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Abstract

A statistical strained-tetrahedron model developed to better describe and
understand the local structure of ternary zincblende crystals, interprets
experimental EXAFS and far-infrared spectra. It considers five tetrahedron
configurations distorted in shape and size, characteristic of ternary zincblende
alloys, allows non random distributions, hence site occupation preferences,
conserves coordination numbers, respects stoichiometry, and assumes next
neighbor values determine preferences beyond next neighbor. Configuration
probabilities have three degrees of freedom.

The nineteen inter-ion crystal distances are constrained by tetrahedron structures;
to avoid destructive stresses, we assume average tetrahedron volumes of both
sublattices to relax to equal values. The number of distance free-parameters ≤7.
Model estimates, compared to published EXAFS results, validate the model.

Knowing configuration probabilities, one writes the dielectric function for the
phonon spectral region. Constraining assumptions restrict the number of degrees
of freedom. Unfolding experimental spectra yields SOP coefficient values and\or
specific oscillator strengths. Validation again confirms the model.
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1 INTRODUCTION 
To quantitatively interpret phenomena one often resorts to modeling. An ideal model 

should perfectly describe the phenomenon predicting through the use of the related 
parameters all the behavior of the phenomenon. In practice the model assumes simplifying 
approximations to render the description and\or the calculation easier to handle. This 
inevitably restricts the range of applicability of the model, defining range-limits beyond 
which model-predictions become unreliable. This is a general statement, and we shall soon 
apply this notion to the problem of our concern.  

The interest to sphalerite (zincblende) ternary semiconductors stems from their 
predominant importance as semiconductor devices, as amply evidenced by the abundance of 
articles in literature devoted to them. Paramount is the interpretation of extended x-ray 
absorption fine structure (EXAFS) (see theoretical considerations [1,2] since 1981) and 
vibrational spectra observed in far infrared region (FIR spectra). EXAFS were applied soon 
after [3,4] with alas no review paper covering the abundant literature hereto devoted. For FIR 
spectra literature, one can refer to for instance review articles [5-7] and book [8]).  

Eager to understand the local structure of ternary zincblende semiconductors A1-xBxZ 
(or AYyZ1y, we use A, B, for cations, and Z, Y, for anions), several models have been 
considered. Though each has its distinct particularity, all have in common TWO simplifying 
assumptions: 1)- the competing ions (cations or anions) occupying the four vertices of the 
tetrahedron around the ion (of opposite polarity, i.e. anion or cation respectively) inside of it, 
form a RIGID tetrahedron that does not deform as competing ions replace each other going 
from one configuration to the other. 2)- Competing ions occupy available sites in a 
RANDOM way, with ion distribution filling (k B-ions into a shell with N sites, from relative 
contents x and 1-x) assumed stochastic and probabilities perfectly defined by the random 
Bernoulli binomial polynomials  

pk
[N](x)=N!/[k!(N-k)!]xk(1-x)N-k   with k=0,…,N . 

The consequence of such assumptions, is the reduction of the range of applicability of 
these models to the following subset of materials:  

• The invariance of the tetrahedron for the various configurations, implies the lattice 
constants of both binary constituents AZ and BZ should be equal (or quasi equal), thus 
restricting correspondingly the range of applicability of the model.  

• RANDOM distribution statistically implies assuming a stochastic filling around Z with 
ions A and B, i.e. that the Z-ion preference for either is the same. Thermodynamically this 
implies that the potential well for A around Z is identical to that of B around Z. But we 
are aware that in nature equality is the exception that confirms the rule of inequality. 
Indeed, standard molar enthalpies of formation, ∆fH0 [kJ/mol] of binaries are generally 
different. That is why the stochastic approach is unable to describe and interpret materials 
presenting site occupation preferences (SOPs) as reported experimentally! 

 
To be free of these limitations, we developed the statistical strained-tetrahedron model 

with tetrahedra freely distorting from configuration to the other, and free to account for SOPs. 
The model was validated on published EXAFS zincblende data [9,10], and, after an 
adaptation, on even intermetallide materials [11]. The model was then extended to describe 
and interpret FIR spectra.  
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We propose to briefly recall here the developed model, its validation, and dwell on 
FIR-spectrum interpretation, applicability and limits. 

