of the azimuth coordinate s (Fig. 2.3).

A local 3-dimentional coordinate system (x, y, z) is used to identify the particle position

with respect to the ideal reference. The transverse coordinates x and y measure the hor-

izontal and vertical displacement from the ideal trajectory passing through the center

of perfectly aligned quadrupole magnets, while the longitudinal coordinate z = s − v0t,

Parameter Design Present
Beam energy E0 510.0 MeV
Peak luminosity Lmax 5 · 1032 1.3 · 1032 cm−2s−1

Ring length L 97.68 m
Emittance ǫx/ǫy 1.0/0.01 0.4/0.002 mm · mrad
Beta function at IP1 β∗

x/β
∗

y 4.5/0.045 2.0/0.018 m
Beta function at IP2 β∗

x/β
∗

y 4.5/0.045 2.0/0.025 m
Beam-beam tune-shift ξx/ξy 0.040/0.040 0.020/0.016
RF frequency fRF 368.263 MHz
Harmonic number h 120
Revolution frequency frev 3.0688 MHz
Particle per bunch Nb 8 · 1010 4 · 1010

Natural energy spread σε/E0 3.96 · 10−4

Natural bunch length σs 3.0 1.7 cm
Energy loss U0 9.3 keV/turn
Damping time τε/τx 17.8/36.0 ms
RF voltage VRF 250 kV

Table 2.1: Parameters of the DAΦNE collider
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Chapter 1Conventions1.1 Reference SystemThe accelerator and/or beam line to be studied is described as a sequence of beam elements placedsequentially along a reference orbit. The reference orbit is the path of a charged particle havingthe central design momentum of the accelerator through idealised magnets with no fringe �elds (seeFigure 1.1). 6y
@@@@@@@@@@@@@

@@@Ix s@@@ss s
PPPPPPPPPPPPPPPPPPi � 6�s��	 centre ofcurvature

��1d~r -@@Ractualorbit :s@@I referenceorbit
Figure 1.1: Local Reference SystemThe reference orbit consists of a series of straight line segments and circular arcs. It is de�ned underthe assumption that all elements are perfectly aligned. The accompanying tripod of the reference orbitspans a local curvilinear right handed coordinate system (x; y; s). The local s-axis is the tangent tothe reference orbit. The two other axes are perpendicular to the reference orbit and are labelled x (inthe bend plane) and y (perpendicular to the bend plane).1

Figure 2.3: The coordinate system employed to describe the particle motion.

where v0 is the velocity of a particle with nominal energy and t is the time, locates the

longitudinal position with respect to an ideal particle with nominal energy E0 at the

bunch centre. Deviations of particle energy E with respect to E0 are measured with the

coordinate δ = (E − E0)/E0 and variations in slope of particle trajectories are denoted

as x′ = dx/ds and y′ = dy/ds.

The beam transport between two positions in the ring is expressed in matrix notation

as:

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; (2.2)

where “in” and “out” stand for incoming and outgoing beam through the lattice section

of interest. The values of the Rij matrix elements can be expressed in terms of the lattice
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Twiss functions (the betatron functions βx(s), βy(s), the dispersion function Dx(s) and

their derivatives) as in every optics textbook (see for example [22, 49]).

2.1.2 Interaction regions

The interaction regions of DAΦNE (referred to as IR1 and IR2) are two sections 10 metres

long with a magnetic structure symmetric with respect to the interaction point (IP1 and

IP2) designed to produce low beta-functions at the IPs, for this reason the sections where

experiments are housed are called low-beta insertions. The electron and positron beams

travel off axis in the vacuum chamber of the interaction regions with opposite direction

and they cross each other with a design angle in the horizontal plane of ±12.5 mrad

(Fig. 2.5), at the centre of the IR.

The strong focusing is provided by a couple of quadrupole doublets located symmet-

rically with respect to the interaction point. In the free space between the interaction

point and the closest D quadrupole1 the vertical beta-function is given by:

βy ≈ d2

β∗

y

; (2.3)

where β∗

y is the vertical beta-function at the interaction point and d = fy is the distance

between the interaction point and the closest quadrupole equal to the quadrupole focal

length. Large beta-functions in the lattice result in large chromatic aberrations that must

be carefully corrected using sextupoles magnets located along the ring. Particles with

different energies are focused differently since the strength of the quadrupoles depends on

the particle momentum. The natural chromaticity (chromaticity only from quadrupoles)

1F and D refer to as focusing and defocusing quadrupoles in the horizontal plane and the converse in
the vertical plane.
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of a magnetic lattice is expressed as:

ξ =
1

4π

∫

β(s)K(s)ds; (2.4)

where K(s) is the strength (normalized gradient) of the quadrupoles:

K =
1

Bρ

∂B

∂y
; (2.5)

and Bρ = p/e is the magnetic rigidity of the particle. The drawback of the correction of

chromaticity is the reduction in the dynamic aperture2 of the ring due to the nonlinearities

in the particle motion introduced by the sextupoles.

With typical values for DAΦNE of β∗

y ≈ 2 cm (higher than the bunch length σz as

explained in Chapter 3) and a maximum βy of the order of 50 m compatible with a

reasonable chromaticity, the distance between the IP and the closest D quadrupole comes

out to be 1 m, meaning that the low-beta quadrupole doublets must be housed inside

the experimental detector. The only way to fit quadrupoles inside a detector was to use

permanent quadrupole magnets (otherwise supeconducting technology should be used).

In DAΦNE when the beams are colliding in one interaction point, they are separated

with a vertical closed bump of the orbit in the opposite interaction point.

The two interaction regions of the experiments KLOE and FINUDA are presented

below. KLOE has been in operation since 1999, while FINUDA has completed the first

phase of its program in a six month run during 2003.

Studies and tests carried out in 2001 and 2002 [8, 9, 11] lead to the decision to modify

the design of the interaction regions to a new quadrupole configuration that allows a better

flexibility for the collider operation. After a six month stop in 2003, the new interaction

2The 2-dimensional dynamic aperture is defined as the area in the transverse space (x, y) where the
particle motion is stable. Generally it is calculated by tracking codes as the maximum x and y values
that can have a particle without being lost after a “large” number of turns.
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Figure 2.4: Schematic view of the present KLOE interaction region (IR1).

regions were installed and a new beam optics has been designed and tested first for the

FINUDA run with good achievements, then in 2004 for KLOE with further very good

performances.

IR1: the KLOE interaction region

The KLOE interaction region is a low-beta insertion with two permanent quadrupoles

doublets symmetric with respect to the IP housed inside the experimental detector. The

KLOE superconducting solenoid magnet is 0.6 Tesla × 4 metres. Such a magnetic field is

a strong perturbation to the particle motion, because the integrated field of the solenoid

(2.4 Tm) is of the same order of magnitude of the magnetic rigidity Bρ = 1.7 Tm of

an electron with an energy of 510 MeV. The effect of the solenoid field is focusing and

coupling the betatron motions tilting the transverse section of the beam by an angle

proportional to the integral of the field along the particle trajectory [4] (θrot ≃ 40◦):

θrot =
1

2Bρ

∫

solen

Bz(s)ds (2.6)

The correction system of the coupling is realized zeroing the rotation of the transverse

beam section at the interaction point and outside the interaction region by compensating
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the integrated field with two solenoids of 1.2 Tesla × 1 metre (Compensators) whose field

is opposite the KLOE one. The compensating magnets are installed between the detector

and the splitters. Finally each quadrupole is rotated around its longitudinal axis following

the rotation of the beam.

The present KLOE interaction region is based on a DF quadrupole doublet (the former

one being based on a FDF focusing lattice). Its novel features are:

• the inner F quadrupole was removed and the third one strengthened by 50% in-

stalling beside another F permanent quadrupole;

• stepping motors remotely controlled that can vary the quadrupole roll angles in a

±45◦ range;

Figure 2.5: Horizontal and vertical trajectories of the electron and positron beams along IR1
as they are shown by the DAΦNE control system, for beams colliding in IP1.
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• two printed circuit (PCB) quadrupoles to measure beta-functions near IP1.

This modified lattice has several advantages concerning the optics that will be discussed

in Chapter 5, the more important being the wider range within which the horizontal

crossing angle at IP can be varied, moreover the new rotation equipment allows to correct

the betatron coupling for different values of the KLOE solenoidal field.

The beam trajectories along IR1 are controlled adjusting the currents of the splitter

magnets and using four dipole correctors outside the interaction region. The position

of the beams is measured with six beam position monitors located symmetrically with

respect to IP1. In Fig. 2.5 the horizontal and vertical position measurements at the

monitors are shown as they are visualized by the DAΦNE control system.

When the beams are colliding in FINUDA, the beam trajectories are vertically sepa-

rated at IP1, the KLOE solenoid is turned off, the roll angles of the permanent quadrupoles

are rotated to zero and IR1 is still a low-beta.

The beta functions and the beam trajectories in IR1 are described in Chapter 5.

Figure 2.6: Schematic view of the FINUDA interaction region.
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IR2: the FINUDA interaction region

The set up of the second interaction region for FINUDA was realized in 2003. The

FINUDA detector is only 2 metres long, so that two further electromagnetic quadrupole

doublets are positioned outside the detector (see Fig. 2.6). The same correction system

as KLOE (compensating solenoids and rotated quadrupoles) is employed for the coupling

arising from the experimental solenoid that has shorter dimensions but a stronger field

(1.0 T × 2.4 m) than the KLOE one. The quadrupoles (both the permanent and the

electromagnetic ones) are rotated with stepped motors.

During the KLOE run, the FINUDA apparatus with the four permanent quadrupoles

is rolled off and replaced with a simple straight pipe line: in this case the beta functions are

“detuned” by using the other four electromagnetic quadrupoles and the second interaction

region is not a low-beta insertion anymore.

The beta functions and the beam trajectories in IR2 are described in Chapter 5.

The modelling of the FINUDA interaction region for the MAD program [26, 30] is the

subject of Chapter 4.

2.1.3 Arc cells and dispersion function

The structure of each DAΦNE collision ring consists of four achromatic arcs3. Each arc is

delimited by two bending magnets and houses a 1.8 T wiggler magnet, three quadrupoles,

two sextupoles to correct the chromaticity of the ring, two dipole correctors and one skew

quadrupole.

The wiggler magnet is aimed at varying the horizontal emittance and increasing the

synchrotron radiation emission; this effect is needed in a low energy ring as DAΦNE, where

the betatron transverse damping time is τx ≈ 100000 turns with the wigglers turned on.

3An achromatic cell is a section where both the dispersion function and its derivative vanish at the ends.
This lattice can be obtained with a proper combination of the bending magnets and the quadrupoles.
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Particles in a bunch with different energy are bent differently by dipoles because the

bend angle of a magnet depends on the particle momentum. The orbit displacement for a

theorical energy deviation δ = ∆E/E0 = 1 is the dispersion function D(s). The arc cells

are the sections of the ring where the dispersion function is different from zero. Many

important parameters of the ring are determined by the dispersion function.

The natural beam emittance4 is generated by the emission of synchrotron radiation

in a region with non-zero dispersion. The dependence from the dispersion function is

expressed by the equation [32]:

ǫx = Cq
γ2〈H/|ρ|3〉
Jx〈1/ρ2〉 ; (2.7)

where Cq = 3.83 · 10−13 m, γ is the particle energy in units of the rest mass, 1/ρ is the

orbit curvature, 〈...〉 stands for the average all over the ring, Jx is the horizontal damping

partition number and the H-function depends on the lattice design as:

H = γxD
2
x + 2αxDxD

′

x + βxD
′

x
2
; (2.8)

with βx, αx and γx the horizontal Twiss parameters. In straight sections H is an invariant,

while it is not invariant through dipoles.

