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Abstract 
 

The statistical strained-tetrahedron model was developed to overcome two common 
assumptions of previous models: 1) rigid undistorted ion sublattice of regular 
tetrahedra throughout all five configurations and 2) random ion distribution. These 
simplifying assumptions restrict the range of applicability of the models to a narrow 
subset of ternary alloys for which the constituent binaries have their lattice constants 
and standard molar enthalpies of formation (∆fH0) equal or quasi-equal. Beyond 
these limits predictions of such models become unreliable, in particular, when the 
ternary exhibits site occupation preferences (SOPs). The strained-tetrahedron model, 
free from rigidity and stochastic limitations, was first developed to interpret structural 
information obtained with the use of x-ray absorption experimental data. It was 
validated on published EXAFS data of both zincblende (ZB) and intermetallide 
materials. The model was then extended to describe and interpret infrared spectra. 
The derivation and verification of the validity of our model and its assumptions are 
detailed in our published papers. We extend the model to cover the interpretation of 
far IR spectra and successfully apply it to a set of GaAsyP1-y spectra. The unfolding 
gives the SOP coefficient values and\or specific oscillator strengths (OSs). 
Comparison with data available in the literature showed the good agreement of our 
model predictions.  
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1. THE STATISTICAL STRAINED-TETRAHEDRON MODEL 

The abundant literature on sphalerite (ZB) ternary semiconductors (ABZ or AYZ, where 
A, B stand for cations, and Z, Y for anions) bears witness to the considerable interest they 
have generated. For local structural properties, the interpretation of X-ray absorption data, 
e.g., EXAFS, and vibration spectra in the far IR domain is paramount. 

ZB f.c.c. structures are tetrahedron coordinated and characterized by a central ion 
surrounded by four nearest-neighbor (NN) ions (i.e., 1st shell coordination) defining the four 
vertices of a tetrahedron, and twelve next nearest-neighbor (NNN) ions (i.e., 2nd shell). Binary 
compounds AZ have successive shells alternately filled by A and then Z ions. All tetrahedra 
are symmetric, regular and identical so, by simple trigonometry, equal inter-bond angles 
αA:Z:A= αB:Z:A=109.47° and inter-ion distances (ijd) are defined in terms of the lattice constant 
a (known from X-ray diffraction analysis): AZd =3½ a/4, AAd= ZZd= a/2½ .  

For ternary A1-xBxZ, in the binary compound AZ, A cations are partially substituted by 
B anions. This leads to the formation of five different elemental tetrahedra {Tk}k=0,4, where the 
subscript k indicates the number of B ions at the vertices of the tetrahedron, with (4-k) A ions 
(see Fig.1). In the case of a random distribution, the filling (of k B ions into a shell with N 
sites (4 in the 1st shell, and 12 in the 2nd shell), from relative contents x & 1-x) is precisely 
described by the Bernoulli binomial polynomials  

{pk
[N](x)=N!/[k!(N-k)!]xk(1-x)N-k }k=0,N 

In the strained-tetrahedron model [1], tetrahedra are free to deform from one 
configuration to the other, and the distribution is free to be non-stochastic. This model is a 
successful generalization of the rigid cation approximation [2] and random iterative cluster 
model [3]. Simulation of the local structure of ZB-ternary alloys requires 50 parameters (31 to 
weigh each of the Bernoulli binomials involved and to account for free distributions in the first 
two shells and 19 for the inter-ion distances). 

The experimental observations of SOPs show that natural distributions generally deviate 
from a Bernoulli-binomial description. The inequality of the ∆fH0 of the two binary 
constituents of the observed alloy causes deviations. To quantify them we associate to each 
Bernoulli binomial a weighted SOP coefficient “Wbinomial”, a total of 31 SOP coefficients to 
cover the distribution of the NN and NNN sites. 

