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Abstract

A thorough tensor analysis of the Bragg-forbidden reflection (00:3)h in corundum systems
having a global center of inversion, such as V2O3 and a-Fe2O3, shows that anomalous x-ray
resonant diffraction can access chiral properties related to the dipole-quadrupole (E1-E2) channel
via an interference with the pure quadrupole-quadrupole (E2-E2) process. This is also confirmed
by independent ab initio numerical simulations. In such a way, it becomes possible to detect chiral
quantities in systems where dichroic absorption techniques are ineffective.
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In recent years third generation radiation sources have made possible the detec-

tion of relatively small effects in crystal electronic structure due either to magnetic

anisotropy[1] or to interference between dipole and quadrupole (E1-E2) transition

matrix elements. [2,3] For example, it is now well established that K-edge circular

dichroism in absorption is sensitive to the angular orbital moment Lz in magnetic

spectroscopies like XMCD (x-ray magnetic circular dichroism), or to the peculiar

physical quantity LzΩz in non-magnetic spectroscopies like XNCD [2,4] (x-ray nat-

ural circular dichroism). Here �Ω = r̂ ∧ �L− �L ∧ r̂ is the toroidal (anapole[4]) orbital

moment, and z is the direction of the incoming photon. As apparent from the defi-

nition of �Ω, the product LzΩz is time-reversal even and inversion odd. Therefore if

a paramagnetic system has a global inversion symmetry, even though at a local level

this symmetry is broken, the resulting XNCD signal vanishes. A similar situation

arises, mutatis mutandis, for XMCD in many antiferromagnets, where the locally

broken time-reversal symmetry can be globally restored, making the total dichroic

signal zero.

A common way to circumvent this limitation is to use anomalous x-ray diffrac-

tion, where the local transition amplitudes are added with a phase factor that can

compensate the vanishing effect due to the global symmetry. This technique has

been widely used for antiferromagnets to study local magnetic effects.[1] However to

our knowledge no such technique has been reported to measure the quantity LzΩz

for systems with a global inversion symmetry. It is the purpose of this paper to

show that this is possible, by presenting a comprehensive theoretical analysis of the

measured Bragg forbidden (00.3)h “Finkelstein” reflection,[5] in systems belonging

to the corundum crystal class having a global inversion symmetry, namely V2O3

[6] and α-Fe2O3.[5] In this latter compound, for example, this reflection has been

interpreted[5,7] as a pure E2-E2 process, giving rise to a six-fold periodicity in the

azimuthal scan around the trigonal axis. We show here that such a description is not

complete, as a non negligible E1-E2 term is present, in V2O3 as well as in α-Fe2O3

and actually in all the corundum systems. Its presence gives rise to a three-fold

modulation of the azimuthal scan that is recognizable in the spectra of Paolasini et

al.[6], appears much more pronounced in Finkelstein et al.[5] (see Figs. 2 of both

papers) and is related to the operator LzΩz, as shown below. This modulation is

also present in a more recent experiment by A. Watanabe et al.[8] on α-Fe2O3.

We first focus our theoretical analysis on the paramagnetic corundum phase of V2O3
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fj(ω) = Σp,q(−)qT (p)
q F

(p)
−q (j;ω) (4)

where T (p)
q depends on the incident and scattered polarizations and wave vectors

and F (p)
q is the tensor representing the properties of the system. It is important

to note that F (p)
q (j;ω) ≡ 〈Ψ(j)

0 |F̂ (p)
q (ω)|Ψ(j)

0 〉 is such that it must belong to the

totally symmetric representation of the local point group of the scattering atom

(the A1g representation, in Bethe’s notation). In fact it is easy to check that if R̂ is

a symmetry operation for |Ψ(j)
0 〉 (ie, R̂|Ψ(j)

0 〉 = |Ψ(j)
0 〉), then

〈Ψ(j)
0 |F̂ (p)(ω)|Ψ(j)

0 〉 = 〈Ψ(j)
0 |R̂−1F̂ (p)(ω)R̂|Ψ(j)

0 〉 (5)

Thus, the only allowed matrix elements are those of the components of F̂ (p)(ω) that

are invariant for any symmetry elements of the point group.

