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Introduction 
 
 
The control and the manipulation of the beam can be considered as the main “goals” 
in the particle accelerators research. 
The correct control of the transverse and longitudinal beam sizes and position allows 
optimising the luminosity performance of the machine (as in colliders) or the light 
quality (as in synchrotrons). 
In the transverse plane, the beam profile is determined by properly setting the currents 
in the magnets (dipole, quadrupoles, and sextupoles) while, in the longitudinal plane, 
by the combined effects of the accelerating field gradient, synchrotron radiation 
emission and dipole magnets configuration. 
At high beam currents, however, the wake fields, produced by the interaction of the 
beam with the vacuum chamber components, interact with the beam itself causing 
deformation of the longitudinal bunch profile and possible longitudinal and transverse 
instabilities. 
The study of these collective effects is very important in order to preserve the beam 
quality and to avoid the loss of the beam.  
This is done, in general, finding a correct model of the wake fields in the accelerator 
and analysing the effects of this wake fields on the beam itself. 
The first step is achieved by means of analytical treatments, electromagnetic (e.m.) 
simulations or devices measurements that allow determining the fields produced by 
the interaction beam-vacuum chamber components. The second one can be obtained 
by analytical theories or by tracking codes that can simulate the beam motion under 
the effect of these self-fields. 
Microwave structures, installed in the ring to accelerate, deflect or, in general, to 
manipulate bunches, have to be, therefore, properly characterized and the “unwanted” 
effects have to be carefully analysed or limited by a proper e.m. design of the 
components. 
In parallel, diagnostics devices installed in the rings allow tuning the machine 
parameters in order to achieve the better performances. The research of compact and 
non-perturbative components is, therefore, of a big importance. 
The present thesis can be inserted on this context. 
In the first chapter, the analytical treatment of the longitudinal beam dynamics in 
circular accelerators is reported and discussed. A numerical tracking code that allows 
studying the single-bunch and the multi-bunch collective effects is, also, described. 
The second chapter is dedicated to the description of RF devices used in accelerators. 
It includes the description of the standing wave and travelling wave structures, and the 
presentation of the e.m. simulations codes and of the bench measurements techniques. 
The proper research activity is illustrated in the three last chapters. 
In the third one the beam dynamics in the accelerator DAΦNE with a harmonic 
system is analysed. DAΦNE is a double ring, high luminosity collider working at the 
energy of the Φ resonance (1.02 GeV in the center of mass). The study and the design 
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of a high harmonic RF system is mainly motivated by the demand of lifetime 
improvement and by the increasing of the natural Landau damping mechanism. The 
beam dynamics in the accelerator has been studied with analytical theories and 
tracking codes and the design of the device has been done with e.m. simulations codes 
(MAFIA and HFSS). RF measurements have been, also, made on the constructed 
device. 
In the fourth chapter, the CTF3 RF deflectors project is illustrated. CTF3 (CLIC Test 
Facility) is the third facility of the project CLIC (Compact Linear Collider) at CERN. 
The CLIC studies focuses on high-gradient, high frequency acceleration for multi-
TeV linear collider. Because conventional RF power sources based on modulators and 
klystrons are not available at high frequencies, CLIC was based on the novel and 
promising concept of Two-Beam Acceleration (TBA). The basic idea of the TBA is to 
properly recombine the bunch train (Drive Beam) generated by a conventional linear 
accelerator in order to create an high peak current beam with a time spacing between 
bunches considerably reduced. This bunch structure is realized by a novel technique 
of bunch recombination, using RF deflectors, which converts a long bunch train, with 
a large bunch spacing, into a sequence of short trains with a bunch spacing 
considerably reduced, which is used for the high frequency power production. The 
design of the deflectors for the Combiner Ring of CTF3 includes both the study of the 
beam dynamics effects in the ring than the design of the devices. The beam dynamics 
study has been developed by modelling the wake field in the deflectors and by writing 
a tracking code that allows studying the multi-passage multi-bunch effects. The design 
of the deflectors has been done, instead, by the simulation codes MAFIA and HFSS. 
Measurements results are reported and discussed. 
The last chapter illustrates the study of a microwave bunch-position monitor. A large 
number of bunch length monitors exist either in the time domain than in the frequency 
domain. In particular the devices that use the microwave spectroscopy are based on 
the analysis of the beam characteristics in the frequency domain. By this analysis it is 
possible to obtain the bunch parameters in the time domain such the bunch length or 
the position inside the vacuum chamber. Different techniques have been proposed to 
couple the field radiated by the bunch in a transmission line leading the signal to the 
detection system. The proposed monitor is a resonant small coaxial cavity coupled to 
the beam pipe through four small slots. If the length of the cavity is properly chosen, 
the beam power spectrum lines excite resonant modes in the cavity and, probing the 
field by a small antenna, it is possible to characterize the beam in term of average 
bunch length and position. In the chapter, the analytical approach based on the Bethe’s 
Theory is reported with the simulations results obtained by MAFIA and HFSS. 
Measurements made on a prototype are also discussed and compared with the 
theoretical results. 
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Chapter 1 
 
 
Beam dynamics in circular accelerators 
 
 
 
 
 
A storage ring may be considered as a complex of components that guides the particle 
beam inside the vacuum chamber. 
The motion of a single particle is determined by the external magnetic fields created 
by the dipole, quadrupole and sextupoles that provide the transverse focusing of the 
beam, by the RF longitudinal electric field that accelerates the beam, by the 
synchrotron radiation emitted by the particle in the bending magnets and by the wake 
fields generated by the interaction between the beam and the vacuum chamber 
components. 
The first paragraph of this chapter introduces the concepts of wake fields and coupling 
impedances. 
The longitudinal equation of motion for a distribution of particles is derived in the 
second paragraph. The equation of Haissinki, describing the bunch distribution at low 
current, is also discussed. The single bunch effects in high intensity beam are, then, 
introduced and a tracking code that allows studying the single bunch dynamics is 
described. 
The multi-bunch beam dynamics is treated in the third paragraph where the 
macroparticle model is illustrated. A tracking code for the multibunch dynamics study 
is, also, described. It allows studying the multi-bunch beam dynamics with non-
uniform filling patterns including the presence of a bunch-by-bunch feedback system 
in the ring. 
The longitudinal beam dynamics is also affected by a natural damping mechanism 
called Landau damping that is discussed in the fourth paragraph. 
Finally, in the fifth paragraph, the beam lifetime due to the Touschek effect is 
presented. 
 
 
 
 
 
1.1 Wake fields and impedances 
 
 
The beam traveling inside a complicated vacuum chamber induces electromagnetic 
(e.m.) fields which may affect the dynamics of the beam itself. 
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The e.m. fields induced by the beam are called wake fields due to the fact that they are 
left, mainly, behind the traveling charge. 
The study of the longitudinal and transverse beam dynamics requires the knowledge 
of these induced “self-fields” which may limit the performance of the accelerator in 
term of beam quality and stored current. 
The e.m. fields generated by a charge q1 traveling with a constant velocity v=βc on a 
trajectory parallel to the axis of a vacuum chamber in the structure, can be derived 
solving the Maxwell equations satisfying proper boundary conditions [1].  
The energy lost by a trailing charge q under the effect of these fields can be written in 
the form1 (Fig. 1.1): 
 

( ) ( ) ττ +=−= � v

s
tdstrsrsFrrU

structure

zz
1

111        with;,,,;,  

(1.1) 
 

where Fz is the longitudinal force on the charge q and τ is the time distance between q1 
and q. The quantity Uz represents the energy lost (Uz>0) or gained (Uz<0) by the 
charge q. 
The longitudinal wake function wz(r,r1,τ) is defined as the energy lost by the trailing 
charge per unit of both charges q1 and q: 
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1

1
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rrU
rrw z

z
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According to the definition (1.2) it is possible to calculate the wake function produced 
by a bunch distribution by the convolution: 
 

( ) ( ) ( )�
∞

∞−

−= '';,'
1

;, 11
1

1 τττττ drrwi
q

rrW zz  

(1.3) 
 
 

where i1(τ) is the bunch distribution of total charge q1. Usually Wz is called 
longitudinal wake potential. 
The vacuum chamber is formed by a smooth beam pipe with regular cross section 
(circular, rectangular or elliptic) and by various devices such as RF cavities, kickers 
and the diagnostic components. The exact solution of the Maxwell equations for the 
whole structure is impossible to obtain even with the most sophisticated computer 
codes [2] and, usually, one analyses a component at a time and sum-up the various 
effects even if this procedure may lead to inexact estimates at high frequencies where 
interference effects are not negligible. 
 
 
                                                 
1 The charges are considered ultrarelativistic β≅ 1; 
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Fig. 1.1: coordinates system used to describe the wake fields. 
 
 
In the frequency domain the spectrum of the longitudinal wake function is called 
longitudinal coupling impedance: 
 
 

( ) ( )�
∞

∞−

−= ττω ωτ derrwrrZ j
zz ;,;, 11  

(1.4) 
 

It is measured in Ohm and, historically, it has been introduced in the early studies of 
the instabilities arising in the ISR at CERN [3]. 
Vice versa the wake function is given by: 
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Similarly the trailing charge q experiences a Lorentz force which has transverse 
components. The transverse momentum kick is given by: 
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(1.6) 

The transverse wake function is defined as: 
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and the transverse coupling impedance is defined as: 
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Using simple relations given by the Maxwell’s equations it is possible to derive the 
following equations between the longitudinal and the transverse wakes and 
impedances: 

( ) ( )ττ
τ

;,;,
1

1,1 rrwrrw
v zrtt ∇=

∂
∂−  

(1.9a) 

( ) ( )ω
ω

ω ;,;, 1,1 rrZ
c

rrZ zrtt ∇=  

(1.9b) 

these relations are often referred to as the Panofsky-Wenzel theorem [4]. 
 
 
1.1.1 Cylindrically symmetric structures 
 
So far the case of general boundaries has been considered without restrictions on the 
transverse position of both charges. 
Assuming a structure with cylindrical symmetry the density charge q1 can be 
represented as follows [5]: 
 

( ) ( ) ( )�
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= +
−

−
=

0 0
1

1

11
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1

1

m m

mss
r

rrq φ
δ
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π
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(1.10) 

where φ1 of Fig. 1.1 has been supposed equal to 0. 
According to the above expression the charge q1 can be thought as a superposition of 
charged rings with angular dependence cos(mφ). In the presence of cylindrical 
symmetries the e.m. field created by the distribution (1.10) can be derived as the sum 
of multipole terms showing the same angular dependence. The resulting wake 
function will show the following form: 
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In the case of ultra-relativistic charges (β≅ 1) it can be shown that the wake function 
has the following radial dependence [6-8]: 
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(1.12) 
The impedance is then given by: 
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The monopole term (m=0) does not depend on the radial position of both charges and 
for charges traveling on the axis of the structures is the only non-vanishing term in the 
summations (1.12)-(1.13). 
Similarly the transverse wake can be written as a superposition of multipoles terms of 
the form [9]: 
 

( ) ( ) ( )[ ] �

( ) 11,1,

  termdipole
for the

,1
1

,       ˆsinˆcos rcwwmrmwrcmrw ztmz
mm

mt τ
τ

φφφτ
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−=
∂
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�−−=
∂
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(1.14) 

and the transverse impedance as a superposition of the terms: 
 

( ) ( ) ( )[ ] �
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,         ˆsinˆcos rZ
c

ZmrmZrmr
c
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=�−= −  

(1.15) 
 

The transverse dipole term m=1 is proportional to the transverse displacement of the 
leading charge while it does not depend on the transverse position of the trailing one. 
It is, also, the non-vanishing term if r=0. 
 
 
1.1.2 Short range wake fields: broad band resonator model 
 
The short range wake fields can be defined as the wake fields acting on a distance 
equal to the bunch length (see par. 1.2.1) while the long range wake fields as those 
acting on a distance larger than the bunch length. 
To study the longitudinal single bunch dynamics, it is often possible to consider the 
effect of the short range wake fields only, neglecting the multi-turn or the coupled 
bunch interactions generated by the long range wake fields. This implies that, in the 
frequency domain, the single bunch cannot resolve the details of the sharp resonances 
and it rather experiences an average effect. 
The impedance of an accelerator (that is usually a very complicated function of 
frequency with many sharp peaks) can be replaced, in this case, by some “broad band 
model impedance”. 
These models are usually characterized by a small number of parameters and they 
allow analytical evaluation of the stability limits or growth rates of single bunch 
instabilities. 
The first introduced broad band resonator model [10] considers an average 
impedance of the form: 
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where the radial dependence has been neglected2. 
Only three parameters, the shunt impedance Rs, the angular resonant frequency ωr and 
the quality factor Q, are necessary to describe the impedance frequency behaviour. For 
long bunches Rs is estimated by averaging the resistive part of the parasitic resonances 
(see par. 1.1.3), the quality factor is usually taken equal to 1 while the resonant 
frequency is taken as the cut of frequency of the first monopolar propagating mode of 
the beam pipe. 
These choices are somewhat arbitrary and are satisfactory only for the case of long 
bunches, when the whole bunch spectrum lies within the beam pipe cut-off. 
A new broad band impedance model was proposed by S. Heifets [11] as the further 
development of K. Bane’s approach used in the analysis of the SLC damping ring 
impedance [12,13]. The longitudinal impedance is described phenomenologically by 
the expansion: 
 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )zczzzz Z
j

BjRLjZ σ
ω

ωσωωσσωω sgn1
sgn1

−++++=  

(1.17) 
 

The first term of the expansion represents a low frequency inductive impedance. This 
impedance is typical for tapered sections, shielded bellows, vacuum ports and small 
discontinuities such as slots, shallow cavities in flanges and so on.  
The second resistive contribution is given essentially by the cavities in the ring [1]. 
The third term has a structure of the resistive-wall impedance [1] while the fourth term 
has the same dependence on ω as the impedance of a cavity with attached tubes at 
high frequencies [1]. 
The parameters L, R, B, Zc of the broad band model can be extracted by computer 
code results by fitting the numerical wake potential to the above analytical 
expressions.[14]. 
 
 
1.1.3 Long range wake fields: resonant cavities 
 
Cross-section variations in an accelerator vacuum chamber can create resonant 
cavities. Part of the field excited in the cavities is trapped reflecting back and forth and 
generating the resonant modes. 
The field excited in a cavity by the bunch is the typical example of long range wake 
field because it can interact with the other bunches of the beam or with the same 
bunch in different turns. 
The classical example of RF cavity is that used to accelerate the beam (see par. 1.3.3 
and 2.1). In this case the fundamental mode (usually the first monopolar mode) is used 
to supply energy to the beam by an external RF generator coupled to the cavity. All 

                                                 
2 The only monopolar term is considered. 
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the others modes called Higher Order Modes (HOM) are parasitic modes and can 
cause multibunch instabilities (par. 1.3) and additional parasitic power loss. 
 
Monopole modes 
 
As shown in par. 2.1 the longitudinal coupling impedance of a monopole mode can be 
approssimated in the form: 
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(1.18) 
 

The parameters Q and ωr are the quality factor and the angular resonant frequency of 
the resonant mode while the parameter Rs is called shunt impedance. All three 
parameters depend on the cavity shape and material. 
The wake field corresponding to the impedance (1.18) is given by: 
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(1.19) 
 

where H(τ) is the Heaviside function. 
From the above formula it follows that the interaction between the charge and the 
resonant mode can be schematized by an RLC parallel circuit driven by a point-charge 
current ib(τ)=q1δ(τ) representing the bunch, as shown in Fig. 1.2. The longitudinal 
wake field wz(τ) is simply given by V(τ)/q1. 
 
 
 

 

ib(τ)=q1δ(τ) V(τ) 
R C L 

 
Fig. 1.2: (a) RLC circuit that model the interaction between the resonant impedance and the 

beam; (b) wake function of a resonator with Q=5000, Rs=1 KΩ, fr=1GHz. 
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In the figure Rs is the shunt impedance of the resonant mode and L, C are related to the 
resonant frequency and quality factor trough the well know relations: 
 

RCQ

LC

r

r

ω

ω

=

= 1

 

(1.20) 
 

Referring to the same circuit, when the bunch interacts with the mode, it losses 
instantaneously, an amount of energy equal to: 
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the last equality is known as the fundamental theorem of the beam loading [15]: it 
states that, if β=1 the energy losses by the particle q1 (normalized to q1) is exactly one 
half the value of the wake function calculated with τ→0+. 
 
Dipolar modes 
 
The longitudinal coupling impedance of a dipolar mode is given by (par. 2.1): 
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where the parameters Rs1, Q1, ωr1 are, now, referred to the dipolar mode and the 
distance b is introduced in order to maintain Rs1 expressed in Ohm. 
The transverse coupling impedance corresponding to the same resonant mode is given 
by: 
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(1.23) 
 

The longitudinal and transverse wake field, generated by the interaction with this 
dipole mode, is given by: 
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1.2 Single bunch longitudinal beam dynamics 
 
 
A generic particle of the beam, in a circular accelerator, follows a curvilinear 
trajectory inside the beam pipe losing energy because of the radiation emitted in the 
bending magnets (synchrotron radiation) and because of the interaction with the 
devices in the accelerator. This loss of energy is compensated by the RF accelerating 
field in the cavities installed in the ring. 
The synchronous particle is defined as the particle that enters in the cavity when the 
oscillating field has an amplitude that compensates exactly the loss of energy in the 
ring. 
To describe the longitudinal beam dynamics it is convenient to introduce the 
following quantities: 
 

L0: length of the circumference followed by the synchronous particle; 
T0: revolution period of the synchronous particle; 
E0: nominal energy of the synchronous particle at the exit of the RF cavity; 
z: longitudinal displacement of a generic particle with respect to the 

synchronous one at the exit of the RF cavity (if z>0 the particle is ahead 
of the synchronous one); 

∆z: variation of the longitudinal position of a particle in a revolution period 
(z(t)-z(t-T0)); 

ε: energy deviation of a generic particle respect to the synchronous one; 
∆ε: energy variation in one revolution period (ε(t)-ε(t-T0)); 
αc: momentum compaction: it is the variation of the circumference length 

with respect to the particle with the nominal energy. It is determined 
from the fact that the radius of curvature in bending magnets depends on 
the energy of the particle itself: 

 

( )
0

00

/

/

E

LLL
c ε

α ε −
=  

(1.25) 
where Lε is the circumference length of an off-energy particle. 
By the previous definitions it is possible to write the following equation: 
 

0
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The energy radiated by an off-energy particle can be calculated for small energy 
deviations as [16,17]: 

( ) εε DUU += 0  
(1.27) 

 

where U0 is the average radiated energy of a synchronous particle and D (>0) is called 
damping factor. 
The electromagnetic radiation occurs in quanta of discrete energy and each time a 
quantum is emitted the energy of electrons makes a small discontinuous jump that 
disturbs the trajectory of the particle. This emissions may be considered instantaneous 
and following a purely random Poisson process [18]. The cumulative effect of many 
such disturbances in the trajectories introduces a kind of “noise” into the various 
oscillation modes causing their amplitude to growth until the quantum excitation is, on 
average, balanced by the damping of the oscillation due to the damping factor D 
(τε=D/2T0 is called damping time).  
The equation that links the change in energy with the longitudinal position of the 
particle is then: 
 

( ) ( )( ) ( )[ ]00' TRDUzVzVe ++−+=∆ εε  
(1.28) 

 

where V(z) is the accelerating voltage in the RF cavity seen by a particle occupying 
the position z with respect to the synchronous one, V’(z) is the accelerating voltage 
due to the wake fields3 and R(T0) is the difference between the radiated energy in one 
turn and its average value. 
Dividing the equation by T0 and substituting the finite differences with a time 
derivative4, one obtains the equations that describes the longitudinal dynamics5: 
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The equation of motion becomes: 
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3 The hypothesis is that the energy exchange between the particle and the RF cavity (or wake field) are 
concentrated at the exit of the RF cavity. This is, in general, acceptable since the revolution time is much 
smaller than the characteristic times of the analyzed phenomena. 
4 This approximation can be considered correct for the same reason discussed in the previous note. 
5 The particle is considered ultra-relativistic.  
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The motion of a single particle in the phase plane (z,ε) is characterized by two 
opposite effects: the damping due to the coefficient D that forces the particle to 
collapse in the center (0,0) and the quantum excitation given by the term R(T0) that 
gives the opposite effect. 
The equation of motion can be also written using the Hamiltonian formalism [19]. 
Defining the potential well of the particle as: 
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and the Hamiltonian as: 
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the equations of motion (1.29) become: 
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(1.33) 

In case of a pure sinusoidal RF voltage the term V(z) can be written in the form: 
 

( ) ��
�

�
��
�

�
−= z

L

h
VzV sRF

0

2cos πφ  

(1.34) 

where h is called harmonic number and φs synchronous phase (defined by 
cos(φs)=U0/eVRF) 
Neglecting the non conservative terms D, V’ and R(T0) the equation of motion 
becomes: 
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For small oscillation amplitudes6 the longitudinal equation of motion can be written in 
the form: 
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6 Under this condition (z<<L0/2πh) V(z) becomes: 
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Fig. 1.3: trajectories of the particle in the phase space (z,ε). 
 