Fortunately, the overall 50 parameters are linked by 40 identifiable constraints: i) NN 
preference parameter values determine NNN preferences and beyond; ii) though distorted, 
tetrahedra preserve proper symmetries; iii) to avoid destructive stresses, the average 
tetrahedron volumes of both sublattices locally relax to equal values. Thus, configuration 
probabilities have three degrees of freedom, with ≤7 distance free-parameters. ( ≤ when due to 
SOP extreme values, some configuration(s) are forbidden and their distances become 
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Fig.1   Aspect of the five elemental 
tetrahedron configurations {Tk}k=0,4 of 
ABZ (or AYZ) ternary alloys. Small 
open circles indicate the would-be ion-
positions as per rigid tetrahedron
hypothesis. 

inexistent.);  

Distribution-wise, while A and B ions are deterministically surrounded by Z ions, the Z 
ion selects its A or B neighbor ions. We thus claim that ALL higher shell preferential fillings 
are determined by linear expressions of the five NN SOP coefficients {Wk}k=0,4. Binary 
tetrahedron configurations T0, T4 cannot have preferences, hence W0 =W4 ≡1. The probability 
of finding B and A ions in a Tk configuration is proportional to {kWk}k=0,4 and to 
{4-kWk}k=0,4, respectively. As probabilities are ≥0, hence 0≤Wk≤4/k.  

The three bounded free parameters 
0≤W1≤4, 0≤W2≤2, 0≤W3≤ 4/3 define the 
distribution probability. The NNN shell 
coefficients {Awk}k=0,12 and {Bwk}k=0,12 are 
determined by combinatorial probabilities 
associated with the Z ions of the NN shell; this 
leads to linear expressions of NNN SOP 
coefficients Awk and Bwk as functions of the 
three Wk’s. For ZB structures these expressions 
are given in refs. [1] and Table 1. This 
hypothesis is general, and is fulfilled even in 
other crystal structures as M3(X1-xX’x)1 intermetallic alloys [4].  

Table 1  All possible B ion distributions in a NNN shell of a ZB ternary ABZ, and 
expressions for NNN SOP coefficients {Awk}k=0,12 and {Bwk}k=0,12 around A and B, 
respectively. The distribution is determined by the combinatorial probabilities, in 
terms of SOP coefficients {Wk}k=0,4 around Z ions of the 1st shell. Detailed 
explanation is given in [1]. 

 All 12 possible NNN B-ion fills  Resulting B-weights Resulting A-weights 

k of the 4 tetrahedra Bw [12]
k=Σj=0,4{

BMj,kW[4]
j} Aw [12]

k=Σj=0,4{
AMj,kW[4]

j} 
0 0 0 0 0 W1 W0 = 1 
1 0 0 0 1  (3W1 +W2)/4 (3W0 +W1)/4 
2 0 0 0 2 / 0 0 1 1  (5W1 + 2W2 +W3)/8 (5W0 + 2W1 +W2)/8 
3 0 0 0 3 / 0 0 1 2 / 0 1 1 1 (6W1+4W2+W3+W4)/12 (6W0 +4W1+W2+W3)/12 
4 0 0 1 3 / 0 0 2 2 / 0 1 1 2 / 1 1 1 1 (5W1+7W2+3W3+W4)/16 (5W0 +7W1+3W2+W3)/16 
5 0 0 2 3 / 0 1 1 3 / 0 1 2 2 (4W1+3W2+3W3+2W4)/12 (4W0 +3W1+3W2+2W3)/12 
6 0 0 3 3 / 0 1 2 3 / 1 1 1 3 / 0 2 2 2 / 1 1 2 2 (4W1+6W2+6W3+4W4)/20 (4W0 +6W1+6W2+4W3)/20 
7 0 1 3 3 / 0 2 2 3 / 1 1 2 3 (2W1+3W2+3W3+4W4)/12 (2W0 +3W1+3W2+4W3)/12 
8 0 2 3 3 / 1 2 2 3 / 1 1 3 3 / 2 2 2 2 (W1+3W2+7W3+5W4)/16 (W0+3W1+7W2+5W3)/16 
9 0 3 3 3 / 1 2 3 3 / 2 2 2 3 (W1+W2+4W3+6W4)/12 (W0+W1+4W2+6W3)/12 

10 1 3 3 3 / 2 2 3 3 (W2+2W3+5W4)/8 (W1+2W2+5W3)/8 
11  2 3 3 3 (W3+3W4)/4 (W2+3W3)/4 
12 3 3 3 3  W4 = 1 W3 

 
A random integer ion distribution (k and 4-k) fully respects stoichiometry. With SOP 

coefficients Wk≠1 the scenario departs from the stochastic equilibrium: an attenuation of the 
three “ternary” configuration populations due to the asymmetry of the two ion populations, 
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while the excess enhances the binary probabilities, Wk<1 that of AZ populations, Wk>1 that of 
BZ. If {Ck(Wk)}k=1,3 are the corrective weight factors imposed by stoichiometry, with 0≤ 
{Ck=min[Wk, 1, (4-kWk)/(4-k)] }k=1,3 ≤ 1,we have: 

 {Pk
[4](x) = Ck pk

[4](x) }k=1,3  for ternary Tk 

 P0
[4](x) = p0

[4](x) +Σk=1,3 {max(0, 1-Wk) pk
[4] (x)}  for binary AZ configuration T0 

 P4
[4](x) = p4

[4](x) +Σk=1,3{max(0, k(Wk-1)/(4-k)) pk(x)} for binary BZ configuration T4  (1) 

In the random case, when {Wk≡1}k=1,3 , {Pk(x) → pk(x) }k=0,4.  