In the corundum systems the local symmetry on each scattering atom is Ĉ3.

Thus Eq. (5) imposes the following restriction: only the irreducible tensors whose

azimuthal numbers with respect to the three-fold axis are 0 or ±3 are allowed. A

similar constraint was recognized for the case of haematite,[7] although the analysis

was there limited to an octahedral symmetry, loosing therefore the E1-E2 contri-

bution. If we choose the quantization axis coincident with the three-fold axis, the

tensor components allowed by the Ĉ3 symmetry are:

a) in the E1-E1 channel: F
(0)
0 , F̃

(1)
0 and F

(2)
0

b) in the E1-E2 channel: F
(1)
0 , F

(2)
0 , F

(3)
0 , F

(3)
3 ±F (3)

−3 , F̃
(1)
0 , F̃

(2)
0 , F̃

(3)
0 , F̃

(3)
3 ±F̃ (3)

−3

c) in the E2-E2 channel: F
(0)
0 , F̃

(1)
0 , F

(2)
0 , F̃

(3)
0 , F

(4)
0 , F̃

(3)
3 ± F̃

(3)
−3 and F

(4)
3 ±F

(4)
−3

The tilded tensors refer to time-reversal odd (ie, magnetic) quantities. As

V2O3 in the corundum phase is paramagnetic, tilded tensors are all zero. Another

extinction rule comes from the structure factor. We are interested in the (00.3)h

reflection, (111)r in the rhombohedral system. For �q=(111)r, Eq. (1) becomes:

A(�q, ω) = e2πitf1 + e−2πitf2 + eiπe2πitf3

+eiπe−2πitf4 = (e2πit + e−2πitÎ)(1− m̂x)f1

=

{
2 cos(2πt)(1− m̂x)f1 (E1− E1 & E2− E2)
2i sin(2πt)(1− m̂x)f1 (E1− E2)

(6)

where we used the symmetry operations introduced above. The mirror m̂x is such

that (x,y,z)→(-x,y,z). For the chosen reference frame its action on spherical tensors

is given by[11]: m̂xF
(p)
q = (−)P+pF

(p)
−q , where P is the parity of the tensor (+1 for
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E1-E1 and E2-E2 tensors and −1 for E1-E2 tensors). The combined action of glide-

plane and C3-symmetry forbids any E1-E1 contributions, as expected, and leaves

us with only three possible terms: two come from the E1-E2 channel (F
(2)
0 and

F
(3)
3 −F

(3)
−3 ) and the other is of E2-E2 origin: F

(4)
3 −F

(4)
−3 , the one recognized in Ref.

[7].

Their polarization and wavevector dependence shows that the signal is different

from zero only in the σπ channel and only for T
(2)
0 and T

(4)
3 − T

(4)
−3 . In fact the

T
(3)
3 −T

(3)
−3 term is proportional to kx−k′x or ky −k′y, where k and k′ are the incident

and scattered wave vectors and x and y are orthogonal to the trigonal axis. In the

geometry of the (00.3)h, kx = k′x and ky = k′y at any azimuthal angle.

It is now easy to compare the theoretical azimuthal dependence around the

momentum transfer h̄�q with the experimental one[6]: the contribution of T
(2)
0 is

constant with respect to the azimuthal angle φ around the q-vector, while that of

T
(4)
3 − T

(4)
−3 is three-fold periodical in the amplitude.[7] Note that time-reversal even

quantities are real in the E2-E2 channel and imaginary in the E1-E2 channel.[12]

Because of the imaginary unit in the E1-E2 term of Eq. (6), both amplitudes

are real and intefere. Thus, the global dependence in the scattered intensity is

proportional to (α + sin(3φ))2, ie, a three-fold modulation of the six-fold periodic

intensity. The constant α is the ratio of the E1-E2 and E2-E2 scattering amplitudes,

which incorporates the relative weight of the radial matrix elements as well as the

geometrical factors of the tensors T (p)
q .