 
 
Particles orbiting in a circular accelerator perform, therefore, longitudinal oscillations 
at the frequency fs=ωs/2π called synchrotron frequency and given by:
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(1.37) 
where f0 is the revolution frequency (f0=1/T0). 
These oscillations correspond to elliptical trajectories in the phase space (z,ε).  
For large amplitudes the ellipses are distorted by the non-linearities of the motion but 
curves are still close on themselves until a certain maximum amplitude (Fig. 1.3). If 
the maximum amplitude overcomes the range zmax-zmin the motion becomes unstable 
and the particle motion assumes the characteristic of libration. 
The lines separating the regime of libration from the regime of stable oscillation are 
called separatrices and the area within separatrices is commonly called the RF bucket. 
The maximum energy deviation of a particle that perform stable oscillation is called 
energy acceptance (or momentum acceptance ∆p/p0|max) and it is given by [20]: 
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The energy acceptance plays an important role since it determines the capture 
efficiency at injection and the Touschek lifetime of stored beams (par. 1.5). 
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1.2.1 Distribution function and Fokker-Plank equation 
 
To study the collective effects it is necessary to introduce the distribution function of 
the particles in the phase plane Ψ(z,ε;t). As usually, the product Ψ(z,ε;t)dzdε is the 
probability to find one particle in the area dzdε of the phase space at the time t. 
The longitudinal distribution function ρ(z;t) is given by:  
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(1.39) 
The fraction of the total particles between z and z+dz at the time t is given by ρ(z;t)dz. 
Similarly the energy distribution is given by: 
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the bunch length and the energy spread are defined respectively as: 
 

 

( )( )�
+∞

∞−

−= dzzztzz
2;ρσ  

( )( )�
+∞

∞−

−= εεεερσ εε dt 2;  

(1.41) 
where z  and ε  are the mean values of the distributions (1.39)-(1.40). 

The time evolution in the phase space of the distribution function is given by the 
Fokker-Plank equation [21,22]: 
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(1.42) 
 

where <R(T0)
2> represents the standard deviation of the radiated energy. 

The first two terms on the right are related to the conservative forces acting on the 
bunch while the third and the fourth terms represent the radiation term and the effect 
of the quantum excitation respectively.  
Both the coefficient D and the standard deviation <R(T0)

2> can be calculated knowing 
the characteristics of the magnets in the accelerator [23]. 
The Fokker Plank equation represents the more general expression to describe the 
evolution of the distribution function in the phase plane both in the single bunch and 
in the multi-bunch case. Unfortunately the analitycal solution of this equation doesn’t 
exist and, in order to study the single or the multi-bunch beam dynamics, some 
assumptions have to be done to simplify the problem. 
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1.2.2 Stationary distribution: the Haissinski equation 
 
Experimentally when the number of particles is low, the bunch distribution is time 
independent. Under this condition (∂/∂t=0) the Fokker-Plank equation becomes 
solvable and the distribution function is given by [24]: 
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The equation (1.43) is called the Haissinki equation and, integrated over z or ε, allows 
to find the longitudinal and the energy distribution function respectively: 
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It is important to observe that, in the stationary case, the energy distribution function 
does not depend on the potential well but only on the machine parameters and it has a 
gaussian profile. On the other hand, the longitudinal distribution depends on the 
potential well. 
At very low bunch current, neglecting the self field and considering a sinusoidal 
accelerating voltage7 the longitudinal bunch distribution becomes simply: 
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where the σz0 is given by: 
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If the bunch current increases, however, it is not possible to neglect the self-field and 
the (1.44) becomes (see Appendix A1.1): 
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where Q is the bunch total charge. 
The self-induced e.m. fields cause the so-called potential well distortion and deform 
the original gaussian distribution function.  

                                                 
7 Linearized near the point z=0. 
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Fig. 1.4: longitudinal bunch distributions as a function of the number of particles for  

different types of impedance: (a) purely inductive; (b) resistive;  
(c) purely capacitive; (d) broad band resonator. 

 
 
The integral equation (1.48) is, in general, numerically resolvable and, knowing the 
characteristics of the accelerator impedance, it allows finding the longitudinal 
distribution of the bunch as a function of current [22,25]. 
Typical longitudinal bunch distributions are shown in Fig. 1.4 as a function of the 
number of particles and for different types of impedance. A pure inductive wake (Fig. 
1.4a) does not give energy losses, the bunch remains therefore symmetric and assumes 
a parabolic shape. With the other types of wake there is a change in the shape of the 
longitudinal distribution and, moreover, the bunch center of mass moves in order to 
compensate the energy losses. 
As remarked initially, the equation (1.43) is valid for a stationary bunch. In the 
synchrotron machines, however, this hypothesis is not satisfied at high bunch density 
current and other phenomena have to be taken into account to explain the behavior of 
the bunch distribution. 
 
 
1.2.3 Perturbative theory and turbulent regime 
 
If the characteristic times of the dangerous instabilities are shorter compared to those 
of the damping and diffusion phenomena one can neglect, in the Fokker-Plank 

a b 

c d 
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equation, the terms related to the diffusion and radiation phenomena obtaining the so 
called Vlasov equation: 
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(1.49) 
 

Following the treatment originally proposed by F. Sacherer [26] and successively 
developed by other authors [27], the time dependent Ψ can be written as a sum of the 
stationary distribution Ψ0 and of a coherent perturbation Ψ1 in the form8: 
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where ẑ  and φ are polar coordinates in the phase space (z,ε). 
Supposing that the Ψ1 function is a weak perturbation of the unperturbed distribution 
Ψ0 and that the characteristic time of the dangerous instabilities are shorter compared 
to those of the damping and diffusion phenomena, one can use the Vlasov equation 
with the expression (1.50) obtaining the following eigenvalue system for the radial 
function Rm: 
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where Jm is the Bessel of order m. 
In the case of zero current (Q=0) one obtains the following eigenvalue and 
eigenvectors: 
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(1.52) 
 

And the possible coherent mode of oscillations can be written in the form: 
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where each mode is determined by the azimuthal number m.  
If the bunch current increases the equations (1.51) should be solved in order to find 
the coherent modes of oscillation. 

                                                 
8 In the ( ẑ ,φ) plane the Ψ1 function is periodic with respect to φ of 2π and it is possible to consider its Fourier 
expansion obtaining the expression (1.50). 
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Experimentally, when the single bunch current increases above a certain threshold, the 
energy spread of the bunch starts growing (contrary to the Haissinski equation). This 
effect is know as the microwave instability, because of the high frequency signals that 
can be observed in these conditions. The consequent bunch lengthening is very fast 
and the phenomenon is also called turbulent since the high frequency signals often 
become fluctuating or turbulent. The physical nature of the turbulence is not well 
understood and several different theories based on the solutions of the eq. (1.51) or 
based on empirical results, have been developed [28,29].  
It is widely believed [27,30,31] that these phenomena are caused by the bunch 
longitudinal coherent mode coupling. The instability can manifest itself either through 
the coupling among the azimulthal modes or the radial ones having the same 
azimuthal number. 
Usually the empirical Boussard criterion [32] is used to estimate the threshold for the 
instability. The discussion of the applicability of the criterion can be found, for 
example, in [28]. The criterion establishes that above the threshold current given by 
the relation: 
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where Ip is the peak current, Z is the broad band impedance and n=ωc/ω0 with ωc=c/σz, 
the bunch “enters” in the turbulent regime. 
In the criterion expressed by eq. (1.54) both Ip and Z(n)/n depend on the bunch length, 
which is proportional to the energy spread. For a gaussian bunch the peak current is 
given by: 
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In the equation (1.54) the equality shows the threshold value for the bunch charge Q 
given by: 
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where σz0 is given by (1.47). 
Below this value the Haissinski equation can be solved obtaining a constant value σε0 
and the bunch length σz. Above this value it is possible to estimate a theoretical σz by 
solving the equations (1.54) with the sign “=”and (1.44) obtaining [33]: 
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1.2.4 Single bunch dynamics simulations 
 
The analytical treatment of the single bunch turbulent regime is important in order to 
understand the physical phenomena in the single bunch dynamics. However, the 
theoretical estimates of the bunch length and energy spread are valid under certain 
conditions and, in general, do not include the all effects as the azimuthal and radial 
mode coupling. 
To resolve the problem, as a whole, simulation programs based on finite difference 
equations have been developed [30,13,34-36]. 
The motion of Ns macroparticles representing the bunch of total charge Q is described 
in the longitudinal phase space by the equations: 
 

( ) ( )[ ]�
�

�
�

�

−−−++=

−=

−−

−
−

DRDUzVzVe

E
Lzz

n
i

n
i

n
i

n
i

n
i

n
i

c
n
i

n
i

2' 0
1

0
1

0

1

0
1

εσεεε

εα
 

(1.58) 
 

where εi
n and zi

n, are the energy and position coordinates of the macroparticle i after n 
revolutions in the storage ring.  
Following the treatment reported in [18], the statistical quantity R(T0) in the (1.28) has 
been substituted with the quantity: 
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where R is a random number obtained from a normally distributed set with mean 0 
and σ=1. 
The accelerating voltage is simply given by: 
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while the voltage induced by the short range wake fields is given by: 
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where wz(z) is the machine wake function. 
In order to reduce the computing time the macroparticles are distributed in Nbin and the 
induced voltage is calculated as: 
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where zj are the coordinates of the bin centers and Nb(zj) is the number of 
macroparticles in the bin with the center at zj.  
The induced voltage at the position of the macroparticles is found by a linear 
interpolation between the V’(zi). 
The parameters Ns and Nbin have to be chosen in order to minimize the computing time 
avoiding, contemporary, artificial numerical errors. 
As an example, the results of the numerical simulations for the DAΦNE main rings 
are summarized in Fig. 1.5. The main DAΦNE design parameters are shown in Table 
1.1 and the wake function9 as calculated by numerical codes [37] is reported in Fig. 
1.6. 
In the simulations 3⋅105 macroparticles have been tracked over 4 damping times. The 
figures shows the σz and σε/E0 as a function of bunch current, calculated for two RF 
voltages (VRF=100 KV and VRF=250 KV).  
The normalized bunch profile with VRF=250 KV obtained by the simulation is 
reported in Fig. 1.7a. The distribution is wider than a gaussian due to the bunch 
interaction with the inductive machine impedance and slightly distorted due to the real 
component of the impedance. The microwave instability threshold is lower and the 
bunch energy spread is higher for the higher RF voltages, as expected because of the 
high density current. 
In the Fig. 1.7b the σz and the σε/E0 are plotted as a function of the turn number. It is 
clear that the regime is not a stationary one and both quantities oscillate turn by turn. 
 

Table 1.1: DAΦNE design parameters 
 

Energy (E0) 510 [MeV] 

RF frequency (fRF) 368.26 [MHz] 

Harmonic number (h) 120 

Revolution frequency (f0) 3.0688 [MHz] 

Machine length (L0) 96,6 [m] 

Momentum compaction (αc) 0.017 

Maximum current per bunch (Ibmax) 44 [mA] 

RF Voltage (VRF) 100÷250 [KV] 

Damping time (τD) 17.8 [ms] 

Max. beam current (Imax) 5.2 [A] 

Max. number of colliding bunches (Nb) 120 

Synchrotron losses (U0) 9.3 [KeV/turn] 

Natural bunch length (σz0) 1.3÷0.8 [cm] 

                                                 
9 More precisely, the wake function is substituted with the wake potential of a very short bunch (2.5 mm) 
because the numerical codes can not calculate the e.m. field for a δ-function current distribution. 
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Fig. 1.5: results of the numerical simulations obtained with the single bunch simulation code: 
(a) rms bunch length; (b) bunch centroid; (c) rms energy spread. 

 
 
 

 
 

Fig. 1.6: DAΦNE wake potential of a 2.5 mm gaussian bunch. 

a b 

c 
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Fig. 1.7: (a) Normalized bunch profile with VRF=250 KV obtained by the simulation code;  
(b) bunch length and energy spread as a function of the turn number with VRF=250 KV. 

 
 
 
 
1.3 Multi-bunch beam dynamics 
 
 
Up to now only the effects of the short range wake fields in the single bunch dynamics 
have been taken into account. They give an increase of the σz and can cause 
microwave instabilities and energy spread growth. 
In an accelerator, however, the complete single and multi-bunch beam dynamics is 
determined by the combined effects of the short and long range wake fields and by the 
non linear effects of the accelerating field. 
It is pratically impossible to do a complete analytical study of the single/multi-bunch 
beam dynamics for high bunch current and some simplifications have to be done. 
 
 
1.3.1 Macroparticle model 
 
A simplified model for the study of the coherent effects produced by the long range 
wake fields is the so called macroparticle model. It is based on the assumption to 
consider each bunch as a macroparticle without internal structure neglecting the 
intrabunch collective motions. The macroparticles can be modeled as a pure 
δ_functions (σz=0) or as a rigid profile distributions (for example gaussian) with a 
certain σz. 
 

a 
b 
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Supposing Nb equispaced δ-macroparticles of charge Q, the equation of motion for 
each bunch with respect to the “synchronous position” can be written in the form10: 
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Where the quantum fluctuation given by the term R(T0) has been neglected11. 
The total accelerating voltage VT(zn) is given by the RF system and by the long range 
wake fields by the equation: 
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where the synchronous phase φs does not depend on the considered bunch because the 
bunches are equispaced and they have the same charge12. The total voltage induced by 
the long range wake fields on the macroparticle n, is given by the sum of the particles 
contributions in all the previous turns13: 
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Under the condition of small oscillation amplitudes (zn, zh<<L0/Nb) it is possible to 
make a linear expansion of the voltages: 
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The equation of motion becomes: 
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(1.68) 
                                                 
10 zi>0 means that the macroparticle is ahead of the “synchronous position”. 
11 The quantum fluctuations in the emission of synchrotron radiation are a single particle motion property and do 
not affect the multibunch macroparticle motion. 
12 From this point of view the bunches are undistinguishable. 
13 The espression of the wake field can be given as a function of z where z=cτ. 
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with the incoherent angular frequency14 and synchronous phases defined by15: 
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The last equalities in the equations (1.69)-(1.70) are proved in Appendix A1.2. 
The Nb equations given by (1.68) represent a system of coupled oscillators. 
The solution of the system can be found in the form:  
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obtaining the following eigenvalue problem (see Appendix A1.3): 
 

( )�
−

=

Ω=��
�

�
��
�

�
−Ω−Ω

1

0

2

0

2
bN

h
nhhns Maa

T

D
j ω  

(1.72) 
where: 
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(1.73) 
The matrix |Mnh(Ω)| is a cyclic matrix [38] and the Nb eigenvalues give the following 
complex frequencies of oscillation: 
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where ( ) 0ωµµ −= lNp bl  and µ=0,1,2,…,Nb-1 is the mode number. The corresponding 

eigenvectors are: 
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(1.75) 

                                                 
14 ωs is related to the slope of the total RF voltage: the accelerating one+the voltage induced by the wake fields. 
15 In the summations (1.69-70) the impedance Z does not include the fundamental mode in the main cavity that 
is already taken into account in the cosine term (in other words, the beam loading in the main cavity is 
compensated by the external RF generator). 
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The multibunch modes of oscillation are, therefore, characterized by a proper coherent 
angular frequency given by Re[Ωµ]=ωcµ, by a growth rate given by Im[Ωµ]=αcµand by 
a proper phase relationship between the amplitudes an. 
In Fig. 1.8 as an example the modes 0 and π are schematically represented. 
Assuming that D/T0<<αcµ and that α2<<Ω2,ωs

2 (16) the coherent angular frequency of 
oscillation and the corresponding growth rate of the mode µ are given by: 
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where I=QNb/T0 is the average beam current. 
The imaginary part of the impedance gives, therefore, a shift of the coherent angular 
frequency of the mode with respect to the incoherent angular frequency ωs while the 
real part determines whether the mode is stable (α>0) or unstable (α<0)17. 
 

 

MODE 0 

MODE π 
 

 
Fig. 1.8: schematic representation of the modes 0 and π. 