Another important parameter depending on the dispersion is the path lengthening of

a particle motion due to the beam energy spread, which is measured by the momentum

compaction factor:

αc =
1

L

∮

Dx(s)ds

ρ
; (2.9)

4The emittance is a beam parameter expressing the average amplitude and divergence of the particle
motion and, together with the energy spread, determines the transverse dimension of the beam:

σx =
√

ǫxβx + (Dxδ)2.

In flat rings there is no vertical dispersion and the vertical emittance ǫy is generated by the betatron
coupling.
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where L is the length of the ring. The natural bunch length is proportional to αc according

to (see for instance [22, 49]):

αc =
2πc

frev

√

2π|αc|E0

heVcav cos φs

σǫ

E0

; (2.10)

where Vcav cos φs is the RF voltage slope.

The technique to modulate or change ǫx and αc is thus varying the lattice functions

in the arc regions in order to obtain the wanted beam parameter values.

2.1.4 Long, Short and “Y” straight sections

The structure of each ring is completed by four so called “Y” sections between the splitters

and the arcs and by two straight sections: the Long one where the beam is injected, and

the Short one where the RF cavity and the feedback system are positioned.

Each “Y” section houses three quadrupoles, one harmonic sextupole employed to en-

large the dynamic aperture, one skew quadrupole and two dipole correctors to adjust the

horizontal and vertical beam trajectory along the interaction region.

The feedback is a system that acts on the single bunches and is aimed at damping the

longitudinal and transverse beam instabilities generated by the interaction of the charged

beam with the walls of the vacuum chamber.

The focusing strength of the 7 quadrupoles positioned in the Short are usually em-

ployed for a fine correction of the betatron tunes of the machine.

The Long sections contain 10 quadrupoles and 3 sextupoles. The two injection kickers

are symmetrically positioned with respect to the injection septum.



18 CHAPTER 2. GENERAL DESIGN OF THE Φ-FACTORY

2.1.5 The injection system

DAΦNE has an injection system that provide electron and positron beams. Electrons

are generated with a gun. Positrons are extracted from an electromagnetic shower by

electrons impinging on a tungsten target. The injection system includes a LINAC that

accelerates electrons or positrons up to 510 MeV and injects the particles in a damping

ring (Accumulator) at a maximum frequency of 50 Hz (equal to the inverse of the damping

time τx,acc of the Accumulator). Here the emittance is reduced to the proper value through

the radiation damping of particles bent by dipole fields, and the beam is bunched to a

RF frequency 8 times the revolution frequency in DAΦNE. After 5 · τx,acc the beam is

extracted and sent to the main rings through two different transfer lines for electrons and

positrons. The production of electrons and positrons is not simultaneous. The injection

of both beams takes about 10 minutes, while a typical beam lifetime in DAΦNE is of the

order of 1 hour. In order to have the highest possible integrated luminosity, electrons and

positrons are reinjected when the instantaneus luminosity L is lower than the average

luminosity 〈L〉 (topping up).



Chapter 3

Theory of the DAΦNE luminosity

performances

Besides the energy, the luminosity is the primary parameter for a particle factory. The

basic theory of the DAΦNE luminosity performance is presented. The effects limiting or

reducing the luminosity are discussed and their implications on the design of the rings

and on the lattice set-up are pointed up.

3.1 Design luminosity of DAΦNE

The luminosity is the ratio between the event rate and the cross section of an event

of interest. For a test particle crossing head-on a bunch of charge Nb, the luminosity

is proportional to the bunch charge and inversely proportional to the effective transverse

beam area. For two beams with nb bunches each, colliding at the revolution frequency frev,

the luminosity L is given by the geometrical convolution given by the particle distribution

overlapping:

L = frevnbN
2
b

∫

dx dy ρ+(x, y) ρ−(x, y); (3.1)

19
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where ρ(x, y) is the normalized particle distribution in the transverse plane and the indexes

+ and − refer to positron and electron beam respectively. It is assumed here that the

colliding bunches have the same spot sizes, charge and zero longitudinal length (short

bunch approximation).

For Gaussian beams with σx and σy transverse RMS beam sizes, the transverse particle

distribution is:

ρ(x, y; σx, σy) =
1

2π σxσy
exp

(

− x2

2σ2
x

− y2

2σ2
y

)

; (3.2)

If there are no relative transverse tilt between the two distributions, the integral of

Eq. (3.1) gives the well-known expression for the luminosity of circular colliders:

L =
frevnbN

2
b

4π σ∗

xσ
∗

y

; (3.3)

where σ∗

x and σ∗

y are the RMS beam sizes at the interaction point. In the more general

case of colliding beams with different transverse dimensions and charge the luminosity

reads:

L =
frevnbN

+
b N−

b

2π Σ∗

xΣ
∗

y

; (3.4)

where Σ∗
2

x,y = σ∗
2

x,y+ + σ∗
2

x,y− are the effective beam sizes at the interaction point.

The assessment of the design luminosity continues in the next section introducing

several advanced effects that affect the actual performances of DAΦNE and put some

constraints on the beam parameters.

3.1.1 Hourglass effect

The expression of Eq. (3.3) overestimates the luminosity because it does not take into

account the effects related to the finite bunch length. In fact the transverse sizes around
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Figure 3.1: Relative vertical beam envelope (hourglass shaped) around the interaction point
calculated for DAΦNE with β∗

y = 18 mm neglecting the beam-beam interaction.

the focusing point depend on s as:

σ2
x,y(s)

σ∗
2

x,y

= 1 +
s2

β∗
2

x,y

; (3.5)

thus for bunch lengths σz comparable with the beta function β∗

x or β∗

y , the transverse

beam size growth around the focusing point reduces the luminosity. This effect is called

the hourglass effect because of the longitudinal beam profile around the interaction point

(see Fig. 3.1). The hourglass effect is a strong constraint for the minimum achievable

β∗

y since the bunch cannot be shortened as we want due to the bunch lengthening effect

which occurs at high current [18, 53].

Equation (3.1) can be generalized to the 4-dimentional (x, y, z, t) case [24] and the

luminosity reduction due to the hourglass effect must be calculated taking into account the

longitudinal motion of the two beams. The luminosity reduction factor when β∗

x,y+ = β∗

x,y−

is:

Rh =
L
L0

=

∫ +∞

−∞

du√
π

e−u2

√

1 + Σ2
zu2

β∗
2

x

√

1 + Σ2
zu2

β∗
2

y

; (3.6)
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where u is a dummy integration variable proportional to s and Σ2
z = σ2

z+ + σ2
z−.

For the DAΦNE case σ2
z/β

∗
2

x ≈ (0.02/2)2 ≪ 1, the first factor in the denominator of

the integral in Eq. (3.6) can be neglected, while in the vertical plane DAΦNE is working

at present at the hourglass limit σ2
z/β

∗
2

y ≈ 1. Numerical integrations [1] give an hourglass

reduction factor R from 0.93 to 0.83 depending on the peak values of the current per

bunch (and thus on the bunch lengthening). At present β∗

y cannot decrease below 1.7 cm

equal to the bunch length.

3.1.2 Beam-beam interaction

When two bunches are in collision the particles of one beam interact with the electromag-

netic field generated by the opposing bunch. A test particle traveling through a Gaussian

flat beam (σy ≪ σx) undergoes an electric field in the bunch frame system given by the

Bassetti-Erskine formula [3]:

Ex =
eNbλ(z) x

2πǫ0(σ2
x − σ2

y)

∫ 1

σy/σx

exp

[

x2

2(σ2
x − σ2

y)
(t2 − 1) +

y2

2(σ2
x − σ2

y)
(1 − 1

t2
)

]

dt; (3.7)

Ey =
eNbλ(z) y

4πǫ0(σ2
x − σ2

y)
2

∫ 1

σy/σx

1

t2
exp

[

x2

2(σ2
x − σ2

y)
(t2 − 1) +

y2

2(σ2
x − σ2

y)
(1 − 1

t2
)

]

dt; (3.8)

here ǫ0 = 8.8542 ·10−12F/m is the permittivity of vacuum and Nbλ(z) is the linear charge

density along z = s ± ct. Figures 3.2 show as an example the force experienced by a test

particle due to the electromagnetic field generated by a bunch. Because of the behavior of

the Coulomb interaction, the beam-beam force for particles at large betatron amplitude

is highly nonlinear. However near the bunch centre (x < σx, y < σy) the beam-beam

interaction behaves linearly with respect to the transverse displacement of the test particle

and acts as a quadrupole focusing the beams in both the horizontal and the vertical plane
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(a) (b)

Figure 3.2: Beam-beam integrated force experienced by a horizontal (a) and vertically (b)
displaced particle at different vertical and horizontal positions with DAΦNE parameters (σx =
2.1 mm,σy = 2.1 µm) (from [17]).

with different focal lengths fx,y:

1

fx,y

= − 2reNb

γσx,y(σx + σy)
. (3.9)

For flat beams, σy ≪ σx, the strength is stronger in the vertical plane. The effect of

the mutual focusing in both planes results in a positive shift of the betatron frequencies

given by:

ξx,y =
re

2π

Nbβ
∗

x,y

γσx,y(σx + σy)
. (3.10)

The beam-beam tune shifts ξx and ξy measure the linear part of the beam-beam force and

they are of primary interest for a collider because they also specify the strength of the

beam-beam nonlinearity (felt by particles at x > σx or y > σy) that gives a limit to the
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maximum current (or the maximum transverse density of the beam) can be stored in the

rings. In fact when either ξx or ξy exceeds a certain value, characteristic of the specific

collider, the nonlinear part of the beam-beam interaction is so strong that instability and

beam blow-up occur and the luminosity and the beam lifetime are dramatically reduced.

If the beams collide in more interaction points per turn, the beam-beam effects add up

and the luminosity performances are further limited.

The tune shift limit of a collider can not be theorically predicted, however there is

experimental evidence from previous and existent e+e− machines that for all colliders the

tune shift limit is reached at ξ ≈ 0.06− 0.07 [43]. The estimate of the DAΦNE tune shift

limit is ξlim = 0.04 [54].

Since at present DAΦNE is not limited by the tune shift (the largest limitations in

multibunch configuration coming from a longitudinal quadrupole instability cured with

the feedback system), the emittance has been gradually decreased from the design value

of 1·10−6 m rad to 0.45·10−6 m rad in order to reduce the beam size and increase the

luminosity with several benefits for the beam lifetime, the detector background, and the

parasitic crossings.

3.1.3 Crossing angle

Another geometrical reduction effect comes from the non-zero crossing angle between the

colliding beams. In DAΦNE the two opposing beams collide with a horizontal crossing

angle φ to avoid parasitic crossings between the outgoing bunches after collision and the

incoming bunches of the opposing beam. Parasitic crossings can reduce the luminosity

if the trajectories of the opposing beams are not properly separated. On the other hand

the crossing angle must be small to avoid both synchro-betatron resonances (the Piwinski

condition [35]: φσx/σz ≪ 1) and reduction in luminosity because of the overlapping

reduction with respect to the head-on collision. For σy ≪ σx and σz ≪ β∗

y (i.e. neglecting
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the hourglass effect) the reduction in luminosity from the crossing angle is related in

first approximation to the widening of the effective horizontal dimension, because the

projected beam size along the interaction region increases, and the reduction factor can

be expressed as [29]:

Rc =
L
L0

≈
[

1 +

(

σz

σx
tan φ

)2
]

−1/2

; (3.11)

The crossing angle φ must be chosen as a compromise between the parasitic crossing per-

turbation, which profits from large φ, the synchro-betatron resonances and the geometrical

reduction in luminosity.