2 THE STATISTICAL STRAINED-TETRAHEDRON MODEL 
To create any model, one has to 1) describe as closely as possible the object under study 

using for that proper parameters; 2) reduce the set of these parameters through motivated 
constrains to determine the minimum number of degrees of freedom parameters; 3) check 
model-predicted values against experimental ones; 4) consequently, trash or retain valid the 
model depending on the reproducibility thus obtained. With this in mind we recall our 
modeling. 

2.1 The object under study 
Zincblende fcc structures are tetrahedron coordinated, characterized by a central ion 

surrounded by four nearest-neighbor (NN) ions (first shell) defining the four vertices of a 
tetrahedron, and 12 next nearest-neighbor (NNN) ions (second shell). Binary compounds AZ 
have their successive shells alternately fully filled by A then Z ions. All tetrahedra are 
symmetric, regular, and identical; thus, by simple trigonometry, equal inter-bond angles 
α(A:Z:A)= α(B:Z:A)=109.47°, and the inter-ion distances (ijd) are defined in terms of the 
lattice constant a (known from interferometry literature): AZd =3½ a/4, AAd= ZZd= a/2½ .  

For ternary A1-xBxZ (or AYyZ1-y), in the binary compound AZ, cations A are partially 
substituted by B ions. This, leads to five different elemental tetrahedra {Tk}k=0,4 where the 
subscript k indicates the number of B ions at the vertices of the tetrahedron, with (4-k) A-ions 
[T0(Z:4A), T1(Z:3A+1B), T2(Z:2A+2B), T3(Z:1A+3B),T4(Z:4B)]. Prior to us, simulations 
considered the five {Tk}k=0,4 tetrahedra as externally rigid with the central ion free to be 
displaced, and around a central Z-ion the 1st shell four A\B ions are described by pk

[4](x), 
while the 2nd shell contains twelve Z-ions! On the other hand, around an A or B ions, the 1st 
shell contains four Z-ions, while the 2nd shell distribution of the twelve ions A\B is described 
by pk

[12](x). This allows approximate evaluations, avoiding analytical difficulties, provided 
NO SOPs are observed for the material. 

2.2 Statistical strained-tetrahedron model assumptions 
We build our model discarding both restrictions: 1)- deviating from stochastic filling of 

ions, and 2)- freeing the tetrahedra of the unnatural constraint of rigidity. 

The price for such a more general model is the number of parameters needed to describe 
the crystal structure. But as we shall demonstrate, adequate assumptions (checked correct at 
the end) reduce the degrees of freedom, to an acceptable value. 

To quantify results departing from stochastic distribution, we attribute to each Bernoulli 
binomial a SOP weight-coefficient. This leads to five NN terms Wk pk

[4](x), thirteen NNN 
Awk pk

[12](x) (for central A-ions), and thirteen Bwk pk
[12](x) (for central B-ions), a total of 31 

w-parameters! Fortunately it is the Z-ion that determines the choices (while ions A and B 
deterministically are surrounded by Z ions); thus we claim that ALL higher shell fillings are 
determined by linear expressions of the NN five SOP-coefficients {Wk}k=0,4 . But binary 
tetrahedron configurations T0 , T4 have NO preferences. Thus W0 =W4 ≡1 ! and we are left 
with only {W1,W2,W3}. 
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The probabilities to find B and A ions in a Tk-configuration are proportional 
respectively to {kWk}k=0,4 and to {4-kWk}k=0,4 (conservation of coordination numbers). As 
probabilities cannot be negative, we have 0≤ Wk ≤ 4/k. There are thus only three bounded 
free parameters 0≤W1≤4, 0≤W2 ≤2, 0≤W3≤ 4/3.  

Expressions {Awk}k=0,12 , {Bwk}k=0,12 for the NNN shell, are determined by 
combinatorial probabilities in terms of those around the Z-ions of the NN shell. This 
hypothesis leads for the zincblende structure, to the linear expressions of NNN SOP-
coefficients Awk and Bwk as functions of the three Wk’s given in Tab.1a [9]. To illustrate that 
the assumption is general and applies even to other crystal structures, the expressions for 
intermetallic alloys of type M3(X1-xX’x)1 are given in Tab.1b [11].  