In order to estimate such a constant we have performed a numerical simulation

based on the FDMNES package.[13] The results are shown in Fig. 2 for the energy

scan and in Fig. 3 for the azimuthal scan at the pre-edge energy (5465 eV). They

both support our previous theoretical considerations: the energy scan shows no

features at E1-E1 energies (as experimentally detected[6]) while a structure exists

around the 3d-energies (5465 eV). Also the azimuthal scan of this structure, shown

in Fig. 3 is compatible with the experimental data[6] and makes clear its double-

component origin. The possibility to evaluate separately the two contributions in

the FDMNES program allows us to estimate the ratio between the constant E1-E2

signal and the maximum of E2-E2: α 
 0.05. Note that this estimates includes the

prefactors cos(2πt) and sin(2πt), for E2-E2 and E1-E2. For t = 0.1537 they are,

respectively, 0.57 and 0.82.

A simple physical picture can help understanding the previous results. In the
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corundum system there are two main crystal fields that split the spherical degeneracy

of the 3d electrons involved in the resonant process: the octahedral crystal field is

the biggest (10Dq 
 2 eV) and is responsible of the splitting to doubly degenerate eg

and triply degenerate t2g orbitals. The trigonal field, usually one order of magnitude

less, further splits the t2g orbitals into doubly and singly degenerate levels. This field

is made up of two contributions [14]: an axial field, of C3v symmetry, describing the

shift of vanadium ions along the trigonal axis, and a “twisted” field of C3 symmetry.

This latter takes into account the small rotation of the oxygens around the trigonal

axis, as well as the positions of the second-nearest-neighbors vanadium ions: both

these features break the vertical mirror plane. In the absence of a trigonal splitting

only F
(4)
3 − F

(4)
−3 contributes to the signal.[7] No inversion-breaking terms would be

allowed in octahedral symmetry. The detection of the term F
(2)
0 ∝ LzΩz is made

possible only by the reduction of the local symmetry to C3, as confirmed by numerical

simulations where no F
(2)
0 was found in octahedral symmetry. Note that the allowed

F
(2)
0 tensor is time-reversal even and inversion-odd. The identification with LzΩz

follows from the fact that this latter is the only physical quantity detectable at the

K-edge with these same properties.[4,10] Notice also that if the point symmetry of

vanadium ions were C3v,[15] the term LzΩz would be forbidden by symmetry, as it

changes sign under the action of a vertical mirror plane and no modulation could

be seen in the azimuthal scan.

It must be emphasized that α strongly varies with energy as the ratio of the E1-

E2 and E2-E2 matrix elements varies from a value of -0.2 to zero in the range [5465-

5467] eV. This makes difficult, at present, a numerical estimate of the ”twisted” C3

crystal field in the ground state. Nonetheless, a sum rule can be established for the

operator LzΩz in resonant scattering as done in absorption,[10] and exploited to get

such an information, provided many azimuthal scans at different energy points are

available.

Similar results are obtained for the magnetic α-Fe2O3, as shown in Fig. 4.

Neglecting for the moment magnetic contributions, we observe that in this case

the ratio between two consecutive maxima is rather pronounced (about 3/2), in

keeping with the experimental findings.[5] However it should be kept in mind that,

as mentioned above, this ratio depends quite substantially on the photon energy.

If we now consider magnetic contributions, when the system is below the Morin

temperature (TM 
 260 K) the magnetic moments are parallel to the trigonal axis
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and order in the sequency ↑, ↑, ↓, ↓ respectively for ions 1,2,3,4 in Fig. 1. Thus

the magnetic space group is again R3c and Eq. (6) still holds. Yet, time-reversal is

locally broken, and this allows in principle contributions from the tilded tensors, both

in the E1-E2 and E2-E2 channels. From this point onward, tensor group analysis

cannot be pushed further and we need quantitative calculations. Our numerical

simulations give a magnetic contribution about a factor 10−2 less than the non-

magnetic one. This numerical result is in keeping with that of Ref. [5], where the

experimental data had been interpreted as non-magnetic, because the temperature

dependence of the azimuthal periodicity was not affected by the transition through

the Morin temperature. In fact, if the three-fold signal were magnetic, it should

change drastically above TM , where all the spins align perpendicularly to the trigonal

axis. In this latter case, while the three-fold lattice symmetry is still preserved,

the magnetic one is broken, and more tilded tensors components, with different

periodicity, could in principle contribute.