The original low-beta regions of DAΦNE with two FDF triplets allowed working with

φ = 12.5 mrad, little enough to fit the Piwinski condition. The new design with two

doublets FD allows increasing the crossing angle until 16.5 mrad (see Chapter 5) improving

the beam separation as the machine operation demonstrated that the collider was still

below the synchro-betatron limit.

3.1.4 Numerical simulations of the DAΦNE luminosity: choice

of the working point

The luminosity of a circular collider is strongly dependent on the working point of (i.e.

the betatron tunes values Qx and Qy) and at DAΦNE the luminosity at different work-

ing points has been estimated from numerical simulations that take into account all the

aforementioned effects as well as the nonlinearities of the magnetic lattice of the Main

Rings [54]. During the collider commissioning the working point (0.15, 0.21) was chosen

for collisions as the best trade-off between high luminosity and other requirements (dy-

namic aperture, low second order chromaticity terms, low sensitivity to magnetic element

errors...). At present the positron ring is tuned at this working point in every configura-

tion (collision in IP1 or IP2). However we had to shift the working point of the electron
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Figure 3.3: The single bunch luminosity in the (Qx, Qy) plane. The clearer areas are those with
higher luminosity, the dark regions correspond to the lower luminosity near resonance lines.

ring to (0.10, 0.14) because at high currents a strong vertical instability in the positron

ring is transmitted to the electron ring if the betatron tunes are equal in the two rings.

Separating the tunes the instability is eliminated by the so called Landau damping due

to the nonlinear beam-beam interaction. Studies and tests for the quest of new working

points closer either to the integer or to half the integer are always under investigation.



Chapter 4

Development of the DAΦNE optics

model

After a presentation of the general frame of the main ring model, the modelling of the FIN-

UDA interaction region and of the modified wiggles developed in 2002-2003 is discussed

in this chapter.

The optics model has been developed by the DAΦNE team for the code MAD [26] and

it has been optimized and updated gradually during the machine operation [10, 34]. MAD

describes the beam optics in accelerators and is able to solve several kinds of problems:

simulation of the optics parameters of a lattice (beta-functions, dispersion, betatron tunes,

emittance, damping parameters...), lattice matching, transfer matrix matching, calcula-

tion of closed orbits... MAD represents a ring as a sequence of physical elements: magnetic

as dipoles, quadrupoles etc. and non magnetic as drift sections, RF cavities, monitors

etc. Each element is defined by proper physical parameters as the element length, the

field strength etc. that determinate the effects on the beam dynamics.

27
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Table 4.1: Nominal parameters of the main ring dipoles used in MAD. L is the magnetic length,
gap the heigh of pole gap, α the bending angle, ρ the curvature radius of the trajectory through
the magnet, e1/e2 the angle in the horizontal plane the trajectory enters/exits with respect to
the pole face (Fig. A.1), fint the first integral of the normalized field.

Type Lmag (m) gap (cm) α (o) ρ (m) e1/e2 (o) fint
Sector Short 0.990 7.56 40.50 1.401 0.00/0.00 0.5292
Rectangular Short 0.990 7.56 40.50 1.401 20.25/20.25 0.5756
Sector Long 1.210 7.56 49.50 1.401 0.00/0.00 0.5431
Rectangular Long 1.210 7.56 49.50 1.401 24.75/24.75 0.6208
Splitter 1.450 7.53 8.75 9.495 -0.25/9.00 0.3000

4.1 Lattice model of the main rings for MAD

Bench measurements on every magnetic element of DAΦNE were performed before the

installation using two different systems [31]:

• maps (steps of 1 cm or less) of the magnetic field components By or Bx on the mid-

plane of bending dipoles, splitters and correctors was measured with a Hall effect

Digital Teslameter on a 5-axes movement device;

• integrated multipole field components of quadrupoles, sextupoles and octupoles were

measured with an automatic rotating coil Multipole Measurement System.

The modelling of the magnetic elements has been deduced from these measurements as

is described in the following sections.

4.1.1 Bending dipoles and splitters

The design parameters of the four bending dipole families (two of sector type and two

of rectangular type) and of the splitters [14, 13, 12, 16] are reported in Table 4.1. The



4.1. LATTICE MODEL OF THE MAIN RINGS FOR MAD 29

effective magnetic length of a magnet is defined by:

Lmag · B0 =

∫ +∞

−∞

B(s)ds; (4.1)

where B0 is the field in the middle of the magnet and the fint parameter is defined [30]:

fint =

∫ +∞

−∞

By(s)(B0 − By(s))

g · B2
0

ds; (4.2)

where g is half the pole gap. The fint is a corrective term of the vertical focusing generated

by end-fields.

From the measured map the magnetic field can be interpolated at every point on the

dipole mid-plane of the magnet and the multipolar components have been fitted1. A

detailed discussion on the problems concerning the DAΦNE dipole modelling (focusing

effects due to the entrance/exit angles, sextupolar terms in the fringing regions...) was

done in [5].

The DAΦNE splitters are special magnets set up by two adjacent dipoles with different

coils, that generate opposite field in the adjacent regions. The two pole gaps are separated

by a septum that divides the electron vacuum chamber from the positron one (Fig.4.1).

A refinement of the splitter model has been done taking into account the focusing effect

due to the sextupole term in the fringing region. In fact the vertical component of the

field By is strongly dependent on the horizontal position because of the asymmetry of the

magnet. As shown by measurements plotted in Fig. 4.2, towards the interaction region

where the trajectory passes at 6 cm from the splitter axes the beam undergoes a field

1If one have n transverse points for every longitudinal position along the design trajectory, the poly-
nomial coefficients of the field expansion to the n − 1 order in x can be calculated. For instance, the
expansion of By along the longitudinal coordinate z with respect to the transverse coordinate x is:

By(x, 0, z) = B0(z) + B1(z)x + B2(z)x2 + · · ·

where B0(z) corresponds to By along the nominal trajectory, B1(z) to the quadrupole term ∂By/∂x,
B2(z) to the sextupole term 1

2
∂2By/∂x2 and so on.
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Figure 4.1: Nominal beam trajectories through the splitter magnet (in this figure y denotes the
longitudinal coordinate which is usually indicated with z.)

Figure 4.2: By transverse scan measured near the splitter edge (at y = −4.5 mm in Fig. 4.1).
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Figure 4.3: First order coefficient B1(s) (quadrupolar gradient) of the transverse field expansion
of the splitter around the nominal trajectory.

Figure 4.4: Second order coefficient B2(s) (twice the sextupolar gradient) of the transverse field
expansion of the splitter around the nominal trajectory.
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gradient, while in the opposite side towards the “Y” section where the trajectory passes

at about 18 cm the field behaviour is flat. In Fig. 4.3 shows the first order coefficient

B1(s) = ∂By/∂x (quadrupolar gradient) of the transverse field expansion around the

nominal trajectory through the magnet. The peak at the splitter entrance (s = 0), which

in an ideal rectangular magnet with entrance angle -0.25◦ should be negligible, is generated

by the transverse gradient next to the coil in the end-field region, while the peak at the

exit (s = 1.45 m) is due mainly to the angle of 9◦ between the pole face and the beam

trajectory (Fig. 4.1) as expected in a rectangular dipole.

The additional focusing strength (not coming from the geometry) from this effect has

been modelled embedding the splitter between two thin lenses with integrated normalized

gradient 0.0123 m−1 and 0.0025 m−1.

4.1.2 Quadrupoles, sextupoles and octupoles

The magnetic length and the bore diameter of the quadrupoles, sextupoles and octupoles

of DAΦNE are reported in Table 4.2. The radius of the good field region for all multipoles

is 3 cm but for the large aperture quadrupoles it is 6 cm. The field quality is ∆B/B ≤

5 · 10−4.

The characteristic magnetic gradients of every family of multipole are modelled with

a hard-edge profile and they are calibrated with respect to the powered current [27]. The

behaviour of the field is linear with respect to the current at the usual operation values.

In the MAD deck file the normalized multipole coefficients are defined in terms of the

power supply currents, so that the ring lattice can be easily simulated as a function of

different current data sets.

In the model the multipole strength:

Kn =
1

Bρ

∣

∣

∣

∣

∂nBy

∂xn

∣

∣

∣

∣

; (4.3)



4.2. MODELLING OF THE FINUDA IR FROM MAGNETIC MEASUREMENTS 33

Quadrupole type Sextupole type Octupole
Large Small Large ap. Large Small

Number per ring 14 25 6 12 8 3
Magnetic length (cm) 29.0 30.0 38.0 15.0 10.0 10.0
Bore diameter (cm) 10.8 10.0 20.0 10.8 10.8 10.0
Max current (A) 175 585 585 250 336 120
Max curr. below satur. (A) 123 304 380 150 336 100
C1 (MeV A−1 m−2) 16.96 9.128 3.979 51.18 19.74
C2 (MeV m−2) 5.62 4.53 2.72 49.34 32.8
C3 (MeV A−1 m−3) 8.388

Table 4.2: The characteristic parameters of the DAΦNE multipole magnets.

are expressed as a function of powered currents as:

K1 [m−2] = (C1 · |I| [A] + C2)/E0 [MeV ];

K2Lsxp [m−2] = (C1 · |I| [A] + C2)/E0 [MeV ]; (4.4)

K3Loct [m−3] = C3 · |I| [A]/E0 [MeV ];

with the calibration constants C1, C2 and C3 tabulated in Table 4.2.

4.2 Modelling of the FINUDA IR from magnetic mea-

surements

The FINUDA interaction region has been modelled similarly to the KLOE one. The IRs

are the sections modelled in the most detailed way of all the rings, the main feature of the

model is the representation of the four permanent quadrupoles immersed in the solenoid

field of the detector. The superposition of a transverse field gradient and a solenoid field
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is simulated as a sequence of thick solenoid slices alternated with thin lenses (zero length)

of varying strength representing the longitudinal dependence of the quadrupole field:

The other four electromagnetic quadrupoles and the two compensators are positioned

outside the detector and they are represented individually.

4.2.1 FINUDA and compensating solenoids

The solenoid field of FINUDA and of the two compensators is known along the longitudinal

axes of the magnets with steps of 1 cm. In the model the solenoid magnets are represented

as a sequence of 3 cm slices with the field averaged on the segment. Figure 4.5 shows the

longitudinal dependence of the field.

4.2.2 Permanent and electromagnetic quadrupoles

The magnetic field of the permanent and electromagnetic quadrupoles with large aperture

for the second interaction region has been measured both with the rotating coil system

and with the Hall probe on the horizontal plane [36, 15]. The field gradient (and the small

higher multipole coefficients) is known all along the magnetic axes with a resolution of 1

cm.

The gradient of the permanent quadrupoles, that are inserted inside the FINUDA
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Figure 4.5: The measured FINUDA solenoid field along the longitudinal axis.

solenoid, has been integrated every 3 cm and the integrated value is inserted in the MAD

definition of a thin lens representing a segment of quadrupole. Each thin lens is also

rotated around the longitudinal axes, the roll angles of the IR quadrupoles are tabulated

in Table 4.3.

Permanent Electromagnetic
QPM001 QPM002 QUAI2001 QUAI2001

Magnetic length (cm) 15.8 30.0 38.0 38.0
Bore diameter (cm) 12.0 12.0 20.0 20.0
Nominal gradient (T/m) 9.433 10.802 2.254 3.383
Roll angle (◦) 6.75 12.80 19.80 19.80

Table 4.3: The IR2 quadrupole parameters.
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Figure 4.6: Decomposition of the actual large aperture quadrupole field profile into segments
of hard edge quadrupole.