TAB. 1a: NNN SOP-coefficients in terms of NN SOPs: All possible NNN distributions and 
resulting SOP-coefficients for ternary. 0≤ {Wk}k=1,3  ≤ 4/k, while W0 =W4 =1. 
Zincblende A1-xBxZ with a B or A as central ion [9]. 

a) All 12 possible NNN B-ion fills  Resulting B-weights Resulting A-weights 
k of the 4 tetrahedra Bw [12]

k=Σj=0,4{BMj,kW[4]
j} Aw [12]

k=Σj=0,4{AMj,kW[4]
j} 

0 0 0 0 0 W1 W0 = 1 
1 0 0 0 1  (3W1 +W2)/4 (3W0 +W1)/4 
2 0 0 0 2 / 0 0 1 1  (5W1 + 2W2 +W3)/8 (5W0 + 2W1 +W2)/8 
3 0 0 0 3 / 0 0 1 2 / 0 1 1 1 (6W1+4W2+W3+W4)/12 (6W0 +4W1+W2+W3)/12 
4 0 0 1 3 / 0 0 2 2 / 0 1 1 2 / 1 1 1 1 (5W1+7W2+3W3+W4)/16 (5W0 +7W1+3W2+W3)/16 
5 0 0 2 3 / 0 1 1 3 / 0 1 2 2 (4W1+3W2+3W3+2W4)/12 (4W0 +3W1+3W2+2W3)/12 
6 0 0 3 3 / 0 1 2 3 / 1 1 1 3 / 0 2 2 2 / 1 1 2 2 (4W1+6W2+6W3+4W4)/20 (4W0 +6W1+6W2+4W3)/20 
7 0 1 3 3 / 0 2 2 3 / 1 1 2 3 (2W1+3W2+3W3+4W4)/12 (2W0 +3W1+3W2+4W3)/12 
8 0 2 3 3 / 1 2 2 3 / 1 1 3 3 / 2 2 2 2 (W1+3W2+7W3+5W4)/16 (W0+3W1+7W2+5W3)/16 
9 0 3 3 3 / 1 2 3 3 / 2 2 2 3 (W1+W2+4W3+6W4)/12 (W0+W1+4W2+6W3)/12 

10 1 3 3 3 / 2 2 3 3 (W2+2W3+5W4)/8 (W1+2W2+5W3)/8 
11  2 3 3 3 (W3+3W4)/4 (W2+3W3)/4 
12 3 3 3 3  W4 = 1 W3 

 

TAB. 1b: NNN SOP-coefficients in terms of NN SOPs: All possible NNN distributions and 
resulting SOP-coefficients for ternary. 0≤ {Wk}k=1,3  ≤ 4/k, while W0 =W4 =1. 
Intermetallide M3(XX’)1 around X or X’ [11] 

 
b) {Xwk=Σj=0,4 

XMkjWj}k=0,6
   {X’wk=Σj=0,4 

X’MkjWj }k=0,6
 

Xw0 = 1/3W1+2/3W2  X’w0 = 1/3W0+2/3W1 
Xw1= 10/36W1+23/36W2+3/36W3  X’w1= 10/36W0+23/36W1+3/36W2 
Xw2= 16/72W1+41/72W2+13/72W3+2/72W4  X’w2=  16/72W0+41/72W1+13/72W2+2/72W3 
Xw3= 6/36W1+15/36W2+11/36 W3+4/36W4  X’w3= 6/36W0+15/36W1+11/36W2+4/36W3 
Xw4= 2/72W1+13/72W2+41/72W3+16/72W4  X’w4= 2/72W0+13/72W1+41/72W2+16/72W3 
Xw5= 3/36W2+23/36W3+10/36W4  X’w5= 3/36W1+23/36W2+10/36W3 
Xw6= +2/3W3+1/3W4  X’w6= +2/3W2+1/3W3 
 

A random integer ion distribution (k and 4-k) fully respects stoichiometry. With SOP 
coefficients Wk≠1 the situation departs from the stochastic equilibrium, with a consequent 
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T0 T1 T2 T3 T4 

Binary  
regular 

 Ternary  
distorted 

 Binary  
regular  

attenuation of the three “ternary” configuration populations caused by the observed scarcity 
of one of the two ion populations 

{Pk
[4](x) = Ck pk

[4](x) }k=1,3 for ternary Tk 
 

with {Ck(Wk)}k=1,3 , corrective weight factors imposed by stoichiometry 
 

0≤ {Ck=min[Wk,1,(4-kWk)/(4-k)] }k=1,3 ≤ 1 

 
Wk<1 enhances binary AZ populations while Wk>1 that of binary BZ, i.e. 
 