 
 

                                                 
16 The dangerous unstable modes satisfy always these conditions. 
17 In the equations (1.76) the coherent frequency of oscillation appears in both sides. In order to evaluate the 
growth rate and the coherent angular frequency it is necessary to solve the equation numerically or to suppose 
small coherent angular frequency shift (ωcµ≅ ωs) in order to approximate Ωµ in the the right side of the equations 
with ωs. 
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The fact that the impedance has to be evaluated at the angular frequencies 
ωlµ=(Nbl

_µ)ω0
_Ωµ can be intuitively understood looking at the spectrum of an 

oscillating beam given by (see Appendix A1.4): 
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(1.77) 
 

In the frequency domain, the interaction between the bunches is generated through the 
coupling impedance of the accelerator at the frequencies corresponding to the line 
spectrum of the oscillating bunches. The first summation does not depend on the 
bunch oscillation amplitude (the corresponding lines are often called power spectrum 
lines) while the second summation gives the so-called synchrotron sidebands 
proportional to the oscillation amplitude. 
If the major contribution to the impedance is given by a high Q resonator the formulae 
can be simplified considering in the summations (1.76) only the spectrum lines near 
the resonant frequency of the resonator. If, as an example, its resonant frequency is 
between the angular frequencies (Nb+1)ω0 and (Nb+2)ω0 (as shown in Fig. 1.9), the 
real part of the impedance gives the following growth rates for the modes µ=1, µ=2, 
µ=Nb-1, µ=Nb-2: 
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(1.78) 
 
The real part of the impedance makes unstable the modes µ=1 and µ=2 and stable the 
modes µ=Nb-1 and µ=Nb-2. 
Following these results it is possible to plot the so called stable and unstable sideband 
for the multibunch modes as a function of frequency (Fig. 1.10). This intuitive view of 
the possible coupled bunch instabilities excited by a given impedance is a useful 
method to evaluate easily the stable or unstable modes for a given impedance. 
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Fig. 1.9: narrow band impedance between (Nb+1)ω0 and (Nb+2)ω0. 

 
 

 
 

Fig. 1.10: stable and unstable lines of the multibunch modes 
 
 
 
In the previous formulae the bunches have been modeled as δ-functions with σz=0. 
Assuming, instead, a gaussian rigid profile for the bunches, the previous formulae 
have to be modified as follows [41]: 
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where <Wz> is the wake potential “averaged” over the bunch distribution. 
The exponential factors take into account the finite length of the bunches. In fact, in 
this case, the spectrum of the oscillating bunches is given by: 
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1.3.2 Perturbative theory 
 
The macroparticle model considers bunches as macroparticles without internal 
structure. The multibunch coherent effects in the distribution function can be treated 
starting from the Vlasov equation and following the perturbative treatment as done for 
the single bunch effects. 
Assuming Nb equal spaced gaussian bunches and supposing that the time dependent 
wake fields do not modify the stationary distribution Ψ0, one obtains the following 
complex coherent angular frequencies [26,27]: 
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(1.82) 
 

where Im is the modified Bessel function. The modes are, now, characterized by two 
indices: the azimuthal one m (m=1,2,3,…), and that related to the coupled bunch 
motion µ. 
As in the case of the macroparticle model, the imaginary part of Ωmµ, if positive, 
indicates a possible unstable mode. 



 35 

As evident from (1.82), for the first azimuthal mode m=1 (called dipolar mode of 
oscillation) the equation gives the same result of the macroparticle model in the case 
of small coherent frequency shift18. 
From the eq. (1.82) and from the properties of the Bessel functions the more 
dangerous azimuthal modes, for a given impedance, are those related to low values of 
m. 
 
 
1.3.3 Beam-accelerating cavity interaction: beam loading 
 
The accelerating field is provided to the beam by an external RF generator that excites 
an oscillating longitudinal electric field in the RF cavity (par. 2.1). The beam itself, 
nevertheless, excites a longitudinal electric field in the RF cavity that has to be 
properly compensated by the external RF generator and by the tuning system19. 
The general model to describe the interaction between the beam and the RF system is 
plotted in Fig. 1.11 [40]. In the figure the RLC circuit models the resonant cavity, the 
transformer models the coupler between the external generator Ig and the cavity and 
the current generator I models the beam. 
The bunches can be considered as current pulses sampling the total accelerating 
voltage VRF (given by the external RF generator and by the beam current itself) at the 
synchronous phases φs. In order to maintain the total accelerating voltage equal to VRF 
with a reasonable amount of reflected power, the extra negative voltage generated by 
the beam has to be properly compensated. 
The Fourier components Ip of a train of equally spaced non oscillating gaussian 
bunches are related to the beam current I(t) by the relation20: 
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where I  is the average beam current and pI
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18 In this case Ωmµ in the right side of the equation (1.74) can be approximated by mωs and in the left side 
Ω2_ωs

2≅ 2(Ω-ωs)ωs
2. Moreover, I1(x) in the eq. (1.82) can be, in general, approssimated with x/2 since, in 

general, x<<1. 
19 As illustrated in par. 2.1 the tuning of the resonant frequency of a cavity is realized with devices (tuners) that 
slightly modify the volume of the cavity changing its resonant frequency. 
20 The Fourier components of a train of non-oscillating bunches are double the real part of the δ-function 
amplitudes of the beam spectrum (1.77) considered for ω>0. 
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Fig. 1.11: equivalent circuit to describe the interaction  

between the beam and the RF system. 
 
 
 
Analyzing the circuit of Fig. 1.11 at the RF harmonic, the beam is equivalent to an 
extra admittance loading the RF system and given by: 
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The beam loads the RF system as an extra resistance in parallel to an extra inductance 
which are both inversely proportional to the beam current. 
The resistive part of the beam equivalent impedance describes the energy transfer 
from the RF source to the beam and gives a condition to optimize the coupling 
coefficient β (par. 2.1) for the best matching generator-loaded cavity: 
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The inductive part tends, on the other hand, to shift the resonant frequency of the 
cavity+beam system, and, beyond some current threshold, the system is too largely 
detuned that the RF generator can not sustain the required accelerating field anymore. 
To avoid that, a tuning system automatically changes the resonant frequency of the 
cavity shifting it toward lower values to compensate the positive beam equivalent 
inductance. 
The complex admittance of the loaded cavity as seen by the RF generator is given by: 
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The compensation of the beam reactance, if the cavity starts from perfect tune at zero 
current (δ0=0), is simply given by: 
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If, instead, the cavity starts from a non zero detune at zero current (δ0≠0) the 
expression becomes21: 
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The cavity detuning, therefore, increases linearly with I  and is inversely proportional 
to VRF. 
As an example the resonant frequency of the DAΦNE cavity is reported in Fig. 1.12 
for two different accelerating voltages and initial detuning. 
The impedance of the cavity interacts, also, with the two sidebands of the mode 0. The 
coherent angular frequency and the growth rate of the mode 0 are then given by: 
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The resonant frequency of the cavity ωr is below ωRF=hω0 and the mode 0 is, 
therefore, stable while its coherent angular frequency decreases accordingly to 
(1.90a).  

 

                                                 
21 In order to compensate the beam inductance it is enough to put: 
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However, the tuning system changes the tuner position in order to maintain constant the difference between the 
phase of the generator incident wave and the cavity voltage. This gives the equation (1.89). 
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Fig. 1.12: resonant frequency of the DAΦNE cavity as a function of current. 

 
 
 
1.3.4 Simulations of the multi-bunch longitudinal beam dynamics 
 
 
As pointed out in the par. 1.3.1-1.3.2 the analytical study of the longitudinal beam 
dynamics of a beam interacting with an impedance can be performed only in the case 
of small oscillation amplitudes of equispaced and equal bunches. A complete 
analytical treatment of the beam dynamics in the presence of a bunch-by-bunch 
feedback system (that controls the longitudinal coupled bunch instabilities) and/or in 
the presence of bunches with different charge is, practically, impossible. 
Simulation codes, that execute a tracking of the bunch longitudinal oscillations, allow 
to study the multibunch beam dynamics including the effects of the feedback system, 
HOMs interaction and synchrotron radiation damping. 
In the code developed for the longitudinal beam dynamics study in DAΦNE [41], 
each bunch is modeled as a single macroparticle of a given charge. Under this 
condition it is possible to simulate only the “rigid” dipole oscillations that are, 
however, the most dangerous for the beam stability (par. 1.3.2). 
The quantities necessary to describe the motion of the bunch n are the energy 
deviation εn with respect to the nominal energy E0 and the phase deviation ∆φn taken 
with respect to the synchronous one (∆φn=ϕsn-2πhzn/L0). 
The algorithm can be divided into three main parts: 
 

a) propagation around the ring; 
b) interaction with the accelerating mode in the RF cavity and with the 

impedances due trapped modes in the devices of the ring; 
c) interaction with the feedback system. 
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Propagation around the ring 
 
In the propagation around the ring, each bunch losses energy because of the 
synchrotron radiation (Urad) and because of the interaction with the ring impedance 
(Uimp).  
Following the treatment of par. 1.2 the energy deviation and the phase deviation at the 
exit of the ring are related to the input quantities by the equations: 
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(1.91) 
 
 
Interaction with the accelerating mode and HOMs 
 
Both the interactions with the fundamental mode in the RF cavity and with the HOMs 
(in the cavity or in other devices of the ring) are modeled with lumped element 
circuits in the same point of the ring22.  
The variables vm(t) and im(t) (voltage and current in the inductance respectively) 
execute free oscillations between the passage of two bunches and can be represented 
in the form [42]: 
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(1.92) 
 

where vm(t0), im(t0) are the starting conditions and the quantities ωrm, ω’rm, Qm and Rm 
are related to the mode m and have been defined in the par. 1.1.3. 
When a bunch of charge Qbn crosses the impedance it is sufficient to add the quantity: 

bn
m

mrm
m Q

Q

R
V
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(1.93) 
to vm(t) and to continue the propagation. 
The phase and energy deviations after the interaction with the RF cavity and HOMs 
are, therefore, given by: 
 

                                                 
22 The change in the longitudinal position in one turn along the ring is a negligible effect and all the impedances 
can be concentrated in the same point. 
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where the interaction with the fundamental mode cavity impedance has been included 
in the summations and the last term is the energy lost by the bunch and stored in the 
HOMs as the fundamental theorem of the beam loading states (see eq. (1.21)). 
 
Interaction with the feedback system 
 
Because of the high current stored in modern storage rings like DAΦNE, coupled 
bunch instabilities driven by the HOMs in the accelerating cavity or in other devices 
of the ring, have fast rise times. 
A powerful longitudinal feedback [43,44] is necessary to damp the dipole oscillations 
and, in the simulation code, this device is properly included.  
The system installed in DAΦNE is a bunch by bunch time domain feedback also 
adopted in other factories [45]. The system provides the correction energy to each 
bunch at every turn by means of a longitudinal kick. The phase error signal, detected 
by a longitudinal pick-up, is digitized and processed with a DSP digital filter which 
computes the correction signal Kn by the algorithm: 
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(1.95) 
 

The filter coefficients ci are computed in order to provide the -90° shift necessary to 
convert the phase error into the energy correction and G is the DSP gain.  
The DSP output is amplified and sent through a digital-analog converter to a kicker 
amplifier. In the simulations code developed for DAΦNE, the input file concerning 
the feedback allows to change the system configuration varying the gain of the 
different devices, the number of coefficients and the maximum kicker voltage.  
In Fig. 1.13 it is shown a typical frequency response of the whole feedback chain.  
The whole system provides, in general, the -90° degree shift for a certain frequency of 
the signal ∆φn. This frequency should correspond to the oscillation frequency of the 
unstable modes that, in case of small coherent frequency shift, corresponds to the 
incoherent synchrotron frequency. If the coherent frequency shifts induced by the 
impedances (in some modes) are not negligible the whole system has to be optimized 
in order to provide the optimum energy correction at the correct frequency. 
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Fig 1.13: typical frequency response of the DAΦNE feedback chain. 
 
 
 

 
1.4 Landau damping 
 
 
As discussed in the previous paragraphs there is a large number of collective 
instability mechanisms acting on a high intensity beams.  
Up to now the only considered damping mechanism is the natural damping induced by 
the radiation emission.  
A strong effort, in the RF cavities design, is done to optimize the cavity shapes or to 
apply different HOM damping techniques in order to reduce the growth rates of the 
possible instabilities [48-53]. Comparing, however, the characteristic rise time of the 
possible coupled bunch instabilities (induced for example, by HOMs in the RF cavity) 
with the natural damping time, one discovers that there are, in general, some possible 
unstable modes [37]. 
Digital bunch-by-bunch feedback system installed in the modern storage rings can 
fight the dipole (and with some limitations also the quadrupole) coupled bunch 
longitudinal instabilities. 
However, another “natural” damping mechanism, that can fight the single and the 
multi-bunch instabilities, exists: the Landau damping.  
It works when, in a system of oscillators, there is a certain spread in the natural 
oscillations frequencies. This spread in the bunch is induced, in the case of 
longitudinal beam dynamics, by the non-linearities of the acceleration voltage.  
The intuitive physical origin of this mechanism is discussed, for example, in [5]. 
When a periodical external force (in the case of an accelerator, as example, the force 
induced by a resonant mode) excites the oscillators system (the particles in the bunch) 
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what one expects is that the medium oscillations amplitude grows with time. By 
calculations, on the contrary, the whole system remains stable. This is because the 
stored energy is not distributed more or less uniformly in the particles but is 
selectively stored in particles with continuously narrowing range of frequencies 
around the frequency of the driving force. 
These intuitive considerations can be more precisely applied to the beam dynamics 
[54]. Following the treatment reported in [22,55] it is possible to obtain the system of 
eigenvalue equations for the radial functions Rm in the form: 
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Considering a coherent motion driven by a narrow band resonant impedance, one 
obtains the following relation for Ω: 
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where G(Ω) is given by: 
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(1.99) 
The stability limit is found imposing Im(Ω)→0  and finding in the plane 
[Re(Z),Im(Z)] a theoretical stable region. 
A typical stability diagram for the dipole mode, using the DAΦNE design parameters, 
is shown in Fig. 1.14 considering the non linearities induced by the RF voltage. In the 
same plot it is shown the stability limit if one introduces a third harmonic RF system 
to lengthen the bunches (see Chapter 3). The strong non-linearities induced by the 
harmonic voltage give a strong enhancement of the Landau damping [56]. 
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Fig 1.14: typical stability limit diagram using the DAΦNE design  
parameters with and without a harmonic cavity. 

 
 
 
 
1.5 Beam lifetime due to Touschek scattering 
 
 
The beam lifetime is usually defined as the time the beam intensity decays to a certain 
fraction of its initial value (half or 1/e). The effects that cause the reduction of the 
current in a circular accelerator can be summarized as follow [57]: 
 

a) Effect of noise on quantum emission; 
b) Scattering by residual gas in the beam pipe; 
c) Multiple traversal of resonances; 
d) Beam-beam effects; 
e) Scattering between particles inside the bunch (Touschek scattering); 

 
The lifetime given by all these effects is related to the final aperture available for the 
particle motion. 
 
Transverse plane 
 
Aperture limitation in the transverse plane does not necessarily mean a physical 
limitation but also the limitation due to the dynamic aperture [58]. Normally, in fact, 
non linear magnetic fields in the accelerator cause a limitation of the maximum 
transverse oscillation amplitudes. The dynamic aperture of the machine defines a 
certain stable region in the transverse phase space where these oscillations are stable. 
Also in the case of dynamic aperture limitations the particle are lost at the physical 
aperture, but non-linear effects blow up the transverse motion (betatron motion) and 
limit the “stable” initial amplitudes to values far below the physical aperture. 
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Longitudinal plane 
 
In the longitudinal plane the particles are lost either at the RF energy acceptance limit 
or at the momentum acceptance of the dynamic aperture. The first effect is the limit of 
self focusing for the longitudinal motion described in par. 1.2. The second effect is 
given to the fact that for non synchronous particle (off-energy) the dynamic or 
physical23 aperture can be strongly reduced if compared to the synchronous one [59]. 
A detailed description of the first four effects can be found, for example, in [57]. 
For low energy and high current machines like DAΦNE the dominant effect is the 
Touschek one. 
Particles inside a bunch perform transverse betatron oscillations around the closed 
orbit. Due to a scattering effect two particles can transform their transverse momenta 
into longitudinal momenta. If the new longitudinal momenta of the two particles are 
outside the momentum acceptance of the machine24, the particle is lost25. This effect 
was first recognized by Bruno Touschek at the ADA storage ring of Frascati [60]. 
The resulting beam decay rate is proportional to the number of particles in the bunch. 
The beam current, therefore, decays exponentially and for a gaussian particle 
distribution the decay time is given by [61]: 
 

( ) ( )min2/323

2
0

4'

1
uC

p

cNr

yxzaccx

p

σσσπσγ
π

τ
=  

(1.100) 
 
where: 

r0 is the classical electron radius26; 
c is the velocity of light; 
γ=E0/mec

2 is the energy of the particles in unit of rest mass (me is the electron 
mass); 
Np is the number of particles in the bunch; 
σ’x is the standard deviation of the angular divergence of the beam27; 
σx and σy are the standard deviations of the transverse dimensions; 
σz is the bunch length; 

                                                 
23 Off-energy particles perform transverse oscillation around the so-called dispersion orbit. This orbit depends 
on the energy deviation and is different from the on-energy (or ideal) orbit. 
24 It is the minimum between the RF momentum acceptance and the momentum acceptance due to the transverse 
aperture, either physical or dynamic. 
25 In principle the two particles performing synchrotron oscillations can collide head on, in such a way that they 
transfer their longitudinal momentum into transverse momentum. This collision process is,therefore, 
insignificant in particle accelerators because the longitudinal motion includes not enough momentum to increase 
the betatron oscillations amplitude significantly. On the other hand, transverse oscillations of particles include 
large momenta and a transfer into longitudinal momenta can lead to a loss of both particles. 
26 r0= e2/mec

2 
27 The angular divergence of the beam and the transverse dimensions σx, σy are functions of the point s along the 
machine and can be determined knowing the magnet configuration of the accelerator (also called lattice). 
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pacc=∆pacc/p0 is the limiting momentum acceptance of the machine. It is the 
minimum between the RF acceptance and the momentum acceptance due to the 
transverse aperture, either physical or dynamic. 
C(umin) is given by: 
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with umin=(∆pacc/γσ’x)
2. 

 
Since (as pointed out in the note 27) σ’x, σx, σy are functions of the longitudinal point 
s along the ring, τ in the equation (1.100) is a function of the longitudinal position. 
The total lifetime is given by [59]: 
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If the energy acceptance of the machine is the RF acceptance (∆pacc=∆pRF), the 
Touschek lifetime can be written as: 
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where the quantities that depend on the RF voltage are included in the term A(VRF). 
The plot of the quantity A as a function of VRF is shown in Fig. 1.18 using the DAΦNE 
machine parameters. An increase of the VRF gives an increase of the Touschek 
lifetime. 
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Fig 1.18: plot of the quantity A(VRF) as a function of VRF using the  

DAΦNE machine parameters 
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Appendices to Chapter 1 
 
 
 
Appendix A1.1: Haissinski equation with the wake fields contribution 
 
 
If the wake fields cannot be neglected, the total accelerating voltage is given by (see 
eq. (1.3)): 
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Considering the linear expansion of the total accelerating voltage one obtains the 
following expression of the potential well: 
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(2.A1.1) 
Inserting this expression in (1.44) one obtains the equation (1.48). 
 
 
 
Appendix A1.2: Incoherent synchrotron frequency and synchrotron phase 

in the macroparticle model. 
 
 
Considering that z=cτ in the equation (1.5), one obtains: 
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(1.A1.2) 
summing over q between -∞ and +∞ (28) and remembering that: 
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28 The summation in (1.69) can be performed between -∞ and +∞ because the wake function is equal to zero for 
negative z. 
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one obtains: 
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since: 
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and 12 =− knje π , it is easy to obtain that: 
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(4.A1.2) 
similarly: 
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Appendix A1.3: System of eigenvalue equations obtained with the 

macroparticle model 
 
 
Substituting the solution (1.71) in the equation (1.68) one obtains: 
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Similarly to what done in the previous Appendix it follows that: 
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since: 
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it follows that: 
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(5.A1.3) 
substituting in (1.A3) one obtains the equations (1.72)-(1.73). 
 