The large aperture quadrupoles are special electromagnetic magnets designed for the

IR vacuum chamber installed between FINUDA and the compensators. The magnetic

length is 38 cm, less than twice the diameter of the bore aperture equal to 20 cm. In this

case the field profile has long tails outside the quadrupole and the customary parameters

Lmag and k0 of the hard-edge model used for the quadrupoles of the ring, where Lmag =

1
k0

∫

k(s)ds and k0 is the actual quadrupole strength at the middle of the magnet, give

an unsatisfactory approximation of the transfer matrix of the quadrupole magnet [7, 49]

resulting also in a betatron tune shift of about 0.002 with respect to the actual matrix.

In this case it is better to decompose the quadrupole in thin slices of varying strength,

treating these segments as short hard-edge quadrupoles the full transfer matrix is the

product of the matrices for all segments. In Figure 4.6 is plotted the decomposition of
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the actual large aperture quadrupole field profile into segments of hard edge quadrupoles

as it has been done in the MAD model.

4.3 Hard-edge model of the modified wigglers

The DAΦNE wigglers magnets are a row of seven alternately deflecting bending magnets

which do not introduce a net deflection on the beam. Wigglers are in general sources

of non linear fields in the lattice of a ring because of the transverse width of the pole

comparable with the aperture gap, resulting in a fast roll-off of the dipole field in the

transverse direction. In 2003 the pole shape of the DAΦNE wiggler have been modified

in order to reduce the high order multipoles and thus increase the dynamic aperture of

the ring.

The modified wiggler magnets of the Main Rings have been modelled as a 2 m long

sequence of hard-edge dipoles alternated with drift sections describing the behaviour of

the magnet for the linear beam optics. Each pole is embedded in two additional thin lenses

per pole which reproduce the non-linear terms of the field. The physical parameters of

the model are based on the measurement of the field By versus the position (x,z) in the

horizontal midplane of the central pole and on the two terminal poles, which has been

taken on the modified wiggler in 2003 [37].

Total length (m) 2.00
Magnetic field (T) 1.73
End pole length (cm) 20.0
Inner pole length (cm) 32.0
Pole gap (cm) 3.70
Pole width (cm) 14.0

Table 4.4: DAΦNE wiggler parameters.



38 CHAPTER 4. DEVELOPMENT OF THE DAΦNE OPTICS MODEL

Figure 4.7: The wiggler field along the longitudinal z axis: the dashed line is the measured field
and the full line the hard-edge model.

4.3.1 Linear properties

For the proper linear modelling of wiggler magnets two conditions require to be fulfilled.

The deflection angle and the length of each modelled pole must be the same of the actual

trajectory. Similarly the edge focusing described in the model (the fint parameter used

by MAD) must be the same felt by a particle travelling around the nominal trajectory.

The corrections to the linear optics due to the wiggling trajectory through multipole field

components is considered in a following step and added to the model as thin lenses.

Wiggling trajectory of the nominal particle

The first step is the calculation of the trajectory of the nominal particle along the whole

wiggler. The magnetic field on the horizontal midplane (y = 0), where the trajectory lies,

has only the vertical component By(x, 0, z), while Bx,z(x, 0, z) = 0. In the reference system
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Figure 4.8: The global and the local coordinate systems along the trajectory.

in Fig. 4.8 the particle velocity is: ṙ = cus and the magnetic field: B(x, z) = By(x, z)uy.

Thus a charged particle undergoes the Lorentz force according to:

ẍ = − e
p0

żBy(x, y);

z̈ = e
p0

ẋBy(x, y);

(4.5)

which gives:

ẍ = − e
p0

c2By(x, y) cos θ;

z̈ = e
p0

c2By(x, y) sin θ;

(4.6)

with tan θ = dx/dz. The derivatives in the system above are done with respect to the time

variable t, while the magnetic field By(x, z) is known from measurement as a function of

the position in the midplane as well as θ(z) is expressed as a function of the longitudinal

position z. Therefore z is the most suitable variable for numerical integration. Considering
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cdt = ds = [1 + (dx/dz)2]3/2dz, the second derivative is expressed according to:

ẍ ≡ d2x

dt2
= c2d2x

ds2
= c2 1

√

1 +
(

dx
dz

)2

d

dz





1
√

1 +
(

dx
dz

)2



 =

(4.7)

= c2 1
(

1 +
(

dx
dz

)2
)2

d2x

dz2
= c2 cos4 θ

d2x

dz2
;

and after the variable change the trajectory equation becomes:

cos3 θ(z) = − e

p0

By(x, y); (4.8)

and eventually:

d2x

dz2
= − 1

Bρ

[

1 +

(

dx

dz

)2
]3/2

By(x, y). (4.9)

Eq. 4.9 is the differential equation that has been numerically integrated from the table

of field measurements with a recursive algorithm with start path x(z) = 0. The spacing

between the points in the data table is 1 cm, both longitudinally and horizontally. The

field By(z) is first fitted with a series of cubic polynomials connected together (cubic

spline) and then integrated with 1 mm longitudinal steps. The integration converges

after few iterations (2-3) since within the 12.5 mm horizontal range, where the trajectory

oscillates, By has little and smooth variations and dx/dz is sufficiently small (∆B/B0 <

2 · 10−3 and dx/dz < 0.12). Once the trajectory is known, the path length is calculated

from:

Ltraj =

∫

wiggler

ds =

∫

wiggler

√

1 +

(

dx

dz

)2

dz. (4.10)

The wiggler in Figure 4.9 is the trajectory along the magnet, for the nominal particle

launched at the entrance to the pole A with x = −12.5 mm and x′ = 0 rad as is calculated

by the model. The length of the wiggling path comes out to be 6.62 mm longer than the
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Figure 4.9: The wiggling trajectory: the particle launched from the terminal pole A.

longitudinal straight line along the axis.

Choise of the modelling parameters

Once the amplitude, the deflection angle and the length of the trajectory are known, the

wiggler can be modelled pole by pole. Each pole is represented by a single parallel-end

hard-edge dipole with length Lh (Figure 4.7) embedded in two drift sections with length

Ld: the total length of the pole Lp = Lh + 2 Ld is fixed equal to the nominal particle

path length integrated along the pole. The modelling problem consists in the choice of

the effective Lh.

Once the wiggling trajectory was known, the transfer matrix of each single pole has

been calculated from the table of the field measurements.
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Figure 4.10: Schematic y-z and x-z projections of a parallel-end dipole showing the fringe field.

Linear Transfer Matrix

On the horizontal midplane of each pole the field is everywhere vertical (Figure 4.10)

therefore in a parallel end dipole (neglecting at the moment the finite horizontal width

of the magnet) there is no focusing effect on the horizontal plane. The scenario changes

for a particle displaced vertically. In this case it undergoes the longitudinal component

Bz of the field in the fringing region, which is responsible of the edge vertical focusing in

a dipole. Launching a particle with (y, y′) = (1, 0) and (y, y′) = (0, 1), the values of the

position y and the divergence y’ at the end of the pole are the columns of the vertical

transfer matrix and the physical problem consists in the tracking of the particle around

the trajectory previously calculated. The vertical equation of motion is (see Figure 4.10):

ÿ =
ec2

p0
(ṙ ×B)y =

ec2

p0
Bz sin θ; (4.11)
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and by derivating with respect to z as in Eq. 4.8:

cos4 θ
d2y

dz2
=

e

p0

Bz sin θ; (4.12)

and eventually:

d2y

dz2
=

1

Bρ

[

1 +

(

dx

dz

)2
]3/2

dx

dz
Bz(x, z); (4.13)

where dx/dz is the derivative of the horizontal wiggling trajectory x(z) already integrated

from Eq. 4.9.

For linear modelling the field components at position y can be estimated expanding

the magnetic field to first order around the midplane (y = 0), where the field is known.

Using also Maxwell’s equations:

Bx(x, y, z) = y

(

∂Bx

∂y

)

y=0

= y

(

∂By

∂x

)

y=0

(4.14)

By(x, y, z) = y

(

∂By

∂y

)

y=0

= −y

(

∂Bx

∂x
+

∂Bz

∂z

)

y=0

= 0 (4.15)

Bz(x, y, z) = y

(

∂Bz

∂y

)

y=0

= y

(

∂By

∂z

)

y=0

. (4.16)

The behaviour of By(x, z) has been measured and fitted and the vertical trajectory can

be numerically integrated with the same procedure followed for the wiggling trajectory.

The dipole lengths and the fint parameters are then fixed pole by pole fitting the matrix

elements by using the matching tools of the MAD program as described below.

Inner Poles

In the model the inner poles are assumed to be equal among them and the physical

parameters are obtained from the measurements performed on the central pole. The
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deflection angle of the central pole comes out to be θC = 0.2375 rad and the entrance and

exit angles are half the deflection angle: e1 = e2 = θ/2. Since the dipole has parallel ends,

in the horizontal plane there is no focusing effect and the horizontal transport matrix

does not depend on Lh but only on the total pole length Lp that is fixed. Therefore the

dipole length and the edge focusing parameter fint have been chosen in order to match

the vertical transfer matrix of the single pole calculated from the measured field map.

The obtained values are Lh = 0.2355 m and fint = 0.315.

End Poles

One of the end poles (B type or ”right”) has a strong sextupole field index useful to

improve the dynamic aperture: as a consequence the poles A and B, which are powered

by the same supply, have slightly different field integrals and different deflection angles

between them. The supplied current is such that the field integral along the wiggler axis

vanishes (
∫

Bydz = 0). The deflection angle of the right pole is θB = −0.1196 rad and

the left one θA = −0.1167 rad. The entrance and exit angles are: e1 = 0, e2 = θA,B. The

end dipole length and the fint parameter chosen with the same procedure followed for the

central poles are Lh = 0.1368 m and fint = 0.213.

4.3.2 Linear and non-linear field perturbations as thin lenses

Finite horizontal pole width in a wiggler magnet creates a roll-off in By(x) which generates

linear and non-linear perturbations to particle dynamics [2, 40]. The Figure 4.11 shows

By(x) at the wiggler centre fitted from measurements: the 14 cm pole width results in the

field rolling off quickly at ± 50 mm. The final step for the complete modelling is to consider

the linear corrections to transfer matrix integrating the complete equation of motion that

takes in account the horizontal roll off of the field, which generates multipole terms. In

the model this is realized adding thin lenses at the dipole edges, whose integrated gradient
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Figure 4.11: Transverse field roll-off at the centre of the wiggler.

values K1 have been found matching again the corrected transfer matrix calculated from

the equation of motion:

ÿ =
ec2

p0
(ṙ × B)y =

ec2

p0
(Bz sin θ − Bx cos θ); (4.17)

which gives:

d2y

dz2
=

1

Bρ

[

1 +

(

dx

dz

)2
]3/2

(

dx

dz
Bz(x, z) − Bx cos θ

)

. (4.18)

The final integrated vertical trajectories y(z) through the single poles are shown in Fig-

ures 4.13 and 4.12.

The transverse polynomial expansion of the field [37] shows up a small but not negli-

gible sextupole term and higher multipoles that give linear and non-linear perturbations

to both the horizontal and the vertical motion around the trajectory. All these effects are

taken in account in the model embedding each dipole in two thin lenses with integrated
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Figure 4.12: The vertical trajectory (full line) in the terminal poles starting with (y, y′) = (1, 0):
the terminal B has an extra-focusing term due to the sextupole; the dashed line is the magnetic
field.
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Figure 4.13: The vertical trajectory (full line) in the central pole entering in the pole with
(y, y′) = (1, 0); the dashed line is the magnetic field.