P0
[4](x) = p0

[4](x) +Σk=1,3 {max(0, 1-Wk) pk
[4] (x)}  for binary AZ configuration T0 

 
P4

[4](x) = p4
[4](x) +Σk=1,3{max(0, k(Wk-1)/(4-k)) pk(x)}  for binary BZ configuration T4 (1) 

In the random case, when {Wk≡1 }k=1,3  , {Pk(x) → pk(x) }k=0,4. 

Note however, that even if SOPs enhance the two binary populations with respect to 
corresponding populations of the random case, it by no means leads to clustering since the 
spatial distribution remains perfectly stochastic. 

Both ion-pair and configuration populations are NOW determined with due account of 
SOPs. This allows us to interpret local crystal structures.  

We have five tetrahedra freed from any constraint with, content-wise, two (T0 and T4) 
binary, regular, different sized, and well defined (as remarked above), and three (T1, T2, and 
T3) ternary, distorted (strained tetrahedra) with unequal inter-ionic nineteen ijd distance-
parameters, and consequently altered inter-bond angles (see FIG.1 [9]). Geometrical 
symmetry of each Tk-configuration yields three constraints each, which reduces the number of 
independent distance-parameters from nineteen to ten. 

 

 

 

 

 

FIG.1: Aspect of the five elemental tetrahedron configurations {Tk}k=0,4 of A1-xBxZ (or 
AYyZ1-y) ternary alloys [9] ]; “star” for central ion; circles white: ion being displaced, black: 
replacing ion .  Small open circles indicate the would-be ion-positions as per rigid 
tetrahedron hypothesis. 

Strength of material considerations lead us, to avoid destructive inter crystal stresses, to 
impose that the average tetrahedron volume of the four vertex tetrahedra be equal to the 
central one! (One constraint per configuration!), leaving us with only (10 – 3) ≤ 7 distance 
parameters! 
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Indeed, ≤ whenever for SOP extreme values, some configuration(s) are forbidden, and 
their distances become virtual! 

On the basis of the above probabilities, expressions for average pair coordination 
<i:jCN(x)> and distances <i:jd(x)>, as a function of x, for any two-ion pair i:j={AZ, BZ, BB, 
BA, AA, ZAZ, ZBZ} of zincblende A1-xBxZ ternary can be written and are given in Tab.2 [9]. 

TAB.2: expressions of average pair coordinations <i:jCN(x)> and distances <i:jd(x)>, as a 
function of x, for any two-ion pair i:j={AZ, BZ, BB, BA, AA, ZAZ, ZBZ} of 
zincblende A1-xBxZ ternary [9]. 

AVERAGE COORDINATION NUMBERS 
 For NN ion pairs AZ, BZ 
<BZCN(x)> = Σk=0,4{  kWk    p[4]

k(x)} 
<AZCN(x)> = Σk=0,4{(4-kWk)p[4]

k(x)} 

 For NNN ion pairs BB, BA, AA 
<BBCN(x)>= Σk=0,12{k Bwk p[12]

k(x)} 
<ABCN(x)>= Σk=0,12{k Awk p[12]

k(x)} 
<AACN(x)>= 12−<ABCN(x)> =Σk=0,12{(12-k Awk) p[12]

k(x)} 
<BACN(x)>= 12−<BBCN(x)> = Σk=0,12{(12-k Bwk) p[12]

k(x)} 
<ZBZCN(x)>= Σk=0,4{3 k Wk p[4]

k(x)}      = 3 <BZCN(x)> 
<ZAZCN(x)>= Σk=0,4{3 (4-kWk) p[4]

k(x)} = 3 <AZCN(x)> 

AVERAGE DISTANCES 
 For NN ion pairs AZ, BZ 

<BZd(x)> = { Σk=1,4[ (k Ck) 
BZdk    +4 Max(0, k(Wk-1)/(4-k)) BZd4] p[4]

k(x) } 
  /{ Σk=1,4[ (k Ck)        +4 Max(0, k(Wk-1)/(4-k))         ] p[4]

k(x) }  
<AZd(x)> = { Σk=0,3[(4-k Ck) AZdk +4 Max(0,1-Wk) AZd0] p[4]

k(x) } 
  /{ Σk=0,3[ (4-k Ck)     +4 Max(0,1-Wk)        ] p[4]

k(x) } 
 For NNN ion pairs BB, BA, AA 

<BBd(x)>=   Σj=1,12    j      p[12]
j(x) Σk=2,4 [ BMjk Ck (k-1) BBdk  +4 BMjk Max(0, k(Wk-1)/(4-k))  