 
 
Appendix A1.4: Spectrum of an oscillating train of bunches 
 
 
The current of a train of oscillating bunches is given by: 
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the phases φµh are equal to: 
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remembering that: 
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and that: 
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The Fourier transform of this signal is given by: 
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if one considers small oscillation amplitudes: 
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and remember that J0(x<<1)≅ 1 J1(x<<1)≅ x/2, one obtains the equation (1.77). 
The equation (1.A1.4), in the case of a finite bunch length, has to be convolved with a 
Gaussian distribution. In the frequency domain this implies that the spectrum (1.77) 
has to be multiplied by the exponential form factor as shown in the equation (1.81). 
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Chapter 2  
 
 
RF structures for linear and circular accelerators 
 
 
 
 
 
Particles acceleration in modern circular and linear accelerators is performed by 
external RF generators coupled to the beam by proper e.m. structures. 
These structures can be standing wave (sw) or traveling wave (tw). 
In the first case the longitudinal electric field of the resonant mode in the cavity 
provides the correct energy kick to the bunch at each passage through the cavity. 
In the second case the e.m. field travels in the structure, synchronous with the bunch 
and the energy gain is distributed along the device. 
A huge literature on cavities and tw structures design exists depending on the 
accelerator applications, beam energy, kind of particles (electrons, protons, ions,…), 
amount of energy to provide to the beam and so on. 
The intention of this chapter is to introduce the basic concepts on sw and tw structures 
(first two paragraphs) and the simulation codes for e.m structure design (third 
paragraph). The last paragraph is dedicated to describe the most common 
measurement techniques for normal conducting devices. 
 
 
 
 
2.1 RF Cavities  
 
 
A cavity is a volume of space enclosed by metallic walls, except for some holes which 
couple the cavity to the outer space. The resonant modes in a cavity can be obtained 
by solving the Maxwell equations with the proper boundary conditions at the electric 
walls. 
The complete theory of resonant cavities is developed, for example, in [62].  
The e.m. field, in a closed cavity and in the frequency domain, can be represented as a 
superposition of two kind of modes, the solenoidal ones and the irrotational ones, in 
the form: 
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where the solenoidal and irrotational modes satisfy respectively the conditions: 
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and Ep and Hp are the phasor of the electric and magnetic field, respectively, whose 
amplitudes are normalized in order to have a certain amount of energy stored in the 
cavity. 
Different Ep (or Hp) modes are, furthermore, orthogonal over the cavity volume (V), it 
means that: 
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If a cavity is excited by an electric current (J) inside the volume, at a frequency near 
the resonant frequency of the nth solenoidal mode29 the phasor of the electric field is 
given by: 
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where ω is the frequency of the excitation J, ωrn is the resonant frequency of the mode 
and Qn is the quality factor defined as: 
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where Pn and Wn represent the average dissipated power on the cavity walls and the 
average stored energy in the cavity, they are given respectively by: 
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29 Both the irrotational and the solenoidal modes are excited by the electric current. The resonant terms are only 
the solenoidal one and they give the biggest contribution to the total field in the cavity [63]. 
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where σc, µc are the conductivity and magnetic permittivity of the cavity walls and 
εcav, µcav are electric and the magnetic permittivities of the material inside the cavity. 
 
 
 
2.1.1 Beam coupling impedance of a cavity 
 
If the cavity is excited by a charged particle beam of velocity v whose Fourier 
component at the frequency ω is given by30: 
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the excited electric field is given by 31: 
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The complex amplitude of the effective accelerating voltage experienced by the 
particle is: 
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By definition, the longitudinal impedance seen by the beam is then given by: 
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(2.11) 
 

R is defined as the longitudinal shunt resistance of the cavity at its nth resonant 
frequency and it is usually taken on the cavity axis. The equation (2.11) shows that, in 
the vicinity of a resonance, the cavity behaves as a parallel resonant circuit driven by 
the current generator representing the beam (Fig. 1.2). 
The shunt resistance can be also written in the form: 

 

                                                 
30 ω is supposed near the resonant frequency of the nth solenoidal mode in the cavity. 
31 E in (2.9) depends on the transverse coordinates of the particle, which, in general, vary during the cavity 
traversal. For the sake of simplicity the integral is taken at fixed transverse coordinates. 
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the quantity T is called transit time factor and it takes into account the fact that, due to 
the finite velocity of the particles, the resonant field changes its amplitude during the 
traversal of the cavity. 
The ratio R/Q given by: 
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is a quantity that depends only on the cavity geometry. 
In a similar way the transverse impedance in one direction, calculated on the cavity 
axis, can be derived by the formula: 
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(2.14a) 
Rt is the transverse shunt resistance of the mode. 
In case of cylindrical symmetry and for the dipole modes one has (1.12) 
∇ ⊥ Ezn≅ Ezn|r=b/b where b<<transverse radius of the beam pipe. It is, therefore, possible 
to write: 
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(2.14b) 
 

where the integral is performed on a path parallel to the axis of the beam pipe and at a 
distance b. 
In general the resonant frequency of the cavity has to be properly tuned in the final 
constructed device in order to compensate the mechanical errors or, as seen in par. 
1.3.3, in order to compensate the beam loading effects. This is, in general, done by 
means of metallic cylinders (tuners) that slightly deform the cavity volume changing 
its resonant frequency. 
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2.1.2 Coupling to cavities  
 
The most straight-forward methods to excites resonant fields in a cavity are: 
 

a) introduction of a conducting antenna, driven by an external RF circuit, 
oriented in the direction of the electric field lines of the mode to be excited; 

b) introduction of a conducting loop with the plane normal to the magnetic 
field lines; 

c) introduction of a hole or iris between the cavity and a waveguide; 
d) introduction of a charged particle beam whose current lines are oriented in 

the direction of the electric field lines. 
 
The last case has been discussed in the previous section where the coupling 
impedance and the equivalent circuit of the beam cavity interaction have been 
introduced. 
In the first three cases, instead, in the vicinity of a resonance the whole system can be 
represented with an equivalent lumped element circuit as plotted in Fig. 2.1 [63].  
In the circuit the elements R, L, C represent the cavity mode, the jX models the 
reactive effect of the modes far from resonance, the transformer of turn ratio 1:n 
models the coupling between the cavity mode and the waveguide (or transmission 
line). 
The system cavity-coupler-RF source is a new resonant system with quality factor QL 
given by: 
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where ωr is the resonant frequency of the cavity, W is the average stored energy and 
PT is the total average power dissipation given by the power dissipated in the walls of 
the cavity (Pcav) plus the power dissipated externally in the load Z0 (Pext).  
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Fig 2.1: equivalent lumped element circuit of the system cavity-coupler-RF source. 
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Defining the external quality factor QE as: 
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(2.16) 
 

the loaded quality factor (QL) is given by the relation: 
 
 

EL QQQ

111

0

+=  

(2.17) 
 

where Q0 is the unloaded quality factor. 
If one defines the coupling coefficient β as: 
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QL is given by: 
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(2.19) 
 

With a simple calculation it is possible to find the absolute value of the reflection 
coefficient measured at the input port of the coupler: 
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Measuring |ρin| as a function of frequency it is, then, possible to completely 
characterize the resonator in term of β, Q0 and ωr.  
In the case of two couplers the transmission coefficient S21 is given by [53]: 
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By measuring the |S21| it is possible to completely characterize the resonant mode. 
The quantity: 
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(2.23) 
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represents the time constant to reach the steady state regime when a harmonic 
excitation is turned on (or the time constant decay when a harmonic voltage is turned 
off) [64]. For that reason the quantity (2.23) is called the filling time of the cavity. 
The design of a cavity is aimed, in general, at obtaining a certain shunt resistance 
(longitudinal or transverse if the cavity is used to deflect the beam) and a proper 
quality factor for the resonant mode of interest. Contemporary the design is aimed to 
minimize the shunt impedance of the higher order mode that can give rise of 
instabilities. 
This is done by using e.m. simulation codes that allow studying the optimum shape 
and the coupler characteristics in order to achieve the design goals (par. 2.3). 
Measurements and calibrations made on prototypes allow validating and, eventually 
correcting, the final dimensions of the device. 
 

 
 
2.2 Tw structures 
 
 
In a tw structure the e.m. field propagates synchronously with particles and the 
acceleration (or deflection) is provided continuously along the whole device. 
To obtain the synchronism between the wave and the bunches, the phase velocity of 
the propagating e.m. field has to be equal to the particles velocity. 
It is well know that, however, the phase velocity of a wave in a uniform waveguide is 
always larger than the speed of light so that an e.m. field propagating along a uniform 
guide could never be synchronous with any charged particles even if ultra-relativistic. 
On the contrary, periodic structures can support waves with phase velocity much less 
than the velocity of light. 
The generic electromagnetic properties of such type of structures can be understood 
looking at the Floquet’s theorem. It states that, in a given periodic waveguide, the 
fields in two sections, distant D (where D is the period) are equal within a complex 
constant. Consequently, the field in a periodic structure is described by a solution of 
the form: 
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where Ep and Hp are periodic functions of z with period D, and q1, q2 are the transverse 
coordinates in a plane normal to z. 
The function Ep can be expanded into an infinite Fourier series giving the following 
form of the propagating field: 
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Fig 2.2: (a) typical tw accelerating structure; (b) typical dispersion curve. 

 
 
 
Each term in the expansion is called spatial harmonics and has a propagating constant 
βn with the following phase (vph) and group velocities (vg): 
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The group velocity is the same for all the harmonics and represents the velocity of the 
power flowing in the structure [65]. 
Typical accelerating structures are disk loaded waveguides (Fig. 2.2a) with the 
dispersion curve similar to that illustrated in Fig. 2.2b. The curve is periodic in β with 
period 2π/D and each period is related to a spatial harmonics. 
As usually happens, the zero order harmonics is synchronous with the particle beam 
while the other space harmonics do not perturb the motion of the beam as they pass 
through the bunch and produce no net effect.  
The most relevant design parameters for a tw accelerating structure32 are [66]: 
 

a) shunt impedance per unit length defined as: 
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E
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32 Similar parameters can be defined for deflecting structures. 

a b 
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where E0z is the amplitude of the electric field of the spatial harmonic 
having the same phase velocity of the bunches and dP/dz is the RF power 
dissipated per unit length. A high value of shunt impedance per unit length 
is desiderable since it means that a high accelerating filed can be obtained 
with a given expenditure of RF power per unit length. 

b) the factor of merit Q defined as: 
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w
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where w is the energy stored per unit length. 
c) Ratio r0/Q: it may be obtained from the equations (2.27-2.28): 
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similarly to the standing wave cavities this parameter depend only on the 
geometry of the cells. 

d) Group velocity: defined in (2.26) is another important parameter for three 
reasons: 
 
1) the filling time, i.e., the time required to fill the accelerator with RF 

energy, depends upon the group velocity and it is given by: 
 

gv

L=τ  

(2.30) 
 

where L is the device length. 
A high value of the group velocity is preferred from the viewpoints of 
minimizing the time the RF pulse must be on. 
 
2) The power flowing in the structure and the energy stored per unit length 

of the structure are related through the group velocity as follow: 
 

gv

P
w =  

(2.31) 
 

since w is proportional to E2
0z it is clear that a low value of vg is 

preferred from the viewpoint of obtaining maximum accelerating fields 
for a given power flow. 

 
3) In general decreasing vg results in an increase in r0 and r0/Q. Therefore, 

a low value of vg is preferred from the viewpoint of obtaining high 
values of r0 and r0/Q. 
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e) Frequency. Almost all the basic accelerator parameters have frequency 

dependence. The choice of frequency is, therefore, one of the first and most 
important tasks when undertaking the design of a new accelerator.  
In particular, since33: 

2/1
0 ω∝r  

(2.32) 
 

from the point of view of conserving power, the operating frequency should 
be chosen to be as high as practicable. However, since the RF power from 
the available single sources drops off more rapidly with frequency than r0 
increases with frequency, it is not likely that extremely high frequencies 
will be advantageous. Low frequencies are preferred, moreover, because the 
dimensions of the structure scales as ω-1 and too small irises can intercept 
the beam. Finally, the required tolerances of fabrication are more difficult to 
provide for small structures. 

 
The tw structures are fed through couplers similar to those shown in Fig. 2.3. In order 
to completely transmit the power from the coupler to the structure, the first cell 
dimensions must be properly chosen to have zero reflection coefficient at the input 
coupler itself. 

 
Fig 2.3: typical couplers in tw structures. 

 
 
2.3 E.M. simulation codes 
 
 
Optimization of the cavity shape in both the sw and tw structures is of great 
importance in the design procedure since for efficient operation, the shunt impedance 

                                                 
33 The realtion (2.32) can be derived by simple considerations on the frequency dependence of the quantities in 
(2.27). 
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of the accelerating mode has to provide the required voltage across the structure using 
a minimum input power. The power dissipation and surface field distribution need to 
be known so that proper provision can be made for cooling the cavity and avoiding 
excessively high surface fields which could result in multipactoring (or quenching of 
supercunducting structures). 
In parallel, the detailed knowledge of all the e.m. modes supported by the cavity are 
necessary to allow their suppression by designing dedicated damping system or by 
changing the characteristics of the higher order mode themselves. 
For most practical cavities, however, the geometry is sufficiently complicated that 
analytical solutions for the electromagnetic field distributions and for the 
characteristics of the modes supported by the structure do not exist.  
The simulations codes enable, therefore, rapid calculation and optimization of the e.m. 
field of RF structures with arbitrary shapes. 
Numerical methods for determining e.m. fields are generally based on the 
discretization of the region of interest into discrete elements. 
The local equations, boundary conditions and driving function for each mesh element 
are, then, formulated and the whole set of equations are solved simultaneously. 
Different methods of volume discretization and field approximation have been 
developed both in the frequency and in the time domain. 
MAFIA and HFSS are two of the most commonly used e.m. simulation codes. 
 
 
MAFIA 
 
The first code, MAFIA [67] (MAxwell Finite Integration Algoritm) is based on the 
Finite Integration Technique (FIT). 
The FIT was originally developed for frequency domain applications [68,69] and was 
extended to static and transient field computation from the need for solving many 
different problems in the design of large scale accelerators [70]. 
The entire volume is discritized in cubic cells and the values of the E-field and H-field 
are considered at the edges of the cubes or at the center of the faces (Fig. 2.4). 
Doing this, a double grid is considered in the discretised volume and the Maxwell's 
equations written in the integral form are translated into the grid space as a set of 
matrix equations [71] (the Maxwell's Grid Equations-MGE). 
Following this approach the differential operators such as the divergence or the curl 
are identified with topological matrices having analytical and algebraic properties that 
ensure accurate numerical results and enable an algebraical self-testing of the 
numerical results. 
The methods can be applied both in the time domain and in the frequency domain. 
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In the first case the solution can be performed iteratively starting from certain initial 
conditions and following the behavior of the field at each time step. This method can 
be used both for wake field and for Scattering parameters calculation34. 
 

 

E 
 
H 

Grid 
 
Dual grid 
 

 
Fig. 2.4: volume discretization technique in the FIT. 

 
 
In the second case it is necessary to resolve a system by the inversion of a matrix and 
it can be applied for eigenmodes calculations or frequency domain response. In 
general the numerical resolution of the system requires an amount of CPU memory 
that grows exponentially (or polinomially) with the number of unknowns (number of 
cells) while in the iterative method the memory requirement grows linearly with the 
number of cells. 
An example of discretised sphere is shown in Fig. 2.5a. 
 
 
HFSS 
 
The second code HFSS [72] (High Frequency Structure Simulator) employs, instead, 
the Finite Element Method (FEM) to generate the e.m. field solution. 
In the FEM technique the full problem space is divided into small regions and the 
field in each sub-region is represented by a local function. 
In HFSS the geometry is automatically divided into a mesh of tetrahedra. 
At each vertex, HFSS stores the components of the field that are tangential to the three 
edges of the tetrahedron itself. 
In addition, the system can store the component of the vector field at the midpoint of 
selected edges that is tangential to a face and normal to the edge. 

                                                 
34 In this second case it is enough to perform a Fourier transform of the signals in time and calculate the 
complex ratios between the incident and reflected (or trasmitted) waves. 
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The value of the vector quantities (E or H) at points inside each tetrahedron is 
interpolated from these nodal values. 
By representing field quantities in this way, the system can transform Maxwell's 
equations into matrix equations that are solved using traditional numerical methods. 
In this case, as in the frequency domain solver of MAFIA, the memory requirement 
grows exponentially (or polinomially) with the number of tetrahedra and there is, in 
general, a trade-off between the size of the mesh, the desired level of accuracy and the 
amount of available computing resources. 
To produce the optimal mesh, HFSS uses an iterative process in which the mesh is 
automatically refined in critical regions where the variation of the field is higher 
(adaptive solution). When the selected S-parameters converge within a desired limit, 
the system breaks out of the loop. 
As an example a meshed sphere is reported in Fig. 2.5b. 
 

              
Fig 2.5: example of discretized sphere: (a) MAFIA; (b) HFSS. 

 
2.4 Bench measurements on RF structures 
 
The bench measurements can be performed in both the sw and tw structures and can 
be done using a Vector Network Analyser (VNA). 
 
2.4.1 Resonant frequency 
 
The resonant frequency of a sw structure can be measured by the |S21| (or |S11|) from 
two antennas, coupled to the field (see formula 2.22 (or (2.21)). 
In sw structures this measurement can be performed, for example, in order to 
characterize the fundamental mode and the higher order modes in a resonant cavity in 
terms of Q factor and frequencies. 
In tw structures the resonant frequency of each cell (properly short-circuited) can be 
measured, before the soldering procedure, finding possible mechanical errors or 
imperfections. Also the dispersion curve of the whole structure can be sampled in N+2  

a b 
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VNA 

 
Fig 2.6: measurement set-up to sample the dispersion curve of a tw structure. 

 
 
 
points assembling N plus 2 half cells and measuring the resonant frequency of the 
assemble structure as shown in Fig. 2.6. 
The N cells plus 2 half cells resonate, in fact, at the N+2 angular frequencies 
(n=0,1,…,N+1) given by35 [73]: 
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where ω=f(β) is the dispersion function in the (β,ω) plane and D is the period. 
The formula (2.33) shows that the dispersion curve of the infinite tw structure is 
exactly sampled in N+2 points. 
 
 
2.4.2 Longitudinal and transverse beam coupling impedance 
 
The standard way to do bench measurements of the beam coupling impedance is the 
coaxial wire method [74-80]. 
The technique assumes that: 
 

a) a bunch of an ultra-relativistic beam has a very similar e.m. field 
distribution to a short pulse on a coaxial line [1]; 

b) the coupling impedance seen by the beam is equal to the 
impedance seen by the TEM mode in the coaxial waveguide. 