We must stress that while the observed SOPs enhance the probability of the binary-
tetrahedron populations with respect to those of the random case, their spatial distribution 
remains stochastic, with NO tetrahedron clustering, as confirmed experimentally . 

Once the probabilities are defined as a function of x, all the expressions for the average 
pair coordinations <i:jCN(x)> and for distances <i:jd(x)> for any two-ion pair i:j={AZ, BZ, BB, 
BA, AA, ZAZ, ZBZ} of ABZ ZB-ternary can be explicitly written (see ref. [1]). To illustrate, 
we recall one equation for each set: <BZCN(x)> =Σk=0,4{kWk p[4]

k(x)}, and  <AZd(x)> 
={ Σk=0,3[(4-k Ck) AZdk +4 Max(0,1-Wk) AZd0] p[4]

k(x)} /{ Σk=0,3[ (4-k Ck) +4 Max(0,1-Wk)] 
p[4]

k(x) }.  Applying these equations to unfold a set of EXAFS data such as GaAsP [5], we 
obtain, besides the SOP-coefficient values, the dimensions of all the elemental tetrahedra 
involved: inter-ion distances and angles (see ref. [1]). For example, inter-ion distances [Å] in 
GaAsP are {GaAsd k}k=1,4 ={2.42, 2.43, 2.44, 2.450}, {GaPd k}k=0,3 ={2.359, 2.37, 2.37, 2.38}, 
{AsGaAsd}k=2,4 ={3.90, 3.90, 4.001}, {PGaPd k}k=0,2 ={3.852, 3.88, 3.98}, {AsGaPd k}k=1,3 ={3.91, 
3.90, 3.99}, {GaAsGad k}k=1,4 ={3.95, 3.97, 3.98, 4.001}, {GaPGad k}k=0,3 ={3.852, 3.87, 3.87, 
3.89} 

To check the validity of the model and its assumptions of limited number of free 
parameters, we compare a) the experimental EXAFS distance-data available in the literature 
with the model fit curves [1,4] b) “co-ordination number” curves predicted on the basis of 
SOP values obtained from distance EXAFS-measurements, against independently measured 
coordination number values [1,4]; c) the correlation between the relative values of ∆fH0 of the 
two constituents [1] and the corresponding SOP coefficient values obtained.  The comparison 
confirms the validity of the model and in particular the restrictive assumptions we proposed. 

2. FIR DIELECTRIC FUNCTION ε(ω,x) FOR TERNARY ZINCBLENDE alloys 

The dielectric function ε(ω)= ε∞+Σj=1,n{Sj ω2
j /[(ω2-ω2

j) +i ωΓj] of crystal systems can be 
extracted from the experimental reflectivity or transmission coefficients of the crystal. Careful 
fitting of spectra via the Kramers-Kronig analysis (as the experimental ω-range is finite) yields 
Im[ε(ω)] as output, whence directly the maxima for each oscillator line, assumed Lorentzian, 
each with its three parameters {ωj, Γj, and Sj}, respectively, the frequency, the line half-width, 
and its OS. Note that while {iZωk

 and iZΓk} are prime values, {iZSk} are sums over all the 
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specific OSs {iZsk} multiplied by the relative ion-pair populations and their multiplicities 
(Eq.4), and by three SOP parameters {W1, W2 ,W3}, thermodynamic expression of the 
considered alloy. The introduction of SOPs links them to the OS of each ternary line. The sum  

Im[ε(ω,x)] = Σj=1,n {Sj ω2
j ω Γj/[(ω2-ω2

j)2 +ω2Γj
2] } (2) 

describes the total activity of all the oscillators over the considered frequency range. In ZB 
ternary alloys, each vibrating ion dipole-pair, from each of the five elemental tetrahedron 
configurations {Tk}k=0,4, contributes with a phonon line to the spectrum, as first suggested by 
Verleur and Backer [6] with their pioneer single-parameter model. We discussed the limits of 
the model in ref. [7]. With Pk(x)’s defined (Eqs.1) the Im[ε(ω,x)] of A1-xBxZ spectra can be 
written as 