Unfortunately, the small ratio of the magnetic to non-magnatic signal makes

difficult, at present, a systematic study of the magnetic space group based on this

kind of analysis for other corundum systems like Cr2O3 or Ti2O3. Such a study would

be interesting for many reasons: in the first case, in the light of the recent claim for

magnetochirality,[16,17] it could provide an independent verification. In the second

case, because of an old controversy regarding the magnetoelectricity in Ti2O3,[18]

it could give more detailed information on the possible magnetic symmetries of the

system. In all cases, the presence/absence of tilded tensors would be determined by

their different polarization and wavevector dependence, as well as by the changes

in Eq. (6) due to the different magnetic space groups (in the case of Cr2O3, for

example, both Î and m̂b appear with a minus sign for magnetic tensors). In general

for these and similar studies one should rely on better resolved spectra or on “pure”

magnetic reflections.

In conclusion, by a complete tensor analysis we have shown with a simple

example that x-ray elastic resonant scattering and XNCD can be considered com-

plementary tools for the detection of the chiral quantity LzΩz. In particular resonant

diffraction, due to the possibility of adjusting phase factors, is the only technique

that allows a detection of such a signal in systems where the inversion symmetry,

though broken at a local level, is globally restored.
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(space group R3c), so that we can neglect magnetic contributions. We shall com-

ment on the general magnetic case later on. The four vanadium ions of the unit

cell lie along the trigonal axis (see Fig. 1), slightly offset from the centre of the

distorted oxygen octahedra. Their positions in rhombohedral coordinates are[9]:

V1 = (t, t, t), V2 = (1 − t, 1 − t, 1 − t), V3 = (1/2 + t, 1/2 + t, 1/2 + t), V4 =

(1/2 − t, 1/2 − t, 1/2 − t), with t=0.1537. The four metallic sites are related by

the following symmetry operations: V2=ÎV1, V3=m̂xV1, V4=Ĉ2xV1, where Î is the

inversion in the reference frame of Fig. 1 and Ĉ2x and m̂x are, respectively, the

two-fold rotation around x-axis and the mirror plane orthogonal to it.

In the resonant regime the K-edge elastic scattering amplitude, A(�q, ω), can

be written in terms of the atomic scattering factors (ASF), fj(ω), of the atoms at

positions ρj in the unit cell as:

A(�q, ω) = Σje
i�q· �ρjfj(ω) (1)

where h̄�q is the momentum transfer in the scattering process, h̄ω the incoming and

outgoing photon energy and the sum is over the four atoms in the rhombohedral

primitive cell. The ASF is a second-order process in the electron-radiation interac-

tion, whose explicit expression for core resonances reads, in atomic units:

fj(ω) = (h̄ω)2
∑
n

〈Ψ(j)
0 |Ô+

s |Ψn〉〈Ψn|Ôi|Ψ(j)
0 〉

h̄ω − (En − E0)− iΓn
(2)

where |Ψ(j)
0 〉 is the ground state, with the origin taken on the j-th scattering atom,

and E0 its energy; the sum is over all the excited states |Ψn〉, with corresponding

energies En. Finally Γn is a damping term that takes into account the core-hole

and the finite life-time of the excited states |Ψn〉 and the indices i, (s) refer to the

incident (scattered) properties of the photon field. Neglecting the electric dipole-

magnetic dipole terms, which are usually small in the x-ray range, we can write the

operator Ô up to the electric quadrupole contribution as:

Ô = �ε · �r(1− i

2
�k · �r) (3)

where �ε and �k are the polarization and wave vector of the x-ray photon and r is the

coordinate of the electron in the reference frame of the scattering atom. The matrix

element in Eq. (2) depends only on the electronic part of the operator Ô, in such a

way that the radiation parameters, �ε and �k, can be factorised. After some algebra

Eq. (2) can be written as a scalar product of two irreducible tensors[7,10]:
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