
LA BO R A TO R I NA ZIO NA LI DI FR A SCA TI
SIS – Pubblicazioni

LNF–04/11 (NT)
14 Giugno 2004

PICCA - A PIC DEMO BOARD FOR LABVIEW COURSES

Marco Cordelli1, Agnese Martini1, Luciano Trasatti1

1)INFN-Laboratori Nazionali di Frascati Via E. Fermi 40, I-00044 Frascati, Italy

Abstract

We have designed and built, with the help of Servizio di Progettazione Elettronica of LNF,
a demo board using a PIC 16F876 microcontroller, several peripherals and an RS/232 link
intended as a control link with a separate computer running a high level control language, i. e.
LabVIEW, with the main purpose of setting up in our LabVIEW courses a working system for
data acquisition /controls.

PACS.: 01.50.Ht; 01.50.Lc

— 2 —

1 Architecture
In the past few years we have held , both in the LNF and other INFN sections, several

LabVIEW courses with the purpose of introducing new programmers to this language that is
being increasingly used in our community. One of the most diffused criticisms from the students
at the end of our courses was the lack of hardware to implement a real data acquisition system.
Since the cost of commercial boards for this purpose was outside our possibilities, we decided to
build our own.

We chose a multiprocessor architecture, which we have widely used in the past. A small
peripheral board takes care of the actual hardware interfaces, while the main computer, through an
RS/232 link, can access already decoded and formatted data. Using this system the main high
level program has the possibility to concentrate on display, histograms and generally on the
human interface problem.

.

jumper

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0/INT
VDD
Vss
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

PIC16F876
*MCLR/Vpp

RA0/AN0
RA1/AN1
RA2/AN2

RA3/AN3/Vref
RA4/T0CKI

RA5/*SS/AN4
VSS

OSC1/CLKIN
OSC2/CLKOUT

RC0/T1OSI/T1CK1
RC1/T1OSOCCP2

RC2/CCP1
RC3/SCK/SCL

EN-
C1+
V+
C1-
C2+
C2-
V-
T2OUT
R2IN

SHDN-
VCC
GND

T1OUT
R1IN

R1OUT
T1IN
T2IN

R2OUT

1
2
3
4
5
6
7
8
9

MAX242
18
17
16
15
14
13
12
11
10

.1µF

.1µF

.1µF

.1µF

.1µF

Q2

5 3 2

20MHZ
CK

CSena
out2
in1
in2
Vss
enB
out3
CSenb

1
3
5
7
9

11
13
15

L298N
2
4
6
8
10
12
14

out1
VS

enA
GND

in3
in4

out4

+12V

7805

+5V

to
stepper motor

Servo1

Servo2

LM35

+5V

+5V

CONNECTORS:
J1 9 pin D-type
J2,J3 3 pin inline (.1")
J4 jumper
J5,J6 2 pin screw type
J7 COAX POWER

J5

J2

J3

RESET

.1 µF 100µF

100µF .1 µF

10 K

3 2 1

TO-92

TO-92

LM317
LZ

3 2 1

10 K

J1

J7

DIL

TP RA1
TP RA2
TP RA3
TP RA4
TP RA5

TP OSC2

TP RB7
TP RB6
TP RB5
TP RB4
TP RB3
TP RB2
TP RB1
TP RB0

TP RC0
TP RC1
TP RC2
TP RC3
TP RC4
TP RC5

J6

VR1
1K

J4

FIG. 1: PICCA circuit diagram.

We have used the board in the LabVIEW course held at LNF on June 7-11 2004, and the
reesults have been highly encouraging, allowing the students to come to grips with the general

— 3 —

problems that occur in computer communications, like data translation, timing and
sinchronization.

2 Hardware
PICCA has been designed as a multilayer pc board. The circuit diagram is shown in Fig. 1.
We have chosen a PIC microcontroller. These CPUs are very popular at LNF for their

versatility, speed and low cost.
The implemented peripherals are:
- 10 bit A/D converter reading ambient temperature: the LM35 sensor gives an output of

0mV+10.0mV/˚C starting from 2 ˚C, and the ADC converts the input in a range from 0 - 5 V.
- 4 bit digital input (switches)
- 4 bit digital output (4 LEDs, red, green, yellow, white)
- stepper motor driver
- servomotor driver
- a reset button is provided.
A pin grid array section has been provided for custom expansion, and all the CPU pins

have been extended to the edge of this area. An external reference voltage driver for the A/D
converters has been provided.