Im[ε(ω,x)] ={{4 AZs0 AZω0
2 AZΓ0 ω / [(ω2 −AZω0

2)2 +AZΓ0
2 ω2]} P0(x)   binary AZ 

 + Σk=1,3{kBZsk
BZωk

2 BZΓkω /[(ω2 −BZωk
2)2+BZΓk

2 ω2]+(4-k)AZsk
AZωk

2AZΓkω  
  /[(ω2 −AZωk

2)2+AZΓk
2 ω2]}Pk(x)  ternary ABZ 

+{4 BZs4 BZω4
2 BZΓ4

 ω / [(ω2 −BZω4
2)2 +BZΓ4

2 ω2]} P4(x) }  binary BZ (3) 
With the specific OSs AZs0=AZs and BZs4=BZs proper to the two binary constituents, and 

{AZsk}k=0,3 and {BZsk}k=1,4 of the three ternary configurations, the OS iZSk of each mode can be 
expressed by  

BZSk(x) = BZsk k Pk(x) and AZSk(x) = AZsk (4-k) Pk(x), (4) 

If all four specific OSs for a given iZ pair are equal and independent of x, i.e.,  {BZsk} 

k=1,4 = BZs and {AZsk} k=0,3 = AZs , for a random distribution of A and B ions, the total OS of the 
respective modes AZ and BZ of A1-xBxZ alloys is reduced identically to two linear functions 
of x (often referred to as the OS linear dependence on x) 

Σ k=0,4 BZSk (x) = 4x BZs  and   Σ k=0,4 AZSk (x) = 4(1-x) 
AZs , (5) 

To treat FIR spectra we make two additional FIR assumptions:   1) Specific OSs 
relative to a given ion pair are the same throughout all configurations, {BZsk}k=1,4 =BZs , 
{AZsk}k=0,3 =AZs .   2)  Analogously, we assume that for each of the two constituent ion-pair 
populations, line-widths Γ’s of any given composition spectrum are invariant: {AZΓk}k=0,3= AZΓ 
and {BZΓk}k=1,4= BZΓ. 

Thus, to unfold a ternary spectrum with its 8 lines per spectrum, we have 3 SOP and 2 OS 
coefficients.  

As demonstrated above, true tetrahedron populations in crystal lattices are determined 
by the alloy composition “x” (or “y” for AYyZ1-y) and by the three SOP coefficients {W1, W2, 
and W3}. To assess the validity of the two FIR assumptions and with knowledge of GaAsP 
SOP values [1] from the EXAFS documentation [4], a best-fit test was carried out on GaAsP 
spectra [8]. The two binary OS values {AZs, BZs} “derived” as per the model overlap with the 
corresponding AZs, BZs values available in the literature. 
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3. SUMMARY and CONCLUSIONS  

The spectrum of any pure canonical ZB ternary ABZ (or AYZ) material with its five 
tetrahedron configurations {Tk} exhibits eight phonon lines (4 AZ + 4 BZ) and less than 8 
when extreme preferences prevent the formation of some configuration, as is observed with a 
transient element in B={Mn, Fe,...}: ZnMnSe lacks one, ZnMnS lacks two, whence only six 
and four phonon lines, respectively. More than eight lines are vibration frequences due to the 
presence of point defects, as in HgCdTe [9] or impurities.  The statistical model of the 
dielectric function is applied to five GaAsyP1-y FIR spectra [8]. In spite of the restricted 
number of parameters, the fit of the spectra with yAs={0.01, 0.15, 0.44, 0.72, 0.94, and with all 
five taken together} yields the following values for GaAss={* , 2.18, 1.68, 1.58, 2.00, and 1.75} 
and GaPs={1.97, 1.98, 2.49, 2.77, *, and 1.98} i.e., respective experimental averages 1.84±0.11 
and 2.24±0.17, while the literature reports 1.815±0.21, 2.06±0.16. Thus, the values obtained 
overlap the literature values within reference-uncertainty bars.  The satisfactory reproduction 
makes the model assumptions credible and supports our belief that the model will be useful for 
a better understanding of FIR lattice dynamic analysis.  
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