End Pole A Inner Poles End Pole B
Lh (m) 0.1368 0.2355 0.1368
Lp (m) 0.2000 0.3200 0.2000
θ (rad) 0.1167 0.2375 0.1196
fint 0.384 0.317 0.384
K1 (m−1) 0.0 −0.0022 0.0260
K2 (m−2) 0.23 ±0.78 34.4 (m−1)
K3 (m−3) 23.0 −34.4 15.0
K4 (m−4) −0.0025 ±0.0045 −0.0014

Table 4.5: The MAD parameters of the wiggler
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gradients along the trajectory:

K1 =
1

Bρ

∫

dBy

dx
ds =

1

Bρ

∫
(

∂By

∂x
+

∂2By

∂x2
x +

∂3By

∂x3

x2

2
+

∂4By

∂x4

x3

6

)

dz; (4.19)

K2 =
1

Bρ

∫

d2By

dx2
ds =

1

Bρ

∫
(

∂2By

∂x2
+

∂3By

∂x3
x +

∂4By

∂x4

x2

2

)

dz; (4.20)

K3 =
1

Bρ

∫

d3By

dx3
ds =

1

Bρ

∫
(

∂3By

∂x3
+

∂4By

∂x4
x

)

dz; (4.21)

K4 =
1

Bρ

∫

d4By

dx4
ds =

1

Bρ

∫

∂4By

∂x4
dz. (4.22)

The K1 coefficients are chosen fitting the single pole transfer matrices , while K2, K3

and K4 come from the magnetic measurements fit ([37] Table I ). In the model of the

inner poles the average value among the five poles is taken for each Kn coefficient. Only

in the end pole B, where the sextupole term is strong and quite constant (see [37] Fig.

32), the sextupole gradient K2 is spread out along the whole dipole.

4.3.3 Results of the MAD model

The model reproduces with very good accuracy the linear matrix elements calculated from

the measurements (∆Rij ≈ 10−4). After the whole map of the field on the midplane was

measured (October 2003), the fint parameters have been further finely readjusted in order

to match the whole wiggler transfer matrix obtained from the magnetic measurements [37]
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and are reported below. The central pole matrix:

1.0007 0.3189 0.0000 0.0000

0.0044 1.0007 0.0000 0.0000

0.0000 0.0000 0.9647 0.3184

0.0000 0.0000 −0.2174 0.9647

(4.23)

The end pole A matrix (travelling towards the inside of the wiggler):

0.9928 0.2004 0.0000 0.0000

0.0000 1.0072 0.0000 0.0000

0.0000 0.0000 0.9981 0.2000

0.0000 0.0000 −0.0822 0.9853

(4.24)

The end pole B matrix (travelling towards the inside of the wiggler):

0.9989 0.2006 0.0000 0.0000

0.0520 1.0115 0.0000 0.0000

0.0000 0.0000 0.9923 0.1997

0.0000 0.0000 −0.1307 0.9813

(4.25)

The whole wiggler from A to B:

1.1230 2.0465 0.0000 0.0000

0.0745 1.0263 0.0000 0.0000

0.0000 0.0000 −0.0851 1.1980

0.0000 0.0000 −0.8327 −0.0266

(4.26)
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The whole wiggler from B to A:

1.0263 2.0465 0.0000 0.0000

0.0745 1.1230 0.0000 0.0000

0.0000 0.0000 −0.0266 1.1980

0.0000 0.0000 −0.8328 −0.0851

(4.27)

Notice that because of the asymmetry between the pole A and B, exchanging the direc-

tion of motion in the case of the whole matrix, diagonal elements are exchanged in the

horizontal and vertical blocks, while off diagonal ones are unchanged.

4.3.4 Radiation integrals and other remarks

Two important remarks on the accuracy of the model: the first about the dependence

of the wiggler optics on the orbit and the second on the contribution to the radiation

integral.

As seen in Section 2 the terminal pole B has a strong sextupole, which generates

linear focusing depending on the horizontal trajectory. A horizontal displacement of the

trajectory of the order of the r.m.s. orbit value changes the effective K1 coefficient by

about K1 ≈ K2 · x = 4.7 m−2 · 1.5 mm ≈ 0.007 m−1. This variation affects mainly the

horizontal dispersion function of the ring, which has its maximum right near the wigglers.

The model is indeed corrected adding one further thin lens with a strength K1 adjusted

fitting the measured dispersion.

The curvature of the poles should reproduce the wiggler contribution to quantum

excitation, damping of the beam emittance and beam energy spread. The quantum

excitation is in first approximation proportional to the third power of the curvature (the
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Beam property
I1 =

∫

D/ρ ds αc = I1/L
I2 =

∫

1/ρ2 ds U0 = CγE
4I2/2π

I3 =
∫

1/|ρ|3 ds (σE/E)2 = Cqγ
2I3/(2I2 + I4)

I4 =

{ ∫

D/ρ (1/ρ2 + 2K1) ds
∫

2DK1/ρ ds
Jx = 1 − I4/I2

JE = 2 + I4/I2

I5 =
∫

H/|ρ|3 ds ǫx = Cqγ
2I5/(I2 − I4)

Table 4.6: Radiation integrals and their effects on beam properties. The entries for I4 are for
rings with sector magnets (upper) and rectangular (lower) magnets respectively.

radiation integrals I3 and I5 [28]). The value reproduced by the model for one wiggler is:

I3, model =
∑

poles

Lh

ρ3
= 1.381 m−2; (4.28)

while integrating the data measurements:

I3, actual =
1

(Bρ)3

∫

wiggl

B3(s)ds = 1.135 m−2; (4.29)

with a mismatch between model and actual wiggler of the 17 % that must be considered

correcting the natural energy spread and the emittance calculated by MAD (see Tables

4.6-4.7).

wigglers bends + wigglers
actual model mismatch actual model mismatch

I2 (m−1) 4.937 5.603 13% 9.691 10.357 6%
I3 (m−2) 4.540 5.524 17% 7.868 8.852 11%
I4 (m−1) 1.222
I5 (m−1) 7.311 8.297 17% 10.316 11.302 9%

Table 4.7: Contribution to the DAΦNE radiation integrals only from wiggler magnets and both
from bending and wiggler magnets. Contribution to I1 and I4 from wigglers is negligible.



Chapter 5

Lattice setting for FINUDA and

KLOE

The model of the DAΦNE rings, which describes the new interaction regions and the

modified wigglers discussed in the previous Chapter, has been used to calculate with

the MAD program a new lattice for the FINUDA experiment installed in the second

interaction region (IR2) in 2003. Some detail on the optics used in 2004 for KLOE is also

reported.

5.1 Lattice set-up for collisions in FINUDA

The main optics features of the ring lattice are a lower emittance with respect to the

original one (ǫ0 = 0.4 · 10−6 m·rad) and smaller beta functions (β∗

x = 2 m, β∗

y = 2.5 cm)

at the FINUDA interaction point (IP2).

All these parameters contribute to increase the geometrical luminosity and to decrease

the effect of parasitic crossings in IR2 as discussed in Chapter 3. In fact the smaller

transverse bunch sizes improve the beam separation in the transverse plane measured in

units of σx and σy, while the reduced horizontal beta further reduce the strength of the

52
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parasitic beam-beam kicks.

The two interaction regions are not identical to each other, hence there is no periodicity

or symmetry in the lattice of the DAΦNE rings, which in general helps the operation of

a machine and also the optics calculation. Since the IRs take a large fraction of the ring

circunference (≈ 20%), it is not trivial at all to calculate betatron and dispersion functions

symmetric as much as possible in the Long and Short sections of the ring and also around

the IRs. In this way the operation and the handling of the machine is as much effective

and simple as possible (calculation and application of closed orbit bumps with steering

magnets, correction of the betatron tunes with quadrupoles...). The beta functions, the

dispersion and the H-invariant all along the ring are showed in Figures 5.1-5.2.

5.1.1 Injection section: betas, phase advance and dispersion

The horizontal beta function at the injection septum must be high enough to perform

an efficient injection (βx > 6 m). Nevertheless experimental observation has showed that

the electromagnetic background in the experimental detectors is enhanced by high beta

function values at the septum: the chosen value is then βx = 8 m. Another constraint in

the horizontal plane is the horizontal beta phase advance φx = π between the two injection

kickers to produce a horizontal closed orbit bump of the stored beam at the injection.

Two more quadrupoles with large aperture have been installed on the two kickers in order

to improve the flexibility of the straight section set-up.

The section has non-vanishing dispersion, which does not affect the injection efficiency

due to the small energy spread σE/E0 = 0.0004 of the beam coming from the Accumulator.

The value of the dispersion in the adjacent bending determines the momentum compaction

αc (Eq. 2.9), which is chosen as 0.02.

The horizontal optical functions (βx, φx and Dx) are plotted in Fig. 5.3.
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Figure 5.1: The beta functions along the main rings. The starting point is the at the injection
septum, IP1 (KLOE) is at s = 26 m and IP2 (FINUDA) at s = 72 m.
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Figure 5.2: The dispersion function and the H-invariant in the main rings.
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Figure 5.3: The horizontal beta function and phase advance in rad/π along the injection section:
two horizontal markers indicate the phase at kickers locations, the phase is calculated from IP2.

5.1.2 Arc cell: chromatic sextupoles, dispersion and emittance

The arcs are the sections of the ring where the H-invariant (Eq. 2.8) is different from

zero (see Fig. 5.2). The wiggler magnets, positioned where the dispersion is maximum,

increase the beam emittance up to an order of magnitude with respect to the emittance

generated only by bending magnets. The wigglers work always near the maximum field to

obtain strong damping, hence the emittance is modulated by varying the behaviour of the

horizontal beta function and its derivative (βx and αx) in the dipoles in order to change

the H-invariant, whose integral throughout the ring determines the beam emittance as

expressed in Eq. 2.7.
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Figure 5.4: The beta functions in the Short arc and half the Short straight section where the
RF cavity is located.
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5.1. LATTICE SET-UP FOR COLLISIONS IN FINUDA 57

In each arc there is also a couple of sextupoles placed where the dispersion is not

null to correct the horizontal and vertical natural chromaticity of the ring. The beta

functions are well separated at sextupoles positions in order to have βx ≥ βy (at least 4

times) at the position of the sextupole used to correct the horizontal chromaticity and

the converse at the position of the sextupole correcting the vertical chromaticity. Finally

another constraint is given by the narrow vertical aperture of the vacuum chamber in the

wigglers (35 mm, while the average aperture along the ring is 80 mm) for which a low

vertical beta is needed (βy ≈ 1 m in the wiggler). Figures 5.4-5.5 show as an example βx,

βy, Dx and H in more detail for one of the Short arcs.

5.1.3 Interaction regions: betas and trajectories

During the FINUDA run the FINUDA detector is installed in IR2 while in IR1 the KLOE

detector cannot rolled off. Therefore the two interaction regions are low-beta insertions.

The vertical beta function at IP2 for collisions in FINUDA is β∗

y = 2.5 cm and the

peak value at the D quadrupole βmax
y = 28.5 m.

The other interaction region (IR1) is also a low-beta insertion (the quadrupoles being

permanent magnets), but the vertical beta function at the interaction point (IP1) is

increased as much as possible (β∗

y = 8 cm) in order to limit the vertical chromaticity

generated by the first D permanent quadrupole where the vertical beta is maximum

(βmax
y = 13 m) .

The crossing angle in IR2 is 13.5 mrad because of the FD doublet, while the crossing

angle in IR1 is increased to 16.5 mrad thanks to the new DF configuration. The horizontal

and vertical betatron functions of the two low-beta regions are summarized in Table 5.1.
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Figure 5.6: The beta functions in IR2 for collision in FINUDA.
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Figure 5.7: The beta functions in IR1 for collision in FINUDA.



5.1. LATTICE SET-UP FOR COLLISIONS IN FINUDA 59

0.0 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.
s (m)

δ / p c = 0 .