 

The sketch of the measurement setup and the equivalent circuit are shown in Fig. 2.7. 
In the figure the networks A and B allow to match the characteristic impedance of the 
VNA (usually 50 Ohm) with the characteristic impedance of the coaxial waveguide 
(Zc). 
The matching can be realized, in general, with a resistive network Fig. 2.8a or with 
tapers Fig. 2.8b. Due to parasitic effects (inductance and capacitor) in the resistors, the 
                                                 
35 These frequencies can be simply obtained considering a sum of a forward (e-jβ(ω)z) and reflected (ejβ(ω)z) wave 
and imposing the boundary conditions at z=0 and z=L. 
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first method is adopted in the case of low frequency impedance measurements 
(usually up to 1-2 GHz) while the second method allows measuring impedances at 
high frequencies depending on the ratio between the taper length and the initial and 
final diameters. 
The exact relation between the measured S-parameter, S21DUT (36), and the unknown 
impedance Z is given by: 

21

211
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S

S
ZZ c

−=  

(2.34) 
 

where Zc is the characteristic impedance of the coaxial waveguide. 
In practical bench measurements the measured S21DUT is compared with a reference 
S21REF that is obtained measuring the S-parameter of a coaxial waveguide without the 
DUT (37): 
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This normalization procedure can be useful if the matching network introduces some 
errors in the measurement itself. 
The characteristic of the e.m. field are perturbed by the presence of the wire. First of 
all the wire lowers the Q of high Q DUTs like cavities and usually detunes the 
resonance frequency. The wire, moreover, changes the boundary conditions of the 
whole structure and permits exchange of e.m. energy between the DUT and the VNA 
for frequencies below the waveguide cut-off.  
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Fig 2.7: sketch of the wire method used to measure  

the beam longitudinal coupling impedance. 
 

                                                 
36 DUT-Device Under Test. 
37 The formula is known as the Hahn-Pedersen formula. 
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Fig 2.8: typical matching networks. 
 
 
 
 
Experimentally, however, comparing the measured R/Q of know resonant structures 
with that obtained by analytical or numerical calculations, one obtains errors of few 
percent if the length of the cavity is small compared with the beam-pipe diameter and 
the wire radius is much smaller than the beam pipe radius. 
Unfortunately, a general analytical theory that allows validating the method does not 
exist and the way to proceed is to simultaneously compare the measurements results 
with other type of measurements (as those illustrated in par. 2.4.4) or simulations 
[53,81]. 
The method can be also applied in order to evaluate transverse impedances.  
The standard technique is to stretch two parallel wires across the DUT. The two wires 
can support both an odd and an even mode and for the transverse impedance 
measurement only the first has to be excited. For this purpose one uses a 180° hybrid 
transition that excites the odd mode and suppresses the even one. 
In this case the formula to evaluate the transverse impedance is simply given by [82]: 
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where b is the distance between the wires and Zc(odd) is the characteristic impedance of 
the odd mode. The formula is directly derived from the eq. (1.15) that relates the 
longitudinal and the transverse impedance of a transverse mode.  
Similar considerations, than in the longitudinal case, can be done on the validity of the 
method. 
 
 
 

a b 
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2.4.3 Beam transfer impedance 
 
The beam transfer impedance is defined as a ratio between the voltage signal Vdev(ω) 
detected trough a device coupled to the beam and the Fourier series component ( )ωI

~  
of the beam: 
 

( ) ( )
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V
Z dev

transf ~=  

(2.37) 
 

Following considerations similar to those done in the previous paragraph, the beam 
current can be substituted with the current flowing on a wire (Fig. 2.9a).  
Referring to the circuit shown in Fig. 2.9b, if the perturbation induced by the device 
coupled to the beam is negligible (|S12dev|≅ 1⇔|S11dev|≅ 0) and the reflection coefficients 
of the matching network are almost equal to zero, the absolute value of the transfer 
impedance can be easily evaluated measuring the scattering parameters S31TOT and 
S21TOT and applying the formula (Appendix A2.1): 
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where Zc is the characteristic impedance of the coaxial waveguide and Z0 is the 
characteristic impedance of the network analyzer. 
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Fig 2.9: (a) sketch of the beam transfer impedance measurement setup; 

(b) equivalent circuit. 
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2.4.4 Field mapping by perturbation method 
 
The field in the cavity can be sampled by introducing a perturbing object along the 
beam pipe and observing the change in resonant frequency [83,84]. Fig. 2.10 shows 
the typical set up for the measurement. 
For the case of a small sphere of radius r, if the unperturbed field may be considered 
uniform over a region larger than the bead, the relative frequency variation is given 
by: 
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where W is the total stored energy in the cavity and E0, H0 are the fields at the bead 
position. 
For a dielectric (µr=1) or metal (µr→0, εr→∞) bead the equation (2.39) becomes: 
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(2.40) 
 

Shaped beads such as needles or disks can be used to enhance the perturbation and 
give directional sensitivity [84].  
To determine the direction of the field components is particularly important when 
dealing with the higher modes of a complex cavity shape where the measured mode 
frequency will not be a sure identifier of the dominant field direction. 
By a map of the longitudinal electric field it is possible to calculate the longitudinal 
and transverse coupling impedances with the formulae (2.12)-(2.14). 
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Fig 2.10: sketch of the bead pull measurement set-up. 
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2.4.5 Phase advance per cell for tw structures 
 
In the case of tw structures, the process of tuning is intended to adjust the phase 
advance of every cell to the design since random and systematic errors can remain 
after the device machining and fabrication.  
Random errors are usually corrected by deformation of the cell walls or by the use of 
tuning plugs. Systematic errors, instead, can be corrected by adjustment of the 
operating temperature or driving frequency38. 
Contemporary, the matching of the input coupler is done by adjusting the dimensions 
of the coupler cell to insure a low reflection coefficient at the input and output of the 
structure. 
The problem is that the two processes are not independent.  
The schematic measurement set-up for the cells tuning procedure is shown in Fig. 
2.11. The dephasing per cell is measured by using a movable plunger in order to 
reflect the traveling wave. By measuring the phase of the reflection coefficient at the 
input coupler as a function of the short position it is possible to determine whether the 
nth cell is correctly tuned. 
The difficulty is that, if the coupler cell is not well matched, the phase of the reflection 
coefficient depends on the internal coupler reflections and it is not possible to 
distinguish the two effects. 
By changing the e.m. properties of the coupler with the matching section it is possible 
to cancel this uncertainty and to correctly tune the cells. Different ideas have been 
explored for this purpose [66]. The basic strategy is to use Smith chart plots of the 
reflection coefficient as a function of different plunger positions and to correct the 
mismatch of the coupler by changing the reactive matching section in order to cancel 
these reflection contributions. 
 

 
 
 
 
 
 
 
 
 

VNA 
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Fig 2.11: sketch of the phase advance per cell measurement set-up. 

 
 
                                                 
38 The first method allows changing slightly the dispersion curve of the structure while the second method the 
operating mode. 
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Appendices to Chapter 2 
 
 
Appendix A2.1: Beam transfer impedance calculation 
 
 
The circuit of Fig. 2.9 is reported more in detail in Fig. 1.A2.1 where the line 
impedances have been put equal to 1 (this is always possible re-defining the currents 
and voltages [65]). 
Supposing that the perturbation induced by the device is negligible it follows that 
a2’≅ b1’ and that b2’≅  a1’ and that the device can be substituted with a transmission line 
of negligible length. 
The total incident and reflected waves at the ports 1 and 2 can be found considering 
the superposition of two different excitations as shown in Fig, 2.A2.1.  
In the case of “odd” and “even” excitation one obtains respectively: 
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where Lβα =  and |Sij| is the scattering matrix of the matching networks.  
The total incident and reflected waves are given by: 
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The total reflection coefficient at the input port 1 is then given by: 

 

α

α

22
22

2
22

2
12

11
1

1
11 1 j

j

TOT eS

eSS
S

a

b
S

−

−

−
+==  

(3.A2.1) 
and the total transmission coefficient between the port 1 and 2 is given by  
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(4.A2.1) 
The ratio between the incident wave at the input port 1 and the traveling wave in the 
coaxial waveguide is given by: 
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(5.A2.1) 
Considering the equations (4.A2.1) and (5.A2.1), if |S22|

2≅ 0 the ratio between the 
power incident at the port 1 and the power flowing in the coaxial waveguide is given 
by: 
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(6.A2.1) 
If S31TOT is the total transmission coefficient between the input port 1 and the port 3 it 
follows that: 
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from this expression it follows directly the equation (2.38) 
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Chapter 3  
 
 
Control of bunch length with a high harmonic cavity in DAΦNE 
 
 
 
 
 
The Frascati Φ-factory DAΦNE is a double ring, high luminosity collider working at 
the energy of the Φ meson resonance (1.02 GeV in the center of mass).  
The sketch of the factory is shown in Fig. 3.1. In the two rings electrons and positrons 
travel in opposite directions and collide in the two interaction points IP1 and IP2. 
The most relevant DAΦNE design and present parameters are summarized in Tables 
1.1-3.1. 
The study and the design of a high harmonic RF system is mainly motivated by the 
demand of lifetime improvement for storage rings with lifetime limited by the 
Touschek effect such as low energy machines. In such case, the implementation of the 
hardware providing an RF harmonic extra-voltage to the beam is aimed at reducing 
the RF slope at the bunch center to lengthen it and to maintain, contemporary, a high 
energy acceptance. 
There is also another reason for tacking into consideration RF harmonic systems. The 
non-linearities introduced by the harmonic voltage tend to weaken the possible 
coherent instabilities through the Landau damping mechanism (par. 1.4) and may be 
therefore beneficial for both the single and the coupled-bunch beam dynamics [56, 
85].  
However, the introduction of a harmonic cavity also perturbs other aspects of the 
longitudinal dynamics affecting the overall machine performances. 
The first paragraph of this chapter is dedicated to the study of the beam dynamics with 
the RF harmonic system in the lengthening regime. It includes both the multi and the 
single bunch effects and the lifetime calculations. 
In the second paragraph the harmonic cavity design is discussed while the last 
paragraph is dedicated to illustrate and discuss the measurement results. 
 



 74 

 
Fig 3.1: sketch of the Frascati Φ-factory DAΦNE. 

 
3.1 Beam dynamics in DAΦNE with the harmonic cavity 
 
 
The Touschek effect is especially harmful in DAΦNE because of the low beam energy 
and high bunch charge density necessary to get the required luminosity per bunch 
(par. 1.5). The effect results in production of beam induced background in the detector 
[86] and in the necessity of frequent beam injections due to low beam lifetime [87]. 
The situation should be improved using a harmonic RF system [88]. 
It consists in the addition of a second RF voltage to the main one at the frequency nfRF 
in order to reduce the RF slope at the bunch center. Doing this it is also possible to 
increase the main RF voltage maintaining an acceptable value of the bunch length. 
The combined effects of the lengthened bunch and the increase of the energy 
acceptance increase the lifetime of the machine.  
In the case of DAΦNE n has been chosen equal to 3 after a complete investigation 
over various possible harmonics as a good trade-off between efficiency and 
compactness requirements. 
The required harmonic voltage can be obtained by powering the cavity with an 
external RF source (active option) or by letting the beam current interact with the 
harmonic cavity fundamental mode impedance (passive option39).  
In the case of the DAΦNE rings the passive option has been chosen since it is far less 
complicated and expensive compared with the active one and since a very moderate 
harmonic voltage is required to obtain a reasonable bunch length. Furthermore it does 
not present major drawbacks from the beam dynamics point of view and the quite high 
stored multi-bunch current in operation allows sustaining the required harmonic 
voltage without difficulties. 

                                                 
39 In this case the required power to sustain the harmonic voltage is given by the RF main system through the 
beam. 
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Table 3.1: present DAΦNE operation parameters 

 

Energy (E0) 510 [MeV] 

RF frequency (fRF) 368.29 [MHz] 

Harmonic number (h) 120 

Revolution frequency (f0) 3.0688 [MHz] 

Momentum compaction (αc) 0.025÷0.035 

Max. beam current (Imax) ∼ 1.3 [A] 

Number of colliding bunches (Nb) 
47÷51 over 60 

or 100÷105 over 120 (40) 

Max. current per bunch (Ibmax) 
∼ 26 [mA] with 47-51 bunches over 60 

∼ 13 [mA] with 100-105 bunches over 120 

RF voltage (VRF) 100÷120 [KV] 

Bunch spacing (Tb) 
5.43 [ns] (=2/fRF) with 47-51 bunches over 60 

2.71 [ns] (=1/fRF) with 100-105 bunches over 120 

Synchrotron losses (U0) 9.3 [KeV/turn] 

Impedance losses (Uimp) 
∼ 2.5 [KeV/turn] (Ib≅ 20mA, e- ring) 

∼ 4.5 [KeV/turn] (Ib≅ 20mA, e+ ring) 

Natural bunch length (σz0) 1.4÷1.6 [cm] (VRF=120KV) 

Bunch length (σz) 
∼ 2.4 [cm] (e+ and Ib≅ 20mA, VRF≅ 120KV) 

∼ 2.8 [cm] (e- and Ib≅ 20mA, VRF≅ 120KV) 

Vertical β-function at the IP (β*
y) ∼ 3 [cm] 

RF acceptance (εRF/E0) ∼ 0.55% (with VRF≅ 120KV) 

Beam lifetime (τ) ∼ 1000÷2000 [s] 

 
 
As pointed out in par. 1.2.4 the bunch length in DAΦNE depends on the bunch current 
and the lengthening process due to the wake fields can be well simulated by the single 
bunch tracking code. 

                                                 
40 The first option has been adopted for the collisions in the first interaction point with the experiment KLOE 
[87], while the second one for the collisions in the second interaction point with the experiment DEAR. When 
the bunches collide in one interaction point they are vertically separated in the other region. 
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The present DAΦNE operation parameters are summarized in Table 3.1. The RF 
voltage is equal to ≈120 KV and the bunch length at typical operating conditions is 2.4 
cm and 2.8 cm in the e+ and e- ring, respectively41. 
In the future the current per bunch could increase from 20-25 mA to 30-35 mA, in 
order to increase the machine luminosity (see note 43). Single bunch measurements 
already performed on the two rings at the present operational RF voltage show that the 
bunch length at 35 mA is about 2.8 and 3.3 cm in the e+ and e- ring respectively [89]. 
These values are already at the limit allowed by the present value of the vertical β-
function at the interaction point. This means that, with the present machine set-up, 
there is no chance of lengthening further the bunch without affecting the machine 
luminosity42. 
The only possible strategy to improve the lifetime using a harmonic voltage is based, 
therefore, on the RF acceptance increase, which can be obtained increasing the peak 
voltage of the main RF system. In this case the harmonic voltage is used to reduce the 
total RF slope at the bunch center in order to keep the bunch length near the hourglass 
limit. 
The choice of the harmonic frequency and of the harmonic system parameters has 
been aimed to match the previous considerations and to satisfy the beam dynamics 
requirements (as discussed in the following). After a complete investigation over the 
2nd the 3rd and the 4th harmonic frequencies the 3rd harmonic has been chosen as the 
working frequency of the DAΦNE harmonic cavity as a good trade-off between 
efficiency and compactness requirements. 
The DAΦNE 3rd harmonic system parameters are reported in Table 3.2 (43).  
The cavity has to be considered as a resonant impedance powered by the beam 3fRF 
spectrum line. The shunt impedance of the cavity has been chosen quite low (RH=480 
KΩ) in order to weaken the coherent effects induced by the beam. On the other hand, 
this will ask for some extra power to the main RF system that is not an issue in the 
DAΦNE case44. 
 
 
                                                 
41 The difference in the e- ring is due to the higer broad-band impedance because of the presence of the ion 
clearing electrodes. The model of the DAΦNE short range wake field does not includes, for the moment, this 
contribution to the wake and, therefore, predicts with good accuracy the lengthening of the e+ ring. 
42 The luminosity of a collider is the number of reaction events produced per unit reaction cross section. The 
most simple formula that gives the luminosity of a collider is [90]: 
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where Np
± is the number of particles per bunch for each beam, Nb is the number of bunches in each beam, f0 is 

the revolution frequency, σ*
x and σ*

y are the r.m.s transverse dimensions of the beam at the interaction point. 
The transverse dimensions of the beam near the collision point (s=0) are given by the equation: 
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where the β-function at the IP β* is related to the magnet configuration of the machine. In order not to loose 
luminosity due to of the so-called hourglass effect [91] the bunch length has to be less than β*. 
43 The parameters Q0H and RH related to the harmonic cavity are those of the constructed device (par. 3.2). 
44 The average power dissipated in the harmonic cavity is PH=VRFH

2/2RH. A lower RH gives more dissipation. 
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Table 3.2: DAΦNE 3rd harmonic system parameters 
 

Main RF voltage (VRF) 200 [KV] 

Main cavity shunt impedance (R) 1.9 [MΩ] 

Main cavity Q-factor (Q0) 31500 

Main cavity input coupling factor (β) ∼ 4.6 

Detuning of the main cavity at I=0 (QLδ0) 1.2 

RF harmonic frequency (fRFH=3 fRF) 1104.87 [MHz] 

RF harmonic voltage (VRFH) 56 [KV] 

Harmonic cavity shunt impedance (RH) 0.48 [MΩ] 

Harmonic cavity Q-factor (Q0H) 18500 

Natural bunch length (σz0) ∼ 2.5 [cm] 

Bunch length in the lengthening regime (σz) 
∼ 2.9 [cm] with Ib=17 mA 

∼ 3.1 [cm] with Ib=34 mA 

Momentum compaction (αc) 0.034 

RF acceptance εRF/E0 ∼ 0.7% 

 
 
In order to get the required voltage with the proper phase at any operation value of the 
beam current, the harmonic cavity has to be properly tuned between the revolution 
harmonics 3hω0 and (3h+1)ω0. Referring to the equivalent circuit of the beam cavity 
interaction (Fig. 1.2), the cavity detuning is given by the following equation: 
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where hI 3

~
is the 3h line of the beam Fourier series (eq. (1.83)), and 

δH=3hω0/ωRFH
_ωRFH/3hω0. 

Tuning the cavity above the 3h revolution harmonic provides the right phasing with 
respect to the main RF voltage to lengthen the bunches. In fact, considering the 
harmonic voltage equal to 56 KV, and a typical operating current I=1 A, the absolute 
value of the Q0HδH is larger than 10, this mean that the impedance of the harmonic 
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cavity sampled at the 3rd harmonic frequency is mainly imaginary and produces a 
harmonic voltage that is almost completely out of phase with respect to the beam. 
A plot of the main and harmonic voltages and their sum, together with the resulting 
potential well is shown in Fig. 3.2 at I=1.6 A. 
 

 
Fig 3.2: (a) main and harmonic voltages; (b) resulting potential well. 