3 SOFTWARE
An assembler program has been written for the PIC microcontroller, to make it possible to

control the features of the board through the RS/232 link.
The communication protocol has been kept as simple as possible.
All messages from PICCA end with a “?”, to facilitate sinchronization.
All numbers, both input and output, are in hexadecimal format.
The PIC UART is set at 9600 baud, no parity, 1 stop bit, no flow control.
A list of the messages follows: messages from PICCA are shown as italic, commands

from user as bold. Commands are not case sensitive.
On power up and after the execution of every command, PICCA sends this message:
PICCA is alive and well
A=DAQ, M=step, T=servo, D=dig I/O ?

3.1 Analog input: temperature
The user sends A
PICCA asks:
N meas(01-3F)HEX?
The user sends the number of measurements to be executed and averaged, as a two digit

hexadecimal number. Range 01 to 3F.
Picca answers:
nnnn r mmmm
PICCA is alive and well
A=DAQ, M=step, T=servo, D=dig I/O ?

— 4 —

where nnnn is the average of the measurements in hexadecimal format, r indicates the remainder
mmmm of the averaging division, again in hexadecimal.

3.2 Stepper motor control:
The stepper motor must be connected to the four wire screw type connector J5 - J6. One of the
two windings must be connected to the two left poles, the other to the two right poles. The motor
is operated in half step mode, so one actual step of the motor counts as two steps in the program.

The user sends M
PICCA asks:
Steps/s(004D-0FA0,0000=reset)?
The user sends the required speed in steps per second as a 4 digit hexadecimal number.

Sending 0000 will take you back to reset.
Picca asks:
N steps(004D-0FA0)Hex?
The user sends the required number of steps as a 4 digit hexadecimal number: 0001 to

FFFF.
Picca asks:
Dir (L or R)?

The user sends L for left direction or R for right direction. The real direction is somewhat
arbitrary because it depends on how the motor wires were connected. Inverting the wires of one
of the windings changes the direction of rotation.

PICCA starts rotating the motor. When the required number of steps has been executed,
PICCA sends the message:

Steps left 0000 HEX
PICCA is alive and well
A=DAQ, M=step, T=servo, D=dig I/O ?
If at any time during the motor run the user wants to stop it, he can send S; the rotation will

stop immediately, and PICCA will send the message
Steps left nnnn HEX
PICCA is alive and well
A=DAQ, M=step, T=servo, D=dig I/O ?

where nnnn is the number of steps not executed.

3.3 Servomotor control
A servomotor is a motor coupled to a potentiometer, that can rotate a little more than 180

degrees, and assumes a position that depende on the duty cycle of the control signal sent
continuously by the CPU. This control is handled in PICCA by an interrupt mechanism. This
allows the user to position the servo and force it to remain in the chosen position while other
actions are possible, for example, analog measurements.

The user sends T
PICCA asks:
dc (01E0-0620, 0000=off)?

— 5 —

The user sends the required position as a four digit hexadecimal number. Range 01E0 to
0620.

Picca positions the servo and returns to reset, sending:
PICCA is alive and well
A=DAQ, M=step, T=servo, D=dig I/O ?

Note that the interrupt mechanism is now operating and the motor kept in the position required.
If the user wants to stop the motor control, he must execute the sequence:

The user sends T
PICCA asks:
dc (01E0-0620,0000=off)?
The user sends 0000.
Picca stops controlling the servo and returns to reset, sending:
PICCA is alive and well
A=DAQ, M=step, T=servo, D=dig I/O ?

3.4 Digital I/O
Picca can read the state of the four switches on the board and can write four bits to a

register that lights the four LEDs (jumper J4 must be installed for the LEDs to light).
The user sends D
PICCA asks:
R=read, W=write ?
The user sends R .
Picca reads the position of the four switches, returns the value as a one digit hexadecimal

number and returns to reset, sending:
0n
PICCA is alive and well
A=DAQ, M=step, T=servo, D=dig I/O ?

where n gives the four bits (0-F)
or
The user sends W .
PICCA asks:
Number to write(00-0F)HEX?
The user sends a two digit hexadecimal number, range 00-0F.
Picca turns on and off the appropriate LEDs and returns to reset, sending:
PICCA is alive and well
A=DAQ, M=step, T=servo, D=dig I/O ?

4 ACKNOWLEDGEMENTS
We would like to thank V. Chiarella for continuing support and encouragement.
We would like to thank the LNF Servizio di progettazione elettronica, and in particular G.

Paoluzzi and G. Papalino, for their constructive help.