IR2 for collision in FINUDA
Positroni: Modello Zero per Finuda
Windows NT 4.0 version 8.23/06 21/12/04  14.24.40

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.0

0.01

0.02

0.03

0.04

0.05

0.06

x 
(m

),
 y

 (
m

) xy

Figure 5.8: The horizontal and vertical trajectory along IR2 for collisions in FINUDA. The
horizontal crossing angle is 13.5 mrad.
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Figure 5.9: The horizontal and vertical trajectory along IR1 for collisions in FINUDA. The
horizontal crossing angle is 16.5 mrad and the vertical separation between the beams at IP1 is
±2 mm.
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5.2 Interaction regions for collisions in KLOE

The lattice that has been used for the KLOE run in 2004 is very similar to the lattice used

for FINUDA in 2003, except for the interaction regions. In the first interaction region the

KLOE solenoid and the compensators are switched on, while in the second interaction

region the FINUDA detector and the low-beta permanent quadrupole doublet are rolled

out and replaced by a drift section.

The vertical beta function at the KLOE interaction point is squeezed up to the hour-

glass limit (β∗

y ≈ σz) and the horizontal crossing angle (tuneable in a large range between

11.5 and 18.5 mrad) has been tuned at 16.5 mrad in the first weeks of operation as the

best compromise between the luminosity performances (geometrical reduction and low

effect of the parasitic crossings) and the electromagnetic background in the experimental

detector.

The opposite interaction region is not a low-beta insertion, on the contrary the mini-

mum of the beta functions are increased resulting in a lowering (“detuning”) of the phase

advances. This configuration [8, 9] allows a large vertical separation of the opposing beams

in the interaction regions (up to ±10 mm at IP2, to be compared with the horizontal size

σ∗

x ≈ 1 mm) where the beams are not in collision decreasing the effect of parasitic crossing

and chromaticity in IR2.

Collisions in FINUDA Collisions in KLOE
IR1 IR2 IR1 IR2

β∗

x (m) 2.5 2.0 2.0 12.5
β∗

y (m) 0.0080 0.0025 0.0017 2.8
βmax

y (m) 13.4 28.5 33.2 9.2

Table 5.1: The beta functions at the interaction points and at the first D quadrupole of the
low-beta insertion for collision in FINUDA (2003) and in KLOE (2004).
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Figure 5.10: The beta functions in IR1 for collision in KLOE.
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Figure 5.11: The “detuned” beta functions in IR2 for collision in KLOE.
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Figure 5.12: The horizontal and vertical trajectory along IR1 for collisions in KLOE. The
horizontal crossing angle is 16.5 mrad.
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Figure 5.13: The horizontal and vertical trajectory along IR2 for collisions in KLOE. The
horizontal crossing angle is 13.5 mrad and the vertical separation between the beams at IP2 can
be varied easily up to ±10 mm.



Chapter 6

Optics measurements and model

results

After a short presentation of the main techniques used at DAΦNE for the beam optics

measurements, the dispersion and betatron functions measured both in the electron and

the positron ring are compared with the beta functions calculated with the MAD model

described in the Chapter 5.

6.1 Optics measurements at DAΦNE

6.1.1 Beam position monitors

In DAΦNE there are 37 beam postion monitors (BPM) of electrostatic pick-up type per

ring and 6 + 4 in the interaction regions, with different designs, that fit the dimensions

and the shape of the vacuum chamber along the rings.

The horizontal and vertical beam positions are calculated from the induced voltages

on the BPM electrodes. For instance for the monitor scheme in Fig. 6.1 the transverse

63



64 CHAPTER 6. OPTICS MEASUREMENTS AND MODEL RESULTS

1 2

3 4

x

y

Figure 6.1: Schematic view of a BPM rectangular type. From voltages V1, V2, V3, V4 on the
electrodes the transverse positions are deduced.

coordinates of the beam are:

U = V2+V4−V1−V3

V2+V4+V1+V3

V = V1+V2−V3−V4

V2+V4+V1+V3
.

(6.1)

Because of the non-linear response of the monitor with respect to the beam displacement,

the pseudo-positions U and V are corrected using a non-linear function that reconstructs

accurately the beam position:

x = gx(U, V )

y = gy(U, V )

(6.2)

The g(U, V ) functions are polynomials whose coefficients are obtained from a least squares

fit of the calibration measurements of the monitors [44]. The detecting electronics has

been developed by Bergoz Beam Instrumentation System for DAΦNE [25]: it is made

by a superheterodyne receiver which converts the 240th harmonic frequency (twice the

accelerating RF frequency) of the induced beam signal in a intermediate frequency of

21.4 MHz before the amplitude measurement. The line output provides two voltages U ,
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V that are processed by the software to obtain the horizontal and vertical positions x and

y.

The acquisition system is developed in the VME standard. The signals are measured

by a multiplexer FET HP E1352A and a digital multimeter HP 326B, controlled by

dedicated processors. The DAΦNE second level control system collects the position data

from these peripheric units and they are used by the third level for the reconstruction of

the orbit and for the analysis programs. The beam orbit (i.e. the horizontal and vertical

positions at every BPM) is acquired with frequency of 5 Hz.

The error on the measurement of the beam position with respect to the centre of the

vacuum chamber depends on several factors: mechanical tolerances of the monitor instal-

lation, electrical offsets due to mismatch between the capacitances of the buttons, error

from the reconstruction function and the electronic noise. In the orbit difference mea-

surements only the error from the electronic noise remains (also from the reconstruction

function if the orbit displacement is beyond ±10 mm from the centre) and r.m.s. errors

of 15 µm are obtained averaging over 10-15 orbit measurements [45].

r.m.s error
Mech. tolerances 100 µm
Electrical offsets 10 µm
Recontruct. function (|x| < 10 mm) 2 µm
Recontruct. function (10 mm < |x| < 20 mm) 25 µm
Electronic noise 10 µm

Table 6.1: R.m.s errors on the measured beam position with respect to the centre of the vacuum
chamber (averaged over the different BPM types).
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6.1.2 Dispersion measurements

The dispersion function in a ring is obtained from the orbit change induced by varying

the radio-frequency. A shift of the radio-frequency ∆fRF changes the beam energy by a

quantity1:

∆E

E0
= − 1

αc

∆fRF

fRF
. (6.3)

Since xǫ(s) = Dx(s) · ∆E/E0, the dispersion function at the beam position monitors is

deduced from the measured orbit change xǫ(s):

η(s) = −αc
xǫ(s)

∆fRF /fRF
. (6.4)

The radio-frequency fRF = 368.268 MHz is generally varied by ∆fRF = 0.010 MHz and

is known with an accuracy of 2 Hz. The corresponding orbit displacement xǫ varies along

the ring from some micron to 1-2 mm with an error of the order of 5 − 10 µm.

The value of the momentum compaction is deduced from the expression [22]:

αc =
f 2

sin

f 2
rev

2πE0

h eVcav cos φs

(6.5)

where fsin is the synchrotron frequency (a typical value is about 30 KHz), which is mea-

sured with a spectrum analyzer with an error of the order of 0.1 KHz, frev is the revolution

frequency (known with an accuracy of 1 Hz, h = 120 is the harmonic number, Vcav cos φs

is the RF voltage slope known with an accuracy of 5 %, which thus gives the main contri-

bution to the error on αc. A typical measurement of the momentum compaction for the

1The betatron oscillations around the reference orbit does not produce at first order in x and y a
change in the trajectory length. On the contrary the trajectory given by the dispersion Dx(s), generated
by a displacement of the energy, changes the length of the equilibrium orbit. The momentum compaction

factor is:

αc =
∆L/L

∆E/E0

=
1

L

∮

Dx(s)

ρ(s)
ds .

The orbit length is L = c h
fRF

, then ∆L/L = −∆fRF /fRF .
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DAΦNE rings gives αc = 0.020 ± 0.001.

The contribution due to fRF in the error propagation in the dispersion measurement

is negligible, thus the error on Dx is:

δ(Dx) =

∣

∣

∣

∣

xǫ

∆fRF /fRF

∣

∣

∣

∣

δ(αc) +

∣

∣

∣

∣

αc

∆fRF /fRF

∣

∣

∣

∣

δ(xǫ) (6.6)

the first term is the 5% of the dispersion (from few millimetres to 5− 10 cm), the second

is about 7 mm.

Betatron tunes Q

The fractionary part of the horizontal and vertical betatron tune Qx and Qy is measured

giving to the beam a RF transverse excitation with two stripline kickers and measuring

Figure 6.2: An example of the frequency spectrum as it is shown by the spectrum analyzer:
the two peaks correspond to the horizontal and vertical betatron tunes.
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the response of the beam in the excited plane with a electrostatic button monitor similar

to the beam position monitors described above.

The beam is excited at all frequencies with a white noise generator and it responds

only at its own oscillation frequencies. The signal is extracted with wide band button

electrodes and is sent to an spectrum analyzer (HP 70000 system). The output at a

intermediate frequency is processed by a FFT analyzer HP 3587S.

Figure 6.2 represents the beam spectrum as is shown by the DAΦNE control system.

The measurement resolution of Q is 1 · 10−4.

6.1.3 Beta measurements

In a storage ring the betatron functions can be measured at the quadrupole positions. The

value of the beta function is obtained from the betatron tune shift when the quadrupole

strength is varied.

In thin lens approximation, a quadrupole gradient change ∆k generates a betatron

tune shift ∆Qx,y [23, 41, 52] proportional to the beta function at the quadrupole position:

∆Qx,y = ± 1

4π
∆kL βx,y (6.7)

where L is the magnetic length of the quadrupole.

The main contribution to the measurement error comes from the thin lens approxi-

mation used to estimate the beta. A reliable value of the error on the measured beta

functions is 1 m [5] for all DAΦNE quadrupoles.
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6.2 DAΦNE model results

Two sets of measurements taken on November 25 2003 (electron ring) and December

4 2003 (positron ring) are reported as an example. The horizontal and vertical beta

functions from the model are in very good agreement with the measured beta functions.
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Figure 6.3: Dispersion function in the electron ring: χ2/dof = 3.04.

Figure 6.4: Dispersion function in the positron ring: χ2/dof = 2.11.
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Figure 6.5: Horizontal beta function in the electron ring: χ2/dof = 1.62.

Figure 6.6: Vertical beta function in the electron ring: χ2/dof = 1.33.
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Figure 6.7: Horizontal beta function in the positron ring: χ2/dof = 1.44.

Figure 6.8: Vertical beta function in the positron ring: χ2/dof = 1.19.



Chapter 7

Beam based alignment

A Beam Based Alignment (BBA) procedure has been implemented for the DAΦNE

quadrupoles in 2003.

The motivations for a set of BBA measurements at DAΦNE is the optimization of the

orbit correction with the dipole correctors. Large horizontal quadrupole misalignments

need large kicks from the corrector dipoles to steer the orbit distortion, which perturb the

optics of the rings and generate additional spurious dispersion. These model dependent

measurements are aimed at identifying particularly large misalignments of the quadrupole

centres with respect to the adjacent beam position monitors (BPM) so that they may be

mechanically realigned.

The typical data acquisition process takes 12-15 minutes per ring (41 quads and 37

BPMs). The lattice is simulated with the MAD model and the analysis performed with

an algorithm written with Matlab.

The first BBA data were taken in September 2003 at the start of the run for FINUDA.

The analysis revealed a short circuit in the winding of two quadrupoles of the electron ring

just installed in the previous machine shutdown and a 2.5 mm horizontal displacement of

73
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Figure 7.1: Definition of the BPM-to-quadrupole and Beam-to-quadrupole offsets.

the quadrupoles in the Long straight section of the electron ring also rearranged during

the shutdown.