 
 

 
Fig 3.3: natural and lengthened bunch profile with the harmonic cavity 

(a-34 mA/bunch, b-17 mA/bunch), 
 
The natural bunch profile with this cavity detuning, as given by the Haissinski 
equation, is plotted in Fig. 3.3 with the lengthened profile obtained by the single 
bunch simulation code at two different bunch current: 17 mA and 34 mA. 
This RF working point should provide, therefore, a bunch length close to the 
hourglass limit, with an RF acceptance 30% higher with respect to the present 
DAFNE operating conditions. In addition, since the harmonic voltage makes the 
natural bunch length larger, the lengthening process is less pronounced, which 
indicates that microwave effect and single bunch dynamics are relaxed (par. 1.2.3-4). 

a b 

a b 
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3.1.1 Analysis of the coupled bunch instabilities in case of uniform filling 
pattern 

 
Considering Nb equidistant bunches, the coherent angular synchrotron frequencies and 
the growth rates of the µ-mode are given by the equations (1.76)-(1.79) using a 
macroparticle model with or without considering the bunch length and by (1.82) using 
the perturbative theory. 
The incoherent synchrotron angular frequency ωs is, in the case of eq. (1.76)-(1.82), 
the frequency of the small amplitude oscillations, while in (1.79) it is the average 
frequency oscillation amplitude over the bunch length (1.80). 
In principle, the formulae (1.76)-(1.79) can be applied also in the limit of ωcµ→0 (45). 
Moreover eq. (1.82) is valid only for small perturbations of the unperturbed Haissinski 
profile even if it takes into account the whole distribution function instead of a rigid 
bunch profile. 
The calculation of the “real” coherent frequency shift in the case of strong 
perturbations and in the presence of non-linearities in the total RF slope (as in the case 
of the harmonic cavity) is an open problem. 
A multi-particle multi-bunch tracking code could give a possible solution to the whole 
problem but, in this case, the parameters of the system have to be found tentatively 
and the physical phenomenology can be definitively lost. Eventually, in a further 
study, such a code can be used for the optimization of the working point obtained by 
the analysis of the beam dynamics with the approximated analytical equations. 
Considering only the contribution of the main and harmonic cavities the most affected 
coupled bunch modes are the modes “0”, “1”, and “Nb-1” with sidebands close to the 
resonant frequencies of the main and harmonic cavity impedances (Fig. 3.4). 
 

 
Fig 3.4: sidebands of the modes 0,1 and Nb-1 close to the main  

and harmonic cavity impedances. 
 

                                                 
45 In this case the bunches become unstable. This is also called the second Robinson limit. 
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The fact that, for a certain parameter set, ωcµ can tend to 0 for a certain beam current, 
can be physically explained in the following way: as ωcµ→0, the restoring force for 
the oscillation mode µ due to the total RF accelerating field is completely 
“compensated” by the force due to the long range wake field and the “equivalent” RF 
slope for such a mode approaches to 0. 
Following this explanation, since in the eq. (1.79) the incoherent synchrotron angular 
frequency is averaged over the bunch, it may happen that some particles “inside” the 
bunch reach the second Robinson limit before the whole bunch considered as a rigid 
macroparticle and that bunch becames, therefore, unstable. 
For this reason it may be interesting to calculate the formulae (1.79) considering the 
incoherent angular synchrotron frequency of a particle that performs small amplitude 
oscillations (the ωs in this case is given by (1.69)). The ratios between the coherent 
and the incoherent values of the synchrotron frequencies for the modes “0”, “1” and 
“Nb-1” are shown in Fig. 3.5 as a function of the total stored current, considering both 
the formulae (1.79)-(1.69) (case 1) and (1.79)-(1.80) (case 2) and different initial 
detuning of the main cavity (46). 
As predictable, the mode "0" is the most perturbed since it interacts with the 
impedance of both main and harmonic cavities and, in order to prevent the mode "0" 
coherent frequency getting too small in the case 1, a large detuning of the main RF 
cavity has to be provided (QLδ0≅ 1.2).  
This condition corresponds to an inefficient operation of the main RF system (∼ 60% 
of RF power reflected at the cavity input coupler). However, this is a conservative 
estimate since it is based on a linear macroparticle theory and the effects of the 
distribution function and large non-linearities of the longitudinal focusing force are 
not taken into account47. 
The expected shifts of the coherent frequencies of modes “1” and “Nb-1” are much 
smaller, while they are almost negligible for the other coupled-bunch modes. With the 
exception of the mode "0", which is damped by a dedicated feedback system as well 
as by the Robinson mechanism, the frequencies of all the CB modes remain inside the 
operational bandwidth of the DAΦNE bunch-by-bunch longitudinal feedback system. 
The growth rates of modes “0”, “1” and “Nb-1” are shown in Fig. 3.7. The expected 
growth rate of mode "1" is much smaller than the typical damping rate provided by the 
DAΦNE LFB system (∼ 10 µs-1). 
 

                                                 
46 As discussed in the par. 1.3.3 the resonant frequency of the main cavity changes if the current increases to 
compensate the beam loading effects. The final resonant frequency depends on the initial detuning. 
47 The problem of the mode "0" coherent frequency shift could be relaxed by implementing a direct RF feedback 
around the RF system [92] that reduces the imaginary impedance sampled by the mode "0" sidebands and, as 
consequence, the shift of the mode "0" coherent frequency. 
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Fig 3.5: ratios between the coherent and the incoherent values of  
the synchrotron frequencies for the modes “0”, “1” and “Nb-1” 

 as a function of the total stored current  
 
 

 
 

Fig 3.6: growth rates of the modes “0”, “1” and “Nb-1” as a function  
of the total stored current. 
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3.1.2 Operation with a gap in the bunch filling pattern 
 
The modal expansion, which is the base of the theory used in the previous paragraph 
to calculate the coherent frequency shifts, is completely appropriate only in the case of 
multibunch beams with uniform filling pattern (same charge and shape of each bunch 
and no gaps along the pattern). This condition cannot be fulfilled in DAΦNE, since a 
gap of 20÷30% in the filling pattern is required in the e- ring to prevent the ion 
trapping [93] and consequently transverse beam emittance blow up. 
The analytical results obtained from the theory have to be interpreted as an indication, 
and have to be validated, in the presence of a gap in the bunch filling pattern, by 
numerical simulations. 
In the multibunch tracking code discussed in par. 1.3.4, it is possible to include the 
contribution of the passive harmonic cavity adding in the HOMs the impedance due to 
the harmonic cavity itself. 
Results from tracking simulations of uniformly filled multibunch beams are in a very 
good agreement with the theory. However, when a gap is introduced in the bunch 
filling pattern, the situation described by the tracking code is strongly perturbed.  
The long-range wakes sampled by each bunch depend on the bunch position along the 
train. This generates a spread of the parasitic losses along the train and, as 
consequence, a spread of bunches synchronous phases. In ALS, where passive 
harmonic cavities have been installed, this effect has been already observed [94]. 
This effect is already well evident also in DAΦNE, but, due to the large linear range 
of the RF voltage, it does not significantly affect the synchrotron frequency and the 
shape of each bunch. 
The effect is largely magnified in presence of the harmonic voltage for the two 
following reasons: 
 

a) to the long-range wakes of the machine one has to add the contribution due 
to the harmonic cavity impedance that gives, as illustrated in the following, 
further losses spread along the train; 

 
b) the total RF voltage (main+harmonic cavity) has a very little slope around 

the synchronous phase and it is, also, strongly non-linear. The result is that 
the parasitic loss spread is converted in a large synchronous phase spread. 

 
This effect can be also conveniently described in the frequency domain. In fact, 
because of the gap in the filling pattern, the beam spectrum contains all the revolution 
harmonics. In the ideal case, with no gap in the pattern, only the harmonics of the 
bunch repetition frequency would be present (see eq. (1.83)). 
In Fig. 3.7 the DAΦNE beam spectrum near the harmonic 3h is reported in the case of 
a uniform filling pattern (60 bunches over 60) and considering a gap (45 bunches over 
60) without synchrotron phases spread. 
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Fig 3.7: DAΦNE beam spectrum near the harmonic 3h in the case of a uniform  

filling pattern (60 bunches over 60) and considering a gap  
(45 bunches over 45) without synchrotron phase spread. 

 
 
 
Because of the gap, also other lines are present, and the total accelerating voltage is 
given by: 
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where ZT(ω) is the total ring impedance, which is mainly given by the two 
contributions of the RF cavity and harmonic cavity accelerating modes. In the 
expression (3.2) the total voltage VT(t) is represented as a sum of 3 terms: the first one 
is the main RF voltage, which is actively excited by the RF system; the second term is 
the harmonic voltage, which is passively excited by the beam with an amplitude that 
can be varied by changing the harmonic cavity tuning; the third term VNH(t), contrary 
to the previous two, has only the revolution periodicity, which means that it produces 
a constant voltage over a given bunch, but different voltages over different bunches in 
the train (NH means "non-harmonic" voltage). 
The parasitic loss spread can be, therefore, seen as the spread of the non-harmonic 
voltage values as sampled by the bunches along the train. 
The bunch positions given by the tracking simulation code comparing the present 
DAΦNE working point to the one proposed for implementing the harmonic cavity are 
shown in Fig. 3.8. In the figure dots represent the positions of the macro-particles 
distributed over the RF voltage (the non-harmonic voltage is not included in this 
representation). 
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Fig 3.8: bunch positions given by the tracking simulation code 

comparing the present DAΦNE working point to the one 
proposed for implementing the harmonic cavity (I=1.2 A). 

 

 
Fig 3.9: bunches position as a function of the bunch number for a train  

of 47 bunches spaced 2 RF periods with the harmonic cavity.  
 
 
The bunch positions as a function of the bunch number for a train of 47 bunches 
spaced 2 RF periods, including the effect of the harmonic cavity and for total current 
values of 0.8, 1.2, 1.6 and 2 A are shown in Fig. 3.9. The synchronous phases 
variation is almost linear along the train and changes from ∼ 180 ps to ∼ 320 ps. 
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Fig 3.10: DAΦNE beam spectrum near the harmonic 3h considering  

47 bunches over 60 with and without the harmonic cavity 
 
 
It is also important to observe that the displacing of the bunch positions from the 
“unperturbed” synchronous phases produces a significant distortion of the beam 
current spectrum. As an example, the spectra of the beam current near the 3h 
harmonics are reported in Fig. 3.10 in the two cases. A large head-tail displacement of 
the bunch synchronous phases produces a modulation of the "powerful" harmonics 
and a distortion of the revolution harmonics around them. It was surprising to find that 
in this case the intensity of the line 3h (the beam spectrum line powering the 3rd 
harmonic cavity) is comparable with that of the adjacent line (3h+1). 
The total voltage and the non-harmonic voltage around bunch 1, 12, 24, 36 and 47 are 
plotted in Fig. 3.11 for a beam of 1.6 A in 47 bunches. The non-harmonic voltage 
sampled at the position of the bunch centroid sets the bunch parasitic loss individual 
value (in the case of 94 bunches over 120 and for the same total current the situation is 
exactly the same in terms of non harmonic voltages and head-tail synchronous phases 
spread). 
The non-harmonic voltage over the bunch is an additional perturbation of the potential 
well and has to be taken into account to compute the bunch natural and lengthened 
profiles. In particular, it may be observed that bunches at the edge of the train seat 
close to a maximum or minimum of the non-harmonic voltage and their potential 
wells are almost unperturbed. On the contrary, the phase of the non-harmonic voltage 
is almost opposite to that of the 3rd harmonic voltage over the central bunch of the 
train, so that the lengthening effect is weakened. 
Since the bunch centroids occupy different positions along the total RF voltage (which 
is largely non-linear) and since the non-harmonic voltage has a different form over the 
bunches, each bunch seats at a different RF slope and ends up with its own 
synchrotron frequency and charge distribution. Each bunch has, therefore, its own 
“natural” length, its equilibrium profile (in the lengthening regime) and its own 
Touschek lifetime. 
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Fig. 3.11: total voltage and non-harmonic voltage around bunch  

1, 12, 24, 36, 47 in the case of 47 bunches over 60  
(or 1, 24, 48, 72, 94 in the case of 94 bunches over 120)  

with a total beam current of 1.6 A. 
 

 
Fig. 3.12: natural and lengthened profiles of the bunches (1.6 A into 47 bunches) 

 
 

The natural and lengthened profiles of bunches 1, 12, 24, 36, 47 in the case of 47 
bunches over 60 are shown in Fig. 3.12. The beam current is 1.6 A (≈34 mA per 
bunch). The positions of the bunch centroids have been obtained from the 
macroparticle tracking, as discussed before, while the profiles have been obtained 
from the single bunch tracking code. 
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Fig 3.13: natural and lengthened bunch lengths as function of the bunch number. 

 
 

 
Fig 3.14: energy spread as function of the bunch number. 

 
 
The r.m.s. natural and lengthened bunch lengths as function of the bunch number are 
reported in Fig. 3.13 for the mentioned five bunches and compared with the natural 
bunch length with and without gap. The relative energy spreads are reported in Fig. 
3.14. 
It may be seen that, considering the natural bunch length, the bunches do not reach the 
design length. This is because the bunches near the train edges seat outside the low RF 
slope region while the RF slope over the central bunches is increased by the non-
harmonic voltage contribution. 
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In the strong lengthening regime (34 mA per bunch), however, there is an increase of 
the bunch length due to the turbulent regime that strongly lengthens the bunches more 
than without the gap. This effect is confirmed by the increase of the energy spread of 
the bunches. 
A large spread of the synchronous phases is cumbersome at least from two points of 
view. First of all, the position of the interaction point (IP) changes from bunch to 
bunch which may cause problems to the experiments as well as luminosity 
degradation if some bunch centroids collide significantly apart from the waist of the 
vertical β-function. One could argue that, provided that the synchronous phase spread 
is equal in the two beams, the IP position remains fixed and only the collision times 
vary with respect to the RF clock. But there is little hope that the synchronous phase 
spread will be equal in the two rings, since in each ring it is generated by the long 
range wake fields associated to all machine HOMs. As a matter of fact, we already 
observed a substantial difference in the bunch phase spread in the two DAΦNE rings 
in present operation which is probably due to a difference in the HOMs distribution in 
the two RF cavities (their internal profile is not exactly equal). 
The impact of the bunch phase spread on the operational efficiency of the DAΦNE 
LFB system is the second worrying aspect. The LFB is a synchronous system timed 
on the RF clock. In particular, the front-end works at 6fRF while the back-end (the part 
of hardware dedicated to kick properly each bunch) works at 3.25fRF. Both hardware 
sections will suffer from an excessive phases deviation of the bunch from a common 
equilibrium value. In particular, the front-end phase detector has a limited dynamic 
range, which can be overcome by an excessive phase spread while the back-end 
section can not be properly phased on all the bunches. 
The tracked oscillations of bunches 1, 24 and 47 for a beam current of 1.6 A into 47 
bunches with and without LFB are shown in Fig. 3.15. It may be seen that the 
damping of the LFB is still necessary, even though we know that it can not be 
effective on the bunches near the train edges because of the off-time of both the front-
end and back-end sections.  
It might be asked if there is a way to limit the spread of the synchronous phases or, at 
least, some of its effects. Only in the e+ ring it is possible to remove the spread by 
removing the gap in the filling pattern. This will increase the average beam current, 
increasing the background production but not the luminosity, since the extra bunches 
closing the gap have no partner bunches in the other beam. Nevertheless, this kind of 
operation may have some advantages like a better average lifetime of the e+ beam and 
a less critical operation of the e+ LFB system. 
The stability of the LFB system operation could be possibly improved even without 
removing the gap. In this case one should, in principle, synchronize the system on a 
linearly phase modulated RF tone, to follow the phase displacement from bunch to 
bunch. A solution of that kind seems to be feasible from a technical point of view 
[95]. 
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Fig 3.15: tracked oscillations of bunches 1, 24 and 47 for a beam current  

of 1.6 A into 47 bunches over 60 with (a) and without (b) LFB. 
 
 
 
3.1.3 Expected improvement in the lifetime with the 3rd harmonic cavity 
 
The DAΦNE beam lifetime is dominated by the Tousckek effect [96]. 
Supposing that the limiting acceptance for the relative momentum deviation is given 
by the minimum between the RF acceptance and the physical transverse aperture, the 
Touschek lifetime can be calculated in each longitudinal point s of the machine by the 
formula (1.100). The total lifetime can be finally calculated by the equation (1.102).  
The performed calculations give the results plotted in Fig. 3.16. In the plot the bunch 
lifetimes with the harmonic cavity are compared with those calculated in the present 
operation conditions (VRF=110 KV) and with VRF=200 KV (without harmonic cavity) 
for two different bunch currents (17 and 34 mA).  
Considering the case VRF=110 KV, without the gap, it is important to observe that: 

a) the bunches have the same lifetime because there is no spread of the 
synchronous phases; 

b) there is an improvement of ∼ 90% and ∼ 75% in the lifetime with a bunch 
current of 17 and 34 mA respectively. This improvement is given by the 
enlargement of the energy acceptance and by the fact that the bunch is longer; 

c) in the case of 34 mA/bunch the improvement is reduced because the 
lengthening process without the harmonic cavity is more pronounced; 

In the presence of a gap, because of the synchronous phase spreads, each bunch has its 
proper lifetime. Also in this case, however, the average beam lifetime improvement is 
∼ 80% and is worst for the central bunches of the beam that are shorter. 
Similar considerations can be done in the case of VRF=200 KV. In this case the 
improvement is only given by the fact that the bunch is longer because the energy 
acceptance is almost the same (∼ 0.75%). 

a b 
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Fig 3.16 DAΦNE Touschek lifetime improvement with the harmonic cavity. 

 
 
3.1.4 The cavity parking option 
 
As discussed in the previous paragraphs, the implementation of the harmonic cavity 
presents beneficial aspects such as lifetime and Landau damping increase but also 
other effects like the amplification of the synchronous phase spread, whose impact on 
the collider is not completely predictable.  
A back-up procedure consists in tuning the harmonic cavity between two revolution 
harmonics sufficiently away from the 3h lines (for instance ωRFH≅ (3h+0.5+k)ω0 with 
k=1,2,3).  
This option is the so-called “cavity parking”. By parking the harmonic cavity one 
expects to recover approximately the operating conditions existing before the 
harmonic cavity installation because the harmonic voltage is quite low and the 
interaction of the cavity impedance with beam is minimized (but still significant).  
In this case, in fact, the cavity interact with the modes Nb-1, 1, Nb-2, 2 and so on 
depending on the number k. 
In Fig. 3.17 the coherent angular frequencies and growth rates of the modes 2 and 3 as 
a function of the beam current are plotted for the case k=2 and with the present 
DAΦNE operation parameters. As shown, the frequency shifts and the growth rates 
are small enough to consider the perturbation almost negligible. 
The synchronous phase spread for a current of 1.6 A with a gap of 22% is shown in 
Fig. 3.18 for k=1, 2, 3. It may be seen that the phase deviation is not anymore linear 
with the bunch position along the train, while the total spread is even smaller than the 
value expected at the same current without harmonic cavity. This is not surprising, 
since it may be demonstrated that, provided that k>1, there is a partial compensation 
of the wakes generated by the accelerating mode impedances of the main and 
harmonic cavities. 
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Fig. 3.17: coherent angular frequencies and growth rates of the modes 2 and 3 as 

a function of the beam current for the parking case k=2. 
 