BBd4]  
/ Σj=1,12    j      p[12]

j(x) Σk=2,4 [ BMjk Ck (k-1)          +4 BMjk Max(0, k(Wk-1)/(4-k))     ]  
<BAd(x)>=   Σj=0,11 (12-j) p[12]

j(x) Σk=1,3 { BMjk (4- k Ck) [1+Mod( k+1 , 2) ] BAdk}  
/ Σj=0,11 (12-j) p[12]

j(x) Σk=1,3 { BMjk (4- k Ck) [1+Mod( k+1 , 2) ]        } 
<AAd(x)>=   Σj=0,11 (12-j) p[12]

j(x) Σk=0,2 [ AMjk Ck (3-k) AAdk     +4 AMjk Max(0,1-Wk) AAd0]  
/ Σj=0,11 (12-j) p[12]

j(x) Σk=0,2 [ AMjk Ck (3-k)              +4 AMjk Max(0,1-Wk)]  
 For NNN ion pairs Z:A:Z or Z:B:Z 

<ZBZd(x)>= { Σk=1,4 [   (k Ck)  
ZBZdk   +4 Max(0, k(Wk-1)/(4-k)) ZBZd4] p[4]

k(x)]} 
   /{ Σk=1,4 [   (k Ck)           +4 Max(0, k(Wk-1)/(4-k))          ] p[4]

k(x)]} 
<ZAZd(x)>= { Σk=0,3 [ (4-k Ck) ZAZdk  +4 Max(0,1-Wk) ZAZd0] p[4]

k(x) } 
   /{ Σk=0,3 [ (4-k Ck)          +4 Max(0,1-Wk)         ] p[4]

k(x) } 
 

On the basis of these, unfolding a given set of EXAFS data such as GaAsyP1-y [12], one 
obtains the dimensions of all elemental involved tetrahedra: inter-ion distances, angles (see 
Tab.3). 
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TAB. 3: GaAsxP1-x complete set: determined SOP coefficients, distances, angles and volumes 
for all five elemental configuration tetrahedra. Eleven fit parameters (bold) (3 SOP + 8-
distance (PGaP NNN data not reported) to check VRC. 37 available experimental points 
from a set of 16 measurements [9]. 

GaAsxP1-x      
Configurations T0 T1 T2 T3 T4 

k 0 1 2 3 4 
Wk 1 0.93 1.15 1.07 1 

  BZd           [Å] - 2.42 2.43 2.44 2.450 
 AZd 2.359 2.37 2.37 2.38 - 
BZBd - - 3.90 3.90 4.001 
AZAd 3.852 3.88 3.98 - - 
BZAd - 3.91 3.90 3.99 - 
ZBZd - 3.95 3.97 3.98 4.001 
ZAZd 3.852 3.87 3.87 3.89 - 
α(B:Z:B)    [°] - - 106.7 106.9 109.47 
α(A:Z:A) 109.47 109.7 114.3 - - 
α(B:Z:A) - 109.3 107.36 112.0 - 

<VolB.centred>  [Å 

3] 
- 7.28  7.37  7.41  7.55  

<VolA.centred> 6.74  6.84  6.86  6.91  - 
<VolZ.sublattice> 6.74 6.95 7.12 7.29 7.55 
<VolZ.centred> 6.74  6.95 7.07 7.28 7.55  
|Difference  | [%] 0.0 0.1 0.1 0.2 0.0 

 

Having defined the 31+19 parameter model, and identified the relative constrain 
relations reduces to 3+7 independent parameters. The model is ripe to confront its estimations 
with experimental data! 