After the adjustment of the alignments further sets of measurements, taken in Decem-

ber 2003 and at the start of the KLOE run in April 2004, confirm that the residual beam

to quadrupole horizontal offsets are smaller than 2 mm and the vertical ones smaller than

1 mm in both rings.

The BBA is a technique of great interest for future linear collider that will have

demanding alignment and stability requirements in order to achieve the low vertical emit-

tance necessary for very high luminosity [39, 51].

7.1 The BBA technique

Beam based alignment technique in storage rings commonly uses the closed orbit change

with respect to variations of the quadrupole strength to determine the beam position

with respect to the magnetic centre of the quadrupole. Typically BPMs are located

near the quadrupole magnets. This configuration allows a direct measure of the BPM to

quadrupole offset by steering the closed orbit at the quadrupole position with the dipole
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correctors until there is no response to the change in quadrupole strength. The reading

recorded at the adjacent BPM is the quadrupole to BPM offset. Figure 7.1 shows a

schematic view of the offset definitions.

In DAΦNE the nearest BPM is in general some distance d from the middle of the qua-

drupole (about 12-15 cm apart), thus, even if the beam is passing through the quadrupole

centre, it may be passing through the BPM with an angle x′ which can produce an error

δxqb = x′ · d in the offset measurements. Moreover there are 4 quadrupoles in each Long

straight section which do not have any BPM nearby.

Hence in the DAΦNE case it is better to determine the beam offsets with respect

to the quadrupole centres for a given reference orbit using the ability to calculate the

change in closed orbit throughout the ring lattice with the optics model. In a second step

an assessment of the BPM to quadrupole offsets is possible under some assumption and

approximation that are discussed below.

7.1.1 Closed orbit response to quadrupole strength variation

The horizontal case is discussed. Similar considerations hold also for the vertical case.

In a linear machine without coupling, a beam passing through a quadrupole with a

horizontal offset xbq with respect to the magnet centre receives a kick ∆x′

0 = −Kxbq ,

where K is the integrated quadrupole strength (Eq. 4.3), correspondig to an effective

dipole error located at the quadrupole position s0. The closed orbit distortion generated

by the quadrupole kick all along the ring is expressed by the well known formula for a

small dipole error [23]:

∆x(s) =
∆x′

0

√

βx(s)βx(s0)

2 sinπQx

cos (φx(s) − φx(s0) − πQx). (7.1)

For a beam off-centre with respect to the quadrupole we distinguish three terms coming
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respectively from the offset, from the closed orbit response, from the focusing:

∆x(s) = −xbqC12(s; s0)K; (7.2)

where the closed orbit response C12(s; s0) is:

C12(s; s0) =

√

βx(s)βx(s0)

2 sinπQx
cos (φx(s) − φx(s0) − πQx). (7.3)

Hence the beam to quadrupole offset xbq can be deduced from the response of the closed

orbit to a change in the quadrupole strength K.

The measurement procedure is carried out in three steps:

1. starting from a given reference orbit in the machine, the strengths of the quadrupoles

are individually varied and the respective difference orbits at each BPM are recorded

in a matrix format;

2. the same orbit changes are simulated in the MAD model simulating an arbitrary

displacement of the regarded quadrupole;

3. the beam to quadrupole offsets xbq are determined scaling the modelled orbit changes

in order to fit the measured orbit changes in a least squares sense.

Fitting the changes in the orbit due to a change in the quadrupole strength must take

into account two contributions: the first is from the change in the field seen by the beam

off-centre with respect to the quadrupole; the second is from the change in the focusing.

The expression for the change in the horizontal orbit is then [50]:

∆xco(s) = −xbq
C

(1)
12 (s; s0)K

(1) − C12(s; s0)K

1 − C12(s0; s0)K
; (7.4)
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where ∆xco(s) is the change in the closed orbit at location s in the lattice, xbq the initial

offset of the beam with respect to the quadrupole centre (which we want to measure), K

the initial integrated quadrupole focusing, K(1) the integrated focusing after the change

in quadrupole strength. The closed orbit response C12 must be calculated both for the

original quadrupole setting and for the quadrupole strength after variation. A similar

expression holds for the vertical plane:

∆yco(s) = −ybq
C

(1)
34 (s; s0)K

(1) − C34(s; s0)K

1 − C34(s0; s0)K
. (7.5)

7.2 Experimental equipment and data taking

The BBA data taking is fully integrated in the DAΦNE control system and is performed

with the same program adopted for the usual acquisition of the closed orbit response

matrix to dipole correctors changes. The program has been upgraded adding the option

of selecting either the dipole corrector currents or the quadrupole ones to be varied.

The DAΦNE beam position monitors used for orbit measurements have been already

presented in Section 6.1.1.

7.2.1 Power supply control

There two types of quadrupole power supplies, one for the Small quadrupoles and another

for the Large quadrupoles. The setting resolution and the readout resolution of the current

for the different types are reported in Table 7.1 [42]. Errors coming from the resolution of

power supplies in the alignment measurement are in general negligible. The power supplies

are controlled through a serial board on VME bus. Dedicated CPUs of the second level

of the control system set and read the currents.
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Quad type Max current Setting resolution Readout resolution
Small 585 A ±6 mA ±6 mA
Large 175 A ±2 mA ±2 mA

Table 7.1: The power supply technical specifications for the DAΦNE quadrupoles.

7.2.2 Closed-orbit response measurement

Figure 7.2 shows the window of the LabView program of the DAΦNE control system that

measures the closed orbit response. The procedure carried out by the program for the

orbit response to quadrupole changes is the following:

• reference (horizontal and vertical positions) orbit acquisition, averaging over a given

number of orbits (10-15);

• reading of the current provided by the power supply to the quadrupole;

• change in quadrupole current is applied;

• new closed orbit is acquired;

• the difference xnew − xref is written as a row of the response matrix;

• back to the original quadrupole current value.

This sequence is iterated for each one of the 41 quadrupoles and finally all the orbit

changes are saved in a matrix format: one row each quadrupole orbit change and one

column each BPM. The complete data acquisition takes about 10-15 min. per ring.

7.3 Analysis and errors

The BBA procedure has been applied to all electromagnetic quadrupoles in the DAΦNE

rings but the four ones of the second interaction region where the design trajectory passes
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Figure 7.2: The LabView program window of the DAΦNE control system that measures the
closed orbit response matrix.

of axis. Closed orbit changes are formed with the MAD optics model of the main rings

by simulating a fictitious displacement of the beam with respect to the quadrupole centre

of 1 mm in the horizontal and vertical direction.

The analysis is performed assuming the local betatron coupling is corrected (that

means the horizontal and vertical orbit changes are generated respectively only by the

horizontal and vertical offset of the quadrupoles), otherwise the sources of coupling should

be modelled and a coupled x-y analysis, that takes into account the simultaneous change

in horizontal and vertical orbit, must be adopted as described in [50]. This condition

is checked directly for the DAΦNE rings from the usual measurements of closed orbit

response to the dipole correctors: orbit changes in one plane due to dipole kicks in the
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other transverse plane must be negligible.

7.3.1 BBA analysis

The analysis algorithm has been written in Matlab and consists of:

1. download the file of the reference orbit xref ;

2. download the file of measured closed orbit changes xmeas;

3. download the file of modelled closed orbit changes xmod;

4. for each quadrupole fit xmeas versus xmod in a least-squares sense: xmeas = k · xmod;

5. xbq = k · 1 mm is the beam-to-quad offset;

6. xmq = xbq + xref gives an assessment of the BPM-to-quad offset;

For very small kicks sizes the model converges almost to the electronic noise level

of the measurements, which means the residual error in the fit is dominated by random

noise. As the quadrupole strength changes increase, the optics functions and the betatron

tunes of the ring change too much and the beam can be lost.

The quadrupole strength changes are chosen as a trade-off between the effective signal-

to-noise of the measurements, which profits from large kicks, and the perturbation to the

ring optics due to the focusing change.

Assuming typical values for a DAΦNE quadrupole β = 10 m and xbq = 1 mm, a

maximum orbit displacement of the order of 200 µm is obtained with a current variation

in the quadrupole of about 2 A.

Within this range of orbit displacements the effect on the orbit due to the sextupoles

is very small, so that they can be kept on during the measurements with large beam

lifetime and without affecting the orbit changes. Other nonlinearities in the ring lattice
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(the most important are represented by the field of the wiggler magnets) and systematic

errors from the non linear response of the BPMs are completely negligible as well.

The scaling parameter of the fit k (xmeas = k · 1 mm) is calculated by the alghoritm of

analysis in order to minimize the deviation χ2 between the measured orbit response and

the modelled one:

χ2 =
∑

i

(xmeas
i − kxmod

i )2

σ2
x

; (7.6)

that gives:

k =

∑

i(x
meas
i xmod

i )
∑

i x
mod
i

. (7.7)

The error on xbq is calculated assuming as errors on the fitted orbit changes [51]:

σ2
x =

∑

i

1

N
(xmeas

i − kxmod
i )2; (7.8)

and propagating them on k:

σ2
k =

∑

i(x
meas
i − kxmod

i )2

∑

i(x
mod
i )2

. (7.9)

The offsets between the beam positions and the quadrupole centres are thus determined

with an average resolution of about 100 µm.

The assessment of the offset xmq between the BPM and the centre of the adjacent

quadrupole is carried out adding xbq to the reference orbit value at the BPM of interest

(see Fig. 7.1). The error on xmq is given by the sum of all terms in Table 6.1 and the

aforementioned error generated when the beam passes through the quadrupole with an

angle x′. A direct measurement of the orbit slope is not possible, since two consecutive

monitors would be needed between the quadrupole of interest and the following magnetic



82 CHAPTER 7. BEAM BASED ALIGNMENT

element. However we can estimate the maximum value the angle can have all along the

reference orbit as the maximum position range between two consecutive BPMs divided

by their distance. Typically the worst value expected for x′ will be (see for instance the

reference orbits in Figures 7.4-7.7):

x′

max = 3.5mm/2m = 1.7 mrad; (7.10)

and multiplying x′

max by the distance d between the quadrupole centre and the BPM, a

pessimistic estimate of the contribution to the error on xmq comes out to be:

δxmq = x′

max · d = 1.7 mrad · 0.12 m = 200 µm. (7.11)

For the quadrupoles positioned in the Long sections QUAPL103, QUAPL104, QUAPL207,

QUAPL208 and QUAEL103, QUAEL104, QUAEL207, QUAEL208, which have no adja-

cent monitor, the BPM-to-quadrupole offset is not measured.

7.3.2 BBA results

Three sets of measurements have been performed on both rings: two with the optics

for FINUDA and one with the KLOE optics. The agreement between measured orbit

changes and that predicted from the model using Equations 7.4-7.5 is very good for most

quadrupoles. Figure 7.3 shows as an example the agreement between the measured change

in vertical orbit and the fit from the MAD model for QUAPL114. The BPM readings are

averaged over 10 orbits.

There are however some quadrupoles whose orbit responses are fitted with large errors,

such quadrupoles are in general positioned in the “Y” sections. Bad orbit fits are explained

with non-zero local coupling at the interested quadrupole: in the “Y” sections coupling

was not perfectly corrected because of the residual coupling of the adjacent interaction



7.3. ANALYSIS AND ERRORS 83

average error
Fitted orbit changes 16 µm
Beam-to-quad offsets 100 µm
BPM-to-quad offsets 300 µm

Table 7.2: Average errors obtained on the fitted orbit changes and on the measured offsets.
Error on BPM-to-quad offset includes the statistical error from the fit and the error δxmq from
the orbit passing through the quadrupole with an angle.

region or because of the coupling generated by the “C” steering correctors used to adjust

the beam trajectories through the interaction regions [6].