 
Fig 3.18 The synchronous phase spread for a current of 1.6 A for k=1, 2, 3. 

 
 
3.1.6 Conclusions 
 
Using a passive 3rd harmonic cavity in the lengthening regime can improve the 
Touschek lifetime of the DAΦNE beam by a factor equal to the ∼ 80% if compared 
with the present operation conditions  
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This is obtained by increasing the RF acceptance while keeping the bunch length at 
the limit of the hourglass effect. The microwave lengthening process is less 
pronounced and the larger non-linearities of the harmonic voltage over the bunch 
increase substantially the Landau damping.  
Both these effects are expected to result in a more relaxed single and multibunch 
dynamics. 
On the other hand, the presence of a gap in the bunch filling pattern will produce a 
large spread in parasitic losses and synchronous phases. As a consequence, the 
Touschek lifetime gain is not uniform over the train, different bunches will collide at 
different IPs and the synchronization of the bunch-by-bunch feedback systems may be 
affected. The actual tolerability of such effects cannot be exactly predicted depending 
on the operating conditions (such as the gap width).  
The parking option (that consists in tuning the cavity away from the 3rd harmonic 
frequency and in-between two revolution harmonics) allows to recover approximately 
the operating condition established before the harmonic cavity installation, and may 
be considered a reliable back-up procedure. Moreover, in the parking option the 
synchronous phase spread is compressed by a long-range wake compensation effect, 
and a very moderate harmonic voltage is still present, which is expected to increase 
the Landau damping in the longitudinal dynamics. 
 
 
 
3.2 DAΦNE harmonic cavity design 
 
 
The design of the harmonic cavity has been aimed to obtain a relatively low R/Q 
factor with a Q as high as possible for the beam dynamics considerations discussed in 
the previous paragraphs. For this reason a spherical shape has been proposed as an 
optimum compromise between a high Q resonator and a low R/Q factor [97]. 
For the damping of the higher order modes it has been decided to use the same 
technique as that adopted at the KEK B-factory [98]. It foresees using special rings of 
dissipative ferrite material coupled with the HOM and completely decoupled with 
respect to the field of the accelerating mode. 
The final designed shape is shown in Fig. 3.19. The rounded cell is the volume where 
the fundamental mode resonates. On the cell top there is a port for the insertion of a 
tuning plunger and three small RF probes have been inserted in the structure to 
measure the beam-induced field allowing the low-level control and diagnostics. The 
cell is connected through the tapered section to HOM damper consisting of the ferrite 
rings bonded on a stainless steel flanges. 
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Fig. 3.19: sketch of the DAΦNE 3rd harmonic cavity. 

 
 
The cavity fundamental mode has been calculated both by MAFIA and by HFSS in 
order to define the final dimensions of the cavity. The task of the simulations has been 
to obtain simultaneously: 
 

a) an R/Q of the fundamental mode of about 25 with a Q as high as possible; 
b) a strong coupling of the cavity HOMs with the damper and a weak coupling 

of the fundamental one; 
c) controlled dimensions of the cavity because of the limited total length 

available for allocating the structure in the ring. 
 
For this purpose the radius r1 and r2 of the rounded cell and the dimensions h1, h2, z1 
and z2 (Fig. 3.20) have been properly tuned. Furthermore, in order to avoid direct 
exposure of the ferrite to the beam charge the ferrite load has been shielded by a 
coaxial cylinder. The shield prevents direct heating of the ferrite that, in this case, can 
interact with the beam only through the cavity HOMs. Moreover this solution avoids 
the risk of degradation of the DAΦNE broadband impedance associated with the 
direct beam-ferrite interaction48.  
To reduce the cost it has been decided to build the cavity body in aluminum instead of 
copper even if this implies a reduction of the fundamental mode Q-factor by ∼ 20%. 
Since the e.m properties of the special ferrites used in the HOM dampers varies with 
the frequency [99], in the simulations of the ferrites it has been considered the 
following averaged characterization: 
 
0-1.5 GHz → εr=12 µr=2+10j 
1.5-3 GHz → εr=12 µr=0.5+5j 
 
 
                                                 
48 That risk cannot be easily evaluated by means of simulations or analytical estimates [100]. 
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Fig. 3.20: cavity profile simulated by MAFIA and HFSS. 
 
 
 
 
The resonant frequencies (f), the R/Q and the Q values of the cavity longitudinal 
modes (M=monopole) as given by the MAFIA simulations of the 2D profile are 
reported in Table 3.3 (the HFSS simulations give substantially the same results).  
In Table 3.4 the resonant frequencies and the transverse impedances for the dipole 
modes (D) are reported while in Table 3.5 the frequencies (up to 2.5 GHz) and the Q 
factors of the quadrupole (Q), sextupole (S) and octupole (O) modes.  
Some of these modes are weakly coupled with the damper (high Q factors) but they 
don’t give longitudinal or transverse impedances to the first order (see par. 1.1.1). 
In Figs. 3.21a and b the magnitude of the Electric field of the working modes M1 and 
of the HOM M4 is plotted, as obtained by HFSS. In the first case the e.m. field 
vanishes in the tapered transition and only a negligible amount of power can reach the 
damper while in the second one the e.m. field propagates through the transition toward 
the ferrite load. 
 
 

 
 

Fig. 3.21: Magnitude of the electric field of the working mode M1 (a)  
and of the HOM M4 (b) obtained by HFSS. 

 
 
 
 

a 

b 
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Table 3.3: monopole cavity modes obtained by 2D MAFIA simulations. 

 
 MAFIA Simulations 
 f [GHz] Q R/Q [Ω] 

M1 1.105 28000 26 
M2 1.335 10 16 
M3 1.600 30 6 
M4 1.650 50 2 
M5 1.899 50 4 
M6 2.094 110 7 
M7 2.270 120 9 
M8 2.495 170 3 
M9 2.524 230 10 

  
 

Table 3.4: dipole cavity modes obtained by 2D MAFIA simulations 

 

 
 MAFIA Simulations 
 f [GHz] Q R/Q 

[Ω/m] 
D1 1.089 438 66 
D2 1.244 35 26 
D3 1.445 158 22 
D4 1.618 158 29 
D5 1.797 266 37 
D6 1.886 283 24 

  
Table 3.5: quadrupolar (Q), sextupolar (S) and octupolar (O) cavity modes obtained by 2D 

MAFIA simulations 

 

 
 f [GHz] Q 

Q1 1.597 19700 
Q2 1.975 340 
Q3 2.078 30 
Q4 2.242 40 
Q5 2.323 40 
Q6 2.398 90 
Q7 2.448 130 
S1 2.042 36930 
S2 2.469 12400 
O1 2.471 36700 
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Fig. 3.22: |S12| obtained by HFSS exciting the longitudinal (a) and dipole (b)  

modes by two RF probes. 
 
 
 
HFSS simulations exciting the cavity by two RF probes have been also performed. 
The obtained R and Q values confirm the previous simulations results and in Figs. 
3.22a and b the resulting |S12| is shown as a function of frequency for the longitudinal 
and dipole modes respectively. 
The tuner inserted in the cavity allows to properly set the cavity frequency with beam 
current or to “park” the cavity itself.  
Since it perturbs the 2D profile of the structure, two relevant effects have been 
examined: 
 

a) first of all there is a degradation of the Q factor of the fundamental mode 
caused by the strong field in the gap between the tuner itself and the 
cylinder in which it is allocated. According to numerical simulations, the 
reduction of Q with respect to 2D results is ∼ 20% with the cavity properly 
tuned, or ∼ 30% with the tuner in the “parking option” position. In Fig. 3.23 
the magnitude of the H field between the tuner and the outer cylinder 
corresponding to the fundamental mode as obtained by MAFIA is plotted; 

 
b) the second relevant effect is the appearance, in the case of “parked cavity”, 

of longitudinal and transverse impedance due to the quadrupole mode (Q1). 
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In fact, while in the 2D symmetric geometries the quadrupole modes have 
not transverse and longitudinal impedance, in this case, the presence of the 
tuner strongly perturbs the symmetry of the cavity inducing a non zero 
longitudinal and transverse impedance. In Fig. 3.24 the longitudinal Electric 
field of this quadrupole mode with the tuner deeply inserted as obtained by 
HFSS is plotted. When the tuner is inserted to shift the fundamental mode at 
1.113 GHz (≅ 3fRF+2.5f0), HFSS provides for this mode: f≅ 1.559 [GHz] 
Q≅ 10000 Rs/Q≅ 0.59 [Ω] Rt/Q≅ 0.1 [Ω/m]. 

 
 

 
Fig. 3.23: Magnitude of the H field between the tuner and the outer cylinder 

corresponding to the fundamental mode as obtained by MAFIA 3D simulation. 
 
 

 
Fig. 3.24. Electric field of the quadrupole mode Q1 obtained by HFSS  

without the tuner (a) and with the tuner deeply inserted (b). 
 

a 

b 
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3.3 DAΦNE harmonic cavity RF measurement results 
 
 
The picture of the DAΦNE harmonic cavity is shown in Fig. 3.25. 
The RF measurements have been, substantially, of two types: 
 

a) port-to-port transmission coefficient (|S12|) between two probes to measure 
the resonant frequencies and the Q-factors of the fundamental and higher 
order modes. This measurement has also allowed to check the range of 
tunability of the fundamental mode itself by changing the tuner position; 

 
b) wire measurements of the longitudinal and transverse impedances in order 

to evaluate the longitudinal and vertical coupling impedance. As discussed 
in par. 2.4.2, this method allows measuring the impedances with good 
precision in the case of  “lumped impedances” even if it perturbs both the 
field configuration and the resonant frequencies of the cavity modes. In this 
case both the longitudinal and vertical impedances are not properly 
“lumped” elements and, furthermore, the wire itself modifies the HOM 
coupling with the damper ring, as we will discuss in the following. In any 
case this kind of measurement can give some useful informations on the 
impedance overview. 

 

 
Fig. 3.25:picture of the DAΦNE harmonic cavity. 

 
3.3.1 Tuned cavity 
 
The resonant frequencies (f), the R/Qs and the Q values of the cavity longitudinal (M) 
and transverse (D) (V and H identify the vertical and the horizontal polarization 
respectively) modes are reported in Tables 3.6 and 3.7. 
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Table 3.6: longitudinal modes obtained by measurements and  
compared with the simulations in the case of tuned cavity 

 

 

 MAFIA Simulations Measurements  
 f 

[GHz] Q 
R/Q 
[Ω] 

f [GHz] Q R/Q [Ω] 

M1 1.105 23000 26 1.105 18500 21.4 
M2 1.335 10 16 not measurable (n.m.) n.m. n.m. 
M3 1.600 30 6 n.m. n.m. n.m. 
M4 1.650 50 2 1.65 168 16.8 
M5 1.899 50 4 n.m. n.m. n.m. 
M6 2.094 110 7 2.100 224 n.m. 
M7 2.270 120 9 2289 60 n.m. 
M8 2.495 170 3 2.466 140 n.m. 
M9 2.524 230 10 2.507 278 n.m. 

 
 

 
Table 3.7: transverse modes obtained by measurements and  
compared with the simulations in the case of tuned cavity 

 

 
 Simulations Measurements 
 

f [GHz] Q 
R/Q 

[Ω/m] 
f [GHz] Q R/Q [Ω/m] 

D1 1.089 438 66 1.070 450 146 
D2 1.244 35 26 not measurable (n.m.) n.m. n.m. 
D3 1.445 158 22 1.400 139 29 
D4 1.618 158 29 1.560 175 n.m. 
D5 1.797 266 37 1.725 163 n.m. 
D6 1.886 283 24 1.865 190 74 

 
 
 
 
The modes have been measured in the case of tuned cavity and compared with the 
simulations of the 2D MAFIA structure. The resonant frequencies (f) and the Q values 
of the modes have been calculated by fitting the port-to-port transmission coefficient 
(reported in Fig. 3.26) between two RF probes while the R/Qs have been obtained by 
the wire measurement (reported in Figs. 3.27-3.28). As well predicted by simulations 
the ferrite load substantially damps all the longitudinal and transverse modes with the 
exception of the fundamental one (M1). 
Some modes, calculated by simulations, are not measurable on the prototype because 
of the low Q values of these modes and because of the presence of high polarity 
modes with high Q-factors (quadrupoles, sextupoles, octupoles). 
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Fig. 3.26: Transmission coefficient (|S12|) between two RF probes in the case of tuned cavity. 

 
Fig. 3.27: Longitudinal impedance obtained by the wire measurement method (tuned cavity). 
 

 
Fig. 3.28 Vertical (a) and horizontal (b) impedances obtained by the wire measurement 

method in the case of tuned cavity. 
 

a b 
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As observed before, the results obtained by the wire measurement have to be carefully 
analyzed. In fact, the wire itself, as it can be seen putting it in HFSS simulations, 
perturbs both the resonant frequency of the modes and also their field configuration. 
The coupling with the ferrite damper can be then strongly varied. For example the 
field resulting from an HFSS simulation of the wire measurement is shown in Fig. 
3.29. Without the wire (Fig. 3.29a) the monopole M4 propagates along the tapered 
transition toward the ferrite load. With the wire (Fig. 3.29b) the e.m. field can 
propagate along the coaxial line formed by the beam pipe and the wire itself and the 
ferrite is by-passed. Consequently, the mode is no more damped and a high impedance 
value is measured at ∼ 1.8 GHz as shown in Fig. 3.27. 
 
 

 
Fig. 3.29. Electric field configuration of the mode M4 obtained by HFSS simulation: 

(a) without the wire (b) with the wire. 
 
 
Considering the bunch longer than 2.5 cm, the longitudinal HOMs effective49 
impedance is always lower than 800 Ohm and the dipole modes lower than 25 KΩ/m. 
These contributions will not change significantly the present scenario of the DAΦNE 
Beam Dynamics from the point of view of higher order mode impedances and, on the 
contrary, one expects beneficial contributions to the beam dynamics from the Landau 
damping which will be strongly emphasized by the non-linearity of the harmonic 
voltage. 
The resonant frequency of the fundamental mode as a function of the tuner position is 
shown in (Fig. 3.30). 
 
3.3.2 Parked cavity 
 
A full characterization of the cavity has been performed also when the tuner is in the 
parking position. The measurement results in this case are shown in Figs. 3.31-3.34. 
The frequencies, the Q-factors and the R/Q values for the longitudinal and transverse 

                                                 
49 The impedance multiplied by the exponential factor exp(-ωσz/c)2 (that gives the correct growth rates and 
coherent frequency shifts in the case of macroparticle model with a finite bunch length (par. 1.3.1)). 

a 

b 
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modes are reported in the Table 3.8 and 3.9. In this case, as predicted by simulations, 
it has been found non-zero longitudinal and transverse impedance for the quadrupole 
mode Q1. 
Anyway, also for the parked cavity case it is reasonable to conclude, looking at the 
effective impedances, that the present scenario of DAΦNE beam dynamics will not be 
change significantly. 

 
 

 
Fig. 3.30 Measured resonant frequency of the fundamental mode  

as a function of the tuner position. 
 
 
 

Table 3.7: longitudinal modes obtained by measurements in the case of parked cavity 

 

 Measurements  
 f [GHz] Q R/Q [Ω] 

M1 1.113 12000 18 
M2 not measurable 

(n.m.) 
n.m. n.m. 

M3 n.m. n.m. n.m. 
M4 1.640 90 14 
M5 n.m. n.m. n.m. 
M6 n.m. n.m. n.m. 
M7 2300 70 n.m. 
M8 n.m. n.m. n.m. 
M9 2.520 280 -- 
Q1 1.585 11300 0.3 

 
Table 3.8: transverse modes obtained by measurements in the case of parked cavity 
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 Measurements 
 f [GHz] Q R/Q [Ω/m] 

D1 1.087 280 130 
D2 n.m. n.m. n.m. 

1.397 140 D3 

1420 215 

24 

D4 n.m. n.m. n.m. 

D5 1.728 1170 n.m. 

D6 1.863 70 65 
Q1 1.585 11300 4 

  
 

 
Fig. 3.31 Transmission coefficient (|S12|) between two RF probes in the case of parked cavity. 

 

 
Fig. 3.32 Longitudinal impedance obtained by the wire measurement method in the case of 

parked cavity. 
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Fig. 3.33. Vertical (a) and horizontal (b) impedance obtained by the wire measurement 
method in the case of parked cavity. 

 

a b 
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Chapter 4  
 
 
RF deflectors for CTF3  
 
 
 
 
 
CTF3 (CLIC Test Facility) is the third facility of the CLIC (Compact Linear Collider) 
project. The CLIC study focuses on high-gradient, high frequency (30 GHz) 
acceleration for multi-TeV linear colliders50 [101-103]. 30 GHz is considered to be 
close to the limit beyond which standard technology for the fabrication of normal-
conducting tw accelerators cannot longer be used. 
Since conventional RF power sources based on modulators and klystrons are not 
available at this specially high frequency, CLIC was based on the novel and promising 
concept of Two-Beam Acceleration (TBA).  
In the first paragraph of this chapter the basics CLIC-CTF3 concepts are illustrated. 
The study of the beam dynamics in the CTF3 Combiner ring considering the effect of 
the beam loading in the RF deflectors is presented in the second paragraph. 
The last two paragraphs are dedicated to illustrate the RF deflectors design procedure 
and measurements. 
 
 
 
4.1 The CLIC-CTF3 Projects 
 
 
The basic idea of the TBA is to properly recombine the bunch train (Drive Beam) 
generated by a conventional linear accelerator in order to create an high peak current 
beam with a time spacing between bunches considerably reduced. 
This bunch structure is realized by a novel technique of bunch combination which 
converts a long bunch train with a large bunch spacing of 64 cm into a sequence of 
short trains with a bunch spacing of only 2 cm, which is used for 30 GHz power 
production. 
The principle is shown in Fig. 4.1. The bunch manipulation is done in three rings, 
using RF deflectors, giving a multiplication of the bunch repetition frequency by 
factor two in the first one and four in each of the two others. 
The beam is then decelerated and the extracted power is used to accelerate the beam in 
the main linac at 30 GHz. 

                                                 
50 The choice of the high working frequency aims to reach high accelerating field of the order of 160 MV/m. In 
fact, as shown in (par. 2.2), r0∝ω ½ and this suggests the choice of high frequencies to reach high acc. field. 
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Fig. 4.1: Drive Beam structure of CLIC. 

 
 

 
Fig. 4.2: conceptual layout of CTF3. 