2.3 MODEL VERIFICATION 
For the validity of the model and its assumptions, we checked the quality of the model 

with its restricted free parameters, 

1. Comparing reported in literature experimental distance-EXAFS points and error bars with 
model fit curves (see FIG.2 (36 points with 10 free parameters), and curves reported in [9-
11]). 

2. “Coordination number” curve predictions on the basis of SOP values obtained from 
distance-EXAFS measurement analysis, against independently measured coordination 
number values (see FIG.3, also [9-11]). 

3. Correlation between thermodynamic standard molar enthalpies of formation, ∆fH0 

[kJ/mol] of materials (Tab.4 [10]) and corresponding obtained SOP-coefficient values. 
 
The validity of the model with its restrictive assumptions is thus confirmed. 

 

TAB. 4: Standard molar enthalpies of formation, ∆fH0 [kJ/mol], of materials and 
corresponding SOP coefficients. Column (§) gives origin and comments for reported 
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SOP coefficient values derived from: c - coordination number data,  d - distance data,  
0* -assumed W3=0 value. [10] 

 

Material components ∆fH0[kJ/mol] SOP   (§)

ABZ/ 
AYZ 

AZ+BZ/ 
AZ+AY 

AZ  BZ/ 
AY 

W0 W1 W2 W3 W4  

ZnMnSe ZnSe +MnSe -163.0 a < -106.7 b 1 0.67 1.67 0.04 1 c 
    1 0.62 1.70 0 1 d 
GaInAs GaAs +InAs -71.0 a < -58.6 a,c 1 0.58 0.25 1.05 1 d 
GaAsP GaP   +GaAs -88 a < -71.0 a,c 1 0.93 1.15 1.07 1 d 
ZnMnS ZnS   +MnS -206.0 a, -

205.98 c 
> -214.2 a,c, -

207.0 b 
1 1.78 0 0.01 1 d 

ZnMnTe ZnTe +MnTe -92.7 a,c , -120.5 b < -94.7 b 1 0.25 2. 0.01 1 d 
CdMnTe CdTe +MnTe -102.5 b < -94.7 b 1 0.68 1.33 0* 1 d+0*

a CRC Handbook of Chemistry and Physics, Ed.D.L.Lide, 76th Edition, CRC Press, Boca Raton, 1996-97 
b Lange’s Handbook of Chemistry, Ed. J.A.Dean, 14th edition, McGraw Hill Inc., New York 1992.  
c Landolt Bornstein vol.II/4, Springer Verlag, Berlin 1961, pp.179-260. 
 
 

3 DIELECTRIC FUNCTION ε(ω,x) FOR TERNARY ZINCBLENDE ALLOYS 

The dielectric function ε(ω)= ε∞+Σj=1,n{Sj ω2
j /[(ω2-ω2

j) +i ωΓj] of phonon spectra of 
solids can be extracted from experimental reflectivity or transmission coefficients of a crystal, 
fitting the measured spectra via the Kramers-Kronig (KK) analysis. The KK output Im[ε(ω)] 
directly yields the maxima for each oscillator line, assumed Lorentzian, with its three 
parameters {ωj, Γj, and Sj}, respectively, the frequency, the line half-width, and the oscillator 
strength (OS). Note that while {iZωk

 and iZΓk} are prime values, {iZSk} are sums over all the 
specific OSs {iZsk} multiplied by the relative ion-pair populations, taking into account  ion-
pair multiplicities (Eq.4), and by three SOP parameters {W1, W2 ,W3}, which express the  
thermodynamics of the considered alloy. The introduction of SOPs links them to the OS of 
each ternary line. The sum  

Im[ε(ω,x)] = Σj=1,n {Sj ω2
j ω Γj/[(ω2-ω2

j)2 +ω2Γj
2]} (2) 

 
describes the total activity of all the oscillators over the considered frequency range. In 
zincblende ternary A1-xBxZ (or AYyZ1-y) compounds, each vibrating ion dipole-pair AZ and 
BZ from each of the five elemental tetrahedron configurations {Tk}k=0,4

 contributes with a 
phonon line to the spectrum (this idea was first presented by Verleur and Backer [13] who 
proposed a pioneer single parameter model; the limits of the model where later discussed by 
us [14]). Thus Im[ε(ω,x)] of   A1-xBxZ spectra can be written as 
 

Im[ε(ω,x)] ={{4 AZs0 AZω0
2 AZΓ0 ω / [(ω2 −AZω0

2)2 +AZΓ0
2 ω2]} P0(x) binary AZ 

+ Σk=1,3 {k BZsk 
BZωk

2 BZΓk ω / [(ω2 −BZωk
2)2 +BZΓk

2 ω2] +(4-k) AZsk
 AZωk

2 AZΓk ω 

 /[(ω2 −AZωk
2)2+AZΓk

2 ω2]}Pk(x) ternary ABZ 

+{4 BZs4 BZω4
2 BZΓ4

 ω / [(ω2 −BZω4
2)2 +BZΓ4

2 ω2]} P4(x) }  binary BZ 
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(3) 
with Pk(x)’s defined (Eqns.1). 

Thus, the OS iZSk of each mode can be expressed by 

BZSk(x) = BZsk k Pk(x) and AZSk(x) = AZsk (4-k) Pk(x), (4) 

with the specific OS AZs0=AZs and BZs4=BZs proper to the two binary constituents, and to 
{AZsk}k=0,3  {BZsk}k=1,4 of the three ternary configurations. 

If all four specific OSs for a given iZ-pair are equal and independent of x, i.e., 

 {BZsk} k=1,4 = BZs and {AZsk} k=0,3 = AZs 
 
for a random distribution of A and B ions, the total OS of the respective modes AZ and BZ of 
A1-xBxZ alloys is reduced identically to two linear functions of  x 

Σ k=0,4 BZSk (x) = 4x BZs                  and  

Σ k=0,4 AZSk (x) = 4(1-x) 
AZs , (5) 

often referred to as the linear dependence on x. 
To treat FIR spectra we make two FIR-assumptions 

1. Specific OSs relative to a given  ion-pair is the same  for all configurations, 

{BZsk}k=1,4 =BZs , {AZsk}k=0,3 =AZs (6) 
 

2. Analogously, we assume that for each of the two constituent ion pair populations, line-
widths Γ’s of any given composition spectrum are invariant:  

{AZΓk}k=0,3= AZΓ   and  {BZΓk}k=1,4= BZΓ. (7) 
 

Thus to unfold a ternary spectrum with its 8 lines/spectrum, we have THREE SOP 
coefficients and TWO-OS coefficients!  

As was shown, true tetrahedron populations in crystal lattices are determined by the 
alloy composition “x” (or “y” for AYyZ1-y compounds) and the three SOP coefficients {W1, 
W2, W3}. 

To assess the credibility of the model FIR-assumptions, a best-fit test is carried out to 
“derive” the two binary OSs {AZs, BZs} values from GaAsyP1-y spectra (Fig.4) [13] that have a 
rich documentation in EXAFS [12] yielding SOP values.  
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4 Summary and Conclusions 
The spectrum of any pure canonical, zincblende ternary ABZ (or AYZ) material with its 

5 tetrahedron configurations {Tk} exhibits 8 phonon lines ( 4 AZ + 4 BZ). The number of 
lines can be less than 8 when in pure defect-free materials extreme preferences prevent the 
formation of some configuration; this is observed with a transient element in B={Mn, Fe,...}: 
ZnMnSe lacks one, ZnMnS lacks two; however, GaAlN also lacks one; whence only 6, 4, 6 
phonon lines respectively. More than 8 lines are observed when point defects occur (antisites, 
vacancies …), responsible for the extra lines (as reported in HgCdTe [15]). Indeed, FIR 
consents the detection of defects: vacancies, intersites, antisites, H-loading deformations, 
quantifying amount of impurity ions [16]. 

The Statistical model of the dielectric function is applied to five GaAsyP1-y (of type 
AYxZ1-x) FIR spectra [13] (see Fig.4). In spite of the restricted number of parameters, results 
show a good fit of the spectra (Fig.5, Tab.5); but most important, the best fit yields for GaAss 
and GaPs values that overlap with literature values within reference-uncertainty bars (Tab.6). 
Such a satisfactory reproduction validates the model assumptions, and gives confidence the 
model is useful in giving deeper understanding of FIR results.  

Equations, tables and figures are taken from our previous publications (as referenced) 
documented in greater detail. 
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TAB.5: Individual unfolding of GaAsyP1-y spectra for each spectrum parameters 
{iGawk,iGaΓk}i=As,P,k=0,4 and {GaAss, GaPs} taken free. {W1=0.975, W2=1.0715, W3=1.034, 
as per Wu & al data}: table of best fit parameter values for dipoles GaAs  k= 1,4 and for 
GaP  k=0,3. Amplitudes are given to two decimals. 

phonon  dipol
e 

GaAs    GaP    

configuration = 4As0P 
k=   4 

3As1P 
3 

2As2P 
2 

1As3P 
1 

0As4P 
0 

1As3P 
1 

2As2P 
2 

3As1P 
3 

 yAs         
ω [cm-1] 1% 257.8 261.9 264.3 268.4 363.5 365.5 377.0 379.0

 15% 259.6 261.6 263.6 271.2 362.9 364.9 366.9 381.0
 44% 265.1 269.2 271.2 273.2 350.7 352.7 363.6 373.9
 72% 269.7 271.7 273.7 279.6 342.8 344.8 350.9 360.6
 94% 269.5 271.5 278.5 280.5 345.8 347.8 349.8 351.8

Γ  [cm-1] 1% 8.64 4.06  
 15% 10.04 6.58  
 44% 10.74 11.52  
 72% 6.00 9.24  
 94% 3.99 11.50  

A 1% 0.00 0.00 0.00 0.04 1.84 0.05 0.00 0.00
(given  15% 0.02 0.01 0.08 0.17 1.05 0.55 0.09 0.01
to two 44% 0.13 0.21 0.28 0.12 0.26 0.57 0.42 0.11

decimals) 72% 0.52 0.46 0.18 0.02 0.02 0.13 0.31 0.26
 94% 1.63 0.28 0.02 0.00 0.00 0.00 0.03 0.17

 

TAB. 6: Individual unfolding of GaAsyP1-y spectra, {W1=0.975, W2=1.0715, W3=1.034}: 
table of best fit values {GaAssy, GaPsy }, their average values, and comparison to values in 
literature.* indicates low signal unreliable values 

yAs GaAs GaP 
1% * 1.97 
15% 2.18 1.98 
44% 1.68 2.49 
72% 1.58 2.77 
94% 2.00 * 

All 5 together 
(global values) 

1.75 1.98 

Aver. experimental 1.84±0.11 2.24±0.17 
Aver. Literature 1.815±0.21 2.06±0.16 
ratio 0.90±0.14 1.15±0.17 
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FIG.2: Average inter-ion distances [Å] as a function of relative content x for GaAsxP1-x [12]: 

comparison of model best fit curves vs. reported experimental data. Points are (circles) 
for As-related (top curves), (triangles) for P-related (bottom curves), and (diamond) for 
mixed AsP-ion distances. Linear combination of weighted average distances (LCWAD) 
curves (thin dashed) and corresponding reference Vegard Law lines (thin dotted) are all 
reported [9]. 
 

 



— 13 — 

 
 

a) 

 

b) 

 
 

c) 

 
FIG. 3: Average co-ordination numbers as a function of relative content x:  comparison of 

model best fit curves using SOP values deduced from distance measurements 
[a) {0.98,1.07,1.03} GaAsxP1-x [9]; b) {0.62,1.67,0} ZnMnxSe1-x [10]; 
c) {1.01,0.86,1.33} Ni3(Al1-xFex)1 [11] ] vs. independently measured co-ordination 
number data. 
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FIG. 4: GaAsyP1-y: a) reflectivity [%] spectra [13]; b) corresponding normalized Im[ε(ω,y)] 

Kramers-Kronig derived spectra. Curves: y=0.1 (solid), 0.15 (dashed), 0.44 (dotted), 
0.79 (dash-dotted), 0.94 (dash-dot-dotted). 
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FIG.5: Model best fit unfolding of GaAsyP1-y  Im[ε(ω,y)] spectrum for SOP coefficients 

{W1=0.98, W2=1.07, W3=1.03}, and  a) y=0.01, b) y=0.15, c) y=0.44, d) y=0.72, e) 
y=0.94. The four line bands of {GaAsωk}k=1,4 and of {GaPωk}k=0,3 are seen distinct below 
and above ω=300cm-1 respectively; experimental points (circles), best-fit (solid lines), 
unfold lines (various discontinuous lines); obtained frequencies and intensities given in 
Table-5 