The existence of local coupling in the “Y” sections is confirmed also by the usual

measurement of the closed orbit response to dipole correctors.

Plots and Tables in next pages summarize the results of the three sets of measurements

on both rings.

Figure 7.3: Agreement between the measured and the fitted orbit change for QUAPL114.
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Figure 7.4: Horizontal BBA measurements in the electron ring.
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Figure 7.5: Vertical BBA measurements in the electron ring.
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Figure 7.6: Horizontal BBA measurements in the positron ring.
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Figure 7.7: Vertical BBA measurements in the positron ring.
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The first measurement was taken in September 2003 at the beginning of the FINUDA

run. The BBA analysis revealed an anomalous beam to quadrupole horizontal offset of

8 mm and a vertical offset of 6 mm for QUAEL204, too large to be real misalignments.

The measurement was repeated for the quadrupole of interest obtaining every time un-

explainable large and different values. Inspecting directly the quadrupole, we discovered

that there was a short circuit in the winding that changed the field calibration in an

unpredictable way.

Generally a short circuit in a quadrupole represents a large change in the magnetic

lattice that make impossible to store the beam in the ring. However this case was much

subtle since the powered current in QUAPL204 was only 20 A (while typical values for

DAΦNE quadrupoles are around 60-100 A) and the beam was stored even though the

quadrupole was shorted and the optical functions were mismatched.

The second observation was that all the quadrupoles in the Long straight section of the

electron ring had BPM-to-quadrupole vertical offsets of 2-2.5 mm. Alignment survey was

then performed and confirmed that the vacuum chamber, where the BPMs are installed,

was 2 mm lowered in that section [46]. In fact the Long sections were just been rearranged

during the previous machine stop.

Two more BBA measurements have been taken during the run for FINUDA between

October and December 2003. The comparison between these two sets of measurements

shows that beam to quadrupole offsets have been reduced during the machine set-up and

that the BPM to quadrupole offset measurements are reproducible until the analysis reso-

lution for most quadrupoles. It is apparent (Fig. 7.5) that the BPM-to-quadrupole vertical

offsets for the electron Long section (QUAEL101, QUAEL102, QUAEL114, QUAEL105,

QUAEL106, QUAEL117, QUAEL209, QUAEL210) have been corrected from about 2

mm to less than 0.3 mm after the realignment.

Furthermore it is apparent that the quality of the fit is improved for the measurements
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r.m.s. offsets Positron ring Electron ring
23 oct 11 dec 22 apr 23 oct 25 nov 22apr

Horiz Beam-to-quad (mm) 2.33 1.10 2.31 1.51 2.06 2.57
BPM-to-quad (mm) 1.53 1.88 2.14 1.71 1.93 2.36

Vert. Beam-to-quad (mm) 1.38 1.05 0.92 0.99 1.32 1.06
BPM-to-quad (mm) 1.40 1.00 0.68 0.74 1.59 0.90

Table 7.3: Measured quadrupole offsets of the DAΦNE main rings.

taken on December, 11 due to the coupling correction during the commissioning resulting

in a better accuracy of the optics model.

One further BBA measurement has been performed at the beginning of the KLOE run

in april 2004. This measurement is not completely comparable with the previous ones,

since several quadrupoles have been realigned in the winter shutdown.

Table 7.3 summarize the results for the different sets of measurements for both rings.

The horizontal and vertical offsets and the relative error of each quadrupole for both rings

are plotted in the Figures 7.4-7.7 of this Chapter.



Chapter 8

Summary

The model of the DAΦNE main rings has been updated describing the second interaction

region, where the FINUDA detector was installed in 2003, and the modified wiggler

magnets.

Wiggler modelling is a one of issues that are studied at presently in the accelerator

community. Our choice (hard-edge model) proved to be very flexible and easy to use and

gives very reliable results for all the parameters determined by the linear dynamics in

differents configurations of the machine. Suitable corrections, which have been estimated,

must be taken in account to calculate the synchrotron radiation integrals that determine

the natural energy spread and the emittance of the main rings.

The calculation of a lattice that completely fit the numerous constraints necessary for

the DAΦNE rings was performed with this new model developed for the MAD program.

Once applied the calculated settings, we have verified an excellent agreement between

the model predictions and the measurements of all the optics paramenters: betatron and

dispersion functions, betatron tunes, emittance and closed orbits.

Concerning the beam based alignment, the introduction of a BBA procedure at DAΦNE

demonstrated that this technique is a powerful diagnostic tool to find large quadrupole

90
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misalignments. Furthermore BBA has been able to easily check the correct operation of

the quadrupoles. More investigation is needed to estimate the reproducibility and the

stability of these measurements.

Until now an orbit correction with the steering dipoles that takes into account the

BBA results in order to determine an orbit passing close to the centres of the quadrupoles

has not yet been implemented, since DAΦNE is not so demanding for the correction of

spurious dispersion generated by quadrupole offsets as on the contrary will be next linear

colliders.

A further development that can be implemented is a procedure of orbit correction

to minimize the offsets of the beam with respect to the quadrupoles. From a calibrated

lattice model we are able to calculate the response matrix between the orbit corrector

magnets and the beam position in the quadrupoles. Inverting the matrix and applying

to the measured beam offsets, we could determine steering changes for minimizing the

beam offsets with respect to the quadrupole centres. It will likely be necessary to iter-

ate this procedure, because effects such as coupling, beam offsets in sextupoles, spurius

dispersion etc. will limit the precision with which the beam offsets in the quadrupoles

may be measured. At DAΦNE there are a fewer correctors magnets (37) than there are

quadrupoles (41). The matrix inversion will therefore need to be performed using singular

value decomposition [38] and one can expect to minimize the beam offsets rather than

steer the beam exactly to the centres.

Currently DAΦNE is running with the KLOE experiment with an optics very similar

to that used for FINUDA and the machine luminosity is going better and better. The

luminosity peak value has just achieved (December 2004) 1.30 · 1032 cm−2s−1.
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Appendix A

Transport matrices of the magnetic

elements

When a particle with position vector (x0, x
′

0; y0, y
′

0, t0, δ0) at a given azimuth s0, goes

through a sequence of magnetic elements up to the azimuthal position s, each element

can be described by means of a matrix 6 × 6, which transform the position vector before

the element in the the vector after it.

The transport matrix from s0 to s will be the product of the matrix of the sigle

elements:

M(s, s0) = M(s, sn)M(sn, sn−1) · · ·M(s1, s0) (A.1)

The form of the representative matrices of the different types of magnetic elements are

reported [22, 30]; those matrices are obtained calculating the solution of the Hill equation

which describes betatron oscillations.
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Drift section of length L:

Mdrift =








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






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

1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


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. (A.2)

It leaves invaried the slope z′ and increases the displacement z by z′L.
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Figure 3.3: Reference System for a Sector Bending Magnet; the signs of pole-face rotations are positiveas shown.HGAP The half gap of the magnet (default: 0 m).The pole face rotation angles are referred to the magnet model (see Figure 3.2 and Figure 3.3). Thequantities FINT and HGAP specify the �nite extent of the fringe �elds [8]. There they are de�ned asfollows: K1 = FINT = Z 1�1 By(s)(B0 �By(s))g �B20 ds; g = 2 � HGAP:The default values of zero corresponds to the hard-edge approximation, i.e. a rectangular �eld dis-tribution. For other approximations, enter the correct value of the half gap, and one of the followingvalues for FINT: Linear drop-o� of the �eld 1/6Clamped \Rogowski" fringing �eld 0.4Un-clamped \Rogowski" fringing �eld 0.7\Square-edged" non-saturating magnet 0.45Entering the keyword FINT alone sets the integral to 0.5. This is a reasonable average of the abovevalues. The magnet may be rotated about the longitudinal axis by use of the following parameter:TILT The roll angle about the longitudinal axis (default: 0 rad, a positive bend angle then denotes abend to the right). A vertical bend is de�ned by entering TILT with no value; this implies a rollof �=2 rad, i.e. a positive bend angle denotes a de
ection down. A positive angle represents aclockwise rotation. The following second-order attributes are permitted:K2 The sextupole coe�cient K2 = (1=B�)(@2By)=(@x2) (default: 0 m�3).H1 The curvature of the entrance pole face (default: 0 m�1).H2 The curvature of the exit pole face (default: 0 m�1). A positive pole face curvature induces anegative sextupole component; i.e. for positive H1 and H2 the centres of curvature of the polefaces are placed inside the magnet.One third-order parameter is accepted, but at present it is ignored:

Figure A.1: Reference system fot a bending magnet.

Dipoles: for a dipole the contribution to the dispersion due to the energy deviations

of the particle must be considered. The transport matrix of a bending dipole consists of

three terms: the fringing field at the magnet entrance F1, the body of the dipole B and

the fringing field at the magnet exit F2:

Mbend = F1BF2 (A.3)
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The pole-face roation angles determine the focusing effects of the fringing and are denoted

with e1 and e2 (Fig. A.1).

In a sector dipole helds e1 = e2 = 0, while in a rectangular dipole e1 = e2 = α/2.

If the fringing have finite extension the focusing angle in the vertical matrix element

is changed:

ei = ei − hgI1(1 + sin2 ei) (A.4)

where h is the orbit curvature through the dipole, g is the magnetic gap, e I1 the first

integral of the fringing field (called fint):

fint = I1 =

∫ +∞

−∞

By(s)(B0 − By(s))

g · B2
0

ds (A.5)

The entrance/exit transport matrix is then:

Fi =


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(A.6)

which corresponds to a thin lens with focal length f = ρ cot ei.

The magnet body with angle and curvature ρ e α and uniform field has transport
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matrix:

B =
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In the bending plane gives a focusing contribution due to a geometric effect of the magnet:

the trajectories entering closer to the centre of curvature travel a shorter stretch of the

magnet and are thus less bent, the converse occurs entering more distant to the centre of

curvature. In the vertical plane it acts as a drift section of length ρα.

Quadrupole F (horizontal focusing and vertical defocusing) of strength k2 = ec
E0

∂By

∂x
and

length L:

MF =
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(A.8)

while if ∂By

∂x
is negative, the quadrupole is D (horizontal defocusing and vertical focusing)

and the trigonometric functions and the hiperbolic ones are exchanged in matrix elements.

In the thin lens approximation (i.e. kL ≪ 1 con L → 0 e k2L constant) the matrix come



103

out to be:

MF,D =
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where f is the focal length of the lens.

Skew quadrupole: when a quadrupole is tilted by an angle θ around the longitudinal

axis:

Mquad(θ) = R(θ)MquadR
−1(θ) (A.10)

where Mquad is matrix of an upright quadrupole and R(θ) represents a rotation in the

transverse plane x, y e x′, y′ by an angle θ:

R(θ) =

































cos θ 0 sin θ 0 0 0

0 cos θ 0 sin θ 0 0

− sin θ 0 cos θ 0 0 0

0 − sin θ 0 cos θ 0 0

0 0 0 0 1 0

0 0 0 0 0 1

































(A.11)
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Solenoid of strength ks = 1
2

ec
E0

Bs and length L:

Msol =



















cos(ksL)Q sin(ksL)Q 0 0

− sin(ksL)Q cos(ksL)Q 0 0

0 0 1 0

0 0 0 1



















(A.12)

where Q is a 2 × 2 matrix focusing quadrupole-like:

Q =







cos(ksL) 1
ks

sin(ksL)

−ks sin(ksL) cos(ksL)






(A.13)

Thus a solenoid acts focusing in both planes and rotating the beam by an angle ksL.
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