 
 
CTF3 is an important test and demonstration facility for many vital components of 
CLIC [104]. Its main aim is to prove the feasibility of the RF power source design and 
to produce 30 GHz power at the nominal CLIC parameters. The conceptual layout of 
CTF3 is shown in Fig. 4.2. 
One of the most important issues to be tested is the frequency multiplication by the 
novel bunch interleaving technique. In CTF3 a long train of short bunches with a 
distance of 20 cm between bunches is converted into a series of short bunch trains, 
with the individual bunches spaced by 2 cm. This is done in two stages, first by a 
factor of two in the delay loop, then by a factor of 5 in a Combiner ring. 
After the linac, a first stage of electron pulse compression and bunch frequency 
multiplication of the drive beam is obtained using a 42 m circumference Delay Loop 
with a transverse RF deflector at 1.5 GHz. The circumference of the loop corresponds 
to the length of one batch of “even” or “odd” bunches. The process is illustrated in 
Fig. 4.3. The RF deflector in the Delay loop deflects every second batch of 210 
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bunches into the delay loop, and, after one turn, insert this batch between bunches of 
the following batch. Therefore the bunch timing of subsequent batches is adjusted in 
such a way that they have a phase difference of 180 with respect to the ∼ 1.5 GHz RF 
of the deflector. 
An 84 m circumference Combiner Ring is used for a second stage of pulse 
compression and frequency multiplication by a factor five. This is achieved by means 
of two RF deflectors working at ∼ 3 GHz, which insert the injected bunches between 
the already circulating ones, as illustrated in Fig. 4.4. 
After the Combiner ring the drive beam pulse is 140 ns long and has a current of 35 A 
with the 2.33 nC bunches spaced by 2 cm. 
A single 30 GHz power extraction structure, optimized for maximum power 
production, will be used in a high power test stand where CLIC prototype accelerating 
structures and waveguide components can be tested at the nominal power and beyond. 
The main CTF3 parameters at the injection into the Combiner ring are reported in 
Table 4.1. 
 

 
Fig. 4.3: sketch of the bunch frequency multiplication in the Delay Loop. 

 

 
 

Fig. 4.4: sketch of the bunch frequency multiplication in the Combiner ring. 
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Table 4.1: The main CTF3 parameters at the injection into the Combiner ring 

 
Energy (E) 180 [MeV]51 

Circumference length (L) 84 m 
Pulse duration (τCR) 1.4 [µs] 

Number of bunches per pulse (Nb) 2100 
Number of pulses recombined (Np) 5 

Bunch charge (Qb) 2.33 [nC] 
Bunch length (σz) 1.5-2.5 [mm] 

Bunch separation before recombination (τsb) 0.33 [ns] 
Bunch separation after recombination (τsa) 0.067 [ns] 

Beam emittance (ε)52 ∼  0.4 [mm mrad] 
 
 
 
4.2 Study of the beam loading in the RF deflectors of the Combiner ring 
 
 
As discussed in the previous paragraph, the bunch train compression in the Combiner 
ring is obtained by means of two RF deflectors [105]. 
The efficiency required by the CTF3 parameters can be easily met by scaling already 
existing tw or sw deflecting structures. On the contrary, the most demanding issues 
are those related to the beam dynamics, including the beam loading effects on the 
fundamental deflecting mode [106]. 
Strong beam loading effects can, in fact, degrade the beam quality in terms of 
transverse beam dimension growth, or looses of current and, consequently, the 
effectiveness of the power conversion to 30 GHz. 
From this point of view it has been chosen to build tw RF deflectors since wake fields 
can leave the structure faster due to lowering the filling time. In fact, typical filling 
times for sw structures at these frequencies are of the order of 900 ns while of the 
order of 50 ns for tw structures. The main RF deflector parameters are reported in 
Table 4.2 (53). 
To study the beam loading processes for a tw structure it is necessary to introduce a 
reliable model of the single-passage wake and then to implement it in a tracking code 
to analyze the multi-passage effects [107]. 
 
 

                                                 
51 Actually the energy is sliglty different (150 MeV). Here the value of the energy considered in the simulations 
is reported. 
52 See note 70. 
53 The RF parameters such as the shunt impedance have been obtained scaling the parameters of the existing tw 
RF separators. 
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Table 4.2: Combiner ring RF deflectors parameters. 

 
Frequency (f) 2.99855 [GHz] 

Number of active cells (Nc) 10 
Phase advance per cell (phc) 2π/3 

Deflector length (L) 33 [cm] 
Group velocity (vg/c) -0.0244 

Filling time (τF) 46 [ns] 
Shunt impedance per unit length (rs) 17.35 [MΩ/m] 

rs/Q 1300 Ω/m 
Input power (Pinp) 1.5 MW 

Deflection (φd) 5 [mrad] 
 

 
 
 
4.2.1 Single and multi passage wake model 
 
The design of the RF deflectors for the combiner ring has been done scaling existing 
structures (known as RF separators or Lengeler structures) already optimised for ion 
beam deflection [108,109]. These structures are disk loaded backward waveguides 
working on the so-called hybrid mode EH11.  
Referring to the Fig. 4.5, the e.m. field in the central region, in the case of small pitch 
approximation (λ>>D), negligible iris thickness (t/D<<1) and phase velocity equal to 
c, is given by the equations [73]: 
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(4.1) 
 
where ω* is the working frequency, k=ω*/c and Z0=(µ0/ε0)-1/2. 
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Fig. 4.5: sketch of a disk loaded waveguide 

 
 
 
Using the expression of the Lorentz force acting on a particle of charge q that moves 
through the structure on the plane ϑ=0, with a velocity equal to c, one simply 
obtains54: 
 

( ) ( )φϑ sin
2

Re 0

E
qHZEF rT −=−=  

(4.2) 
 

 

To evaluate the beam loading in the structure one has to consider both the interaction 
between the travelling charges and the transverse electric field Er (beam loading in 
phase) and between the travelling charges and the longitudinal electric field Ez (beam 
loading 90° out-of-phase)55.  
The first contribution is very similar to the beam loading of a linac accelerating 
section and the deflection spread along the train can be estimated obtaining a quite 
small value in the CTF3 case. 
The second contribution is of more concern because in the combiner ring the bunch 
pattern is such that at a certain time the deflector will be crossed by bunch trains off 
axis and with a phase separation of 2π/5 generating a mutual perturbation mainly 
through the out-of-phase wake. 
In order to calculate the wake field generated by the interaction between the travelling 
charges and the longitudinal electric field one has to refer to the general problem of 
modes excitation by an electric current J that flows through a waveguide [65]. 
 
 
 

                                                 
54 In the case of phase velocity different from c the equations of the field in the structure become more 
complicated [73] and, consequently, the expression of the transverse force itself. 
55 Also in the case of phase velocity different from c the longitudinal component of the electric field is 90° out-
of-phase with respect to the transverse one. 
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Fig. 4.6: sketch of a charge q moving in a waveguide 
 
Considering a set of independent modes, the general propagating field in the structure 
can be written, in frequency domain as (56): 
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(4.3) 
 
where the signs “±” refer to the case of positive or negative phase velocities, 
respectively, N is the number of excited modes and cn

± and βn are the amplitudes and 
the propagation constants of the nth mode. 
Assuming that a single particle passes through the structure of length L (Fig. 4.6) and 
considering only the interaction between the longitudinal component of the current 
and the deflecting mode, the coefficients c1

+ is given by the equation (Appendix 
A4.1): 
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where r(z')|particle trajectory is the transverse position of the particle along the structure, q is 
the charge and Π is the power flow along the structure57: 
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(4.5) 
 

                                                 
56 The subscripts t and z indicate the transverse and the longitudinal components of the field (en, ez and etn are 
functions of the transverse coordinates and of the frequency). 
57 In the case of backward wave Π  is negative. 
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The e.m. field of the excited mode can be calculated, in time domain, by a Fourier 
integral: 
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(4.6) 
 

In order to calculate the coefficient c1
+ and the corresponding e.m. field for all t and z 

one has to use the equations (4.4)-(4.6). 
Unfortunately, these expressions are very difficult to manage numerically because all 
the quantities are frequency dependent and one has to compute a double integration 
(the first in the z' variable and the second in ω) in order to calculate the wake field 
generated by a single passage of a particle. 
To evaluate the beam loading of a multiparticle passage, some approximated formulae 
can be introduced. 
 
Approximation 1: linearization of the dispersion curve in a limited range of 

frequency 
 
The typical dispersion curve of an RF deflector [73] is plotted in Fig. 4.7. The 
frequency f* is the frequency at which the phase velocity (vph) is equal to c and it 
corresponds to the working frequency. 
Tacking into account the expressions (4.4)-(4.6), it is easy to show that the major 
contribution, in time domain, to the deflecting force acting on a particle 90° out-of-
phase from the leading one58, comes from a small range of frequencies near f* (59). 
It is possible, therefore, linearize the previous expressions near the point (β*,f*) 
obtaining the following expressions for the coefficient c1

+(ω,z) (see Appendix A4.2): 
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(4.7) 
 

where the field ez1(ω*,r) is equal to ez of eq. (4.1) and [ω*-∆ω/2, ω*+∆ω/2] is a 
suitable interval near the center frequency f* (60). 

                                                 
58 It means that t*=T/4+hT where T=1/f* is the period of the wave in the deflector.  
59 In fact for a particle 90° out-of-phase from the leading one the real part of the coefficient c1

+(ω) (for a fixed z) 
has a local maximum for f=f* (the exponential term oscillates for f≠f*) and also the deflecting force has a 
maximum when the particle is synchronous with the wave.  
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Fig. 4.7: sketch of a typical dispersion curve for a tw RF deflector 
 
 
The expression for the electric field in the time domain becomes: 
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where the field e1(ω*) is equal to e of eq. (4.1) and sinc(x)=sin(x)/x. 
The Lorentz force acting on a trailing particle that passes through the deflector after a 
time t* from the leading one and that moves on the plane ϑ=0 is given by the 
formula61: 
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(4.9) 
 
 

                                                                                                                                                     
60 “Suitable interval” in order to have a good approximations of the exact expression for the field (11) in terms, 
for example of the deflecting force seen by a trailing particle. 
61 For the trailing particle t=t*+z/c. 



 114

Approximation 2: linearization of the dispersion curve over an unlimited range of 
frequency 

 
In this case the wake is given by the equation (4.8) when ∆ω→∞ obtaining62: 
 

( ) ( ) ( )
�
�
�

�

�

�
�
�

�

�

−
�
�
�

	





�

�

Π
=

�
�

�
�
�

� −

=

+

g

*

*

tv-z 

*
1

*
1

1
1 ,Re

2
,

in
translated
trajectoy
particle
leading

gz
c

z
tjg

tvzreee
vq

ztE ωω
ω

ωω

 

(4.10) 

( ) ( )

�
( ) ( )

�
�
�

�

�

�
�
�

�

�

−
Π

−≅

≅

�
�
�
�
�

�

�

�
�
�
�
�

�

�

��
�

�
��
�

�
�
�

�
�
�

� +−
Π

−=

=<<

=

g

*

g

*

tv-z 

**
1

**

1

2

1

tv-z 

**
1

**

1

2

*

,sin
4

,sin
4

,

in
translated
trajectoy
particle
leading

gz

g

c

v

in
translated
trajectoy
particle
leadinggz

g

T

vtzretE
vq

v
c

z
tzretE

vq
ztF

g

ωω

ωω

ωω

ωω

 

(4.11) 
Introducing the R/Q of the structure given by the formula (see par. 2.2): 
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one obtains for the field the expression: 
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where: 
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62 It is enough to remember that: 
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Fig. 4.8: dispersion curve for the considered RF deflector 

 
 
 
and for the transverse force the expression: 
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These expressions for the wake field and force correspond to what intuitively one 
could expect for the field generated by a passage of a particle in the RF deflector (see 
Appendix A4.3): an envelope of the field (or force) that follows the profile of the 
leading particle trajectory (63) and that rigidly translates along the structure with a 
negative group velocity equal to vg and with a positive phase velocity equal to ω*/c. 
Assuming an RF deflector with the parameters64 L=33 cm, a= 2.2 cm and b= 5.7 cm., 
one obtains the dispersion curve plotted in Fig. 4.8 (65).  
By the previous equations it is possible to evaluate, in the correct case and in the 
approximated cases, the transverse field excited by a leading charge and probed by a 
trailing particle injected with a delay t*. 
Considering the leading particle trajectory of the type: 
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63 The field Ez is proportional to the displacement r of the particle from the axis of the structure. 
64 This parameters are scaled from that of [108,109] in order to have f*≅ 3GHz. In the case of small pitch 
approximation (λ>>D) and negligible iris thickness (t/D<<1) the values of D and t do not affect the calculation 
of the dispersion curve [73]. 
65 The analytical calculation gives for this structure vg=0,058c. 
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where rin and r’in are the initial injection position and angle and ∆r’ is the deflection 
angle inside the deflector, the obtained transverse force66 probed by a particle that 
enters in the structure after a time t1

*=T/4 and t2
*=T/4+25T (67), are plotted in Fig. 

4.10 in the case of trajectory 1 (Fig. 4.9). The correct result obtained by the numerical 
integration of eq. (4.6) (solid line) is compared with those obtained in the linear 
approximation of the dispersion curve in the pass-band interval of the EH11 mode 
[ω1,ω2] (dashed line) and with those obtained by the linear approximation of the 
dispersion curve in an unlimited range of frequencies (dash-dotted line). In Figs. 4.11 
and 4.12 the same quantities for the trajectory 2 and 3 of Fig. 4.9 are plotted. 

 
Fig. 4.9: trajectories of the leading particle: 
trajectory 1 (rin=0.5 mm, r'in=0 and ∆r'=0) 

trajectory 2 (rin=0 mm, r'in=5 mrad and ∆r'=5 mrad) 
trajectory 3 (rin=0.825 mm, r'in=-5 mrad and ∆r'=5 mrad). 

 

 
Fig. 4.10: transverse force probed by a trailing particle  

(trajectory 1 of the leading particle). 
                                                 
66 The force is calculated on the axis of the structure. More precisely, as shown in the eq. (4.9) and (4.14), in the 
approximated cases the transverse force does not depend on the displacement of the trailing particle. 
Nevertheless, considering the exact field distribution and the correct calculation (4.4-6), there is a force 
dependence due to the transverse position of the trailing particle. 
67 For this structure the analytical calculation gives a filling time τf=L/vg≅ 50T. 
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Fig. 4.11: transverse force probed by a trailing particle  

(trajectory 2 of the leading particle). 
 
 

 
Fig. 4.12: transverse force probed by a trailing particle  

(trajectory 3 of the leading particle). 
 
 
 
Introducing the transverse wake probed by a trailing particle that enters in the 
structure after a time tn

*=T/4+nT defined as: 
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(4.15) 
 

one obtains the results plotted in Figs. 4.13, 4.14 and 4.15 for the three different 
trajectories, respectively. 
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Fig. 4.13: transverse wake probed by a trailing particle that enters in the structure after a time 

tn
*=T/4+nT (trajectory 1 of the leading particle) 

 
Fig. 4.14: transverse wake probed by a trailing particle that enters in the structure after a time 

tn
*=T/4+nT (trajectory 2 of the leading particle) 

 
Fig. 4.15: transverse wake probed by a trailing particle that enters in the structure after a time 

tn
*=T/4+nT (trajectory 3 of the leading particle) 
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In the case of an infinite train of bunches spaced in time by T and with the same 
trajectories inside the deflector, the density current is given by: 
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that in the frequency domain becomes: 
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(4.17) 
where ω*=2π/T. 
In order to evaluate the coefficient c1

+(ω,z) one has to remember that the CTF3 RF 
deflectors work at ∼ 3 GHz and that the dispersion curve for the mode EH11 for these 
structures has a pass-band of the order of few hundred of MHz (see Fig. 4.8). 
Furthermore, the trains of bunches have a spectrum with a distance (1/T) between the 
δ in eq. (4.17) that is bigger or equal to ∼ 3 GHz (see Table 4.1). For this reasons the 
coefficients c1

+(ω,z), in the case of a train of bunches, can be simply obtained 
substituting the term e-jωz/c in eq. (4.4) with the spectrum (4.17), obtaining for 
parabolic trajectories68: 
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(4.18) 
The electric field is, in this case, given by: 
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where: 
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and the transverse force seen by a trailing particle of charge q that moves through the 
deflector after a time t*+hT is given by: 
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68 In practice the spectrum (4.17) samples the eq. (4.4) at the working frequency ω*. 
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The easiest way to calculate the wake field in the multi-bunch regime in the case of 
linearized dispersion curve over an infinite range of frequencies, is to make a 
numerical calculation with rigid profile fields that propagate in the structure as pointed 
out previously. 
The obtained results are plotted in Figs. 4.16, 4.17 and 4,18 for a trailing particle that 
enters in the structure out of phases with respect to the particles of the infinite train. 
Also in this case the correct solution (dashed line) is compared with the solution 
obtained by the linearized approximation over an unlimited range of frequencies (solid 
line) (69). 
 

 
Fig. 4.16: transverse force seen by a 90° out of phase particle 

in the case of multibunch regime (trajectory 1 of the train of bunches). 
 

 
Fig. 4.17: transverse force seen by a 90° out of phase particle 

in the case of multibunch regime (trajectory 2 of the train of bunches). 
 

                                                 
69 In the case of multibunch regime there are not differencies between the correct solution and the case of 
linearaized dispersion curve in a limited range of frequencies.   
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Fig. 4.18: transverse force seen by a 90° out of phase particle 

in the case of multibunch regime (trajectory 3 of the train of bunches). 
 
 
 
4.2.2 Tracking code results 
 
The three different models for the wake field produce stationary multibunch forces 
along the deflector that are almost identical even if, in the single passage, the force 
probed by the particle is different in the three cases. The explanation is that the 
multibunch steady solution is the response to a “monochromatic” excitation and the 
details of the dispersion curve out of resonance are not relevant in this case. 
Moreover, the integrated force (wake), also in the single passage, is very similar in the 
three cases. 
For these reasons, the model of the single passage wake fields that has been adopted to 
study the multibunch regime with a tracking program, is the simplest one 
(Approximation 2). 
The tracking code scheme is sketched in Fig. 4.19. Each bunch, represented as a 
macroparticle, enters in the 1st deflector with some horizontal initial conditions 
(xin,x’in), interacts with the main RF deflecting field and with the wake left by the 
bunches ahead, contributes to the wake and exits the deflector with some new 
horizontal conditions (xout, x’out). The bunch, then, is transported to the other deflector 
by the transport matrix M21 (

70), interacts with the RF field and wakes of this second 
device and so on. 
 
                                                 
70 It can be shown [110] that, in a ring, the output position and angle at a certain section of the ring can be 
expressed as a function of the input position and angle of the section in the form: 
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the matrix M is are called transport matrix and the quantity α, β, γ, φ (related to the magnets configuration of the 
ring) are called optical function (α, β, γ) and phase advance between the two points (φ), respectively. 
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Fig. 4.19: tracking code scheme. 

 
At the end of the merging process (five trains and five turns) each macroparticle ends 
up with certain horizontal conditions (xout, x’out) corresponding to a certain value of 
the Courant-Snyder invariant71 Io associated with the motion of the bunch center of 
mass. 
The tracking allows studying, therefore, the distribution of the final values of the 
Courant-Snyder invariants for the all bunches, and its dependence on the deflector 
wakes, injection errors, ring optical function and phase advance. 
 
Perfect injection of the 5 trains 
 
This is the case of bunch trains injected with the initial conditions that perfectly match 
the main deflecting field of the deflectors so that, if there is no wake, all the bunches 
would end up on the combiner ring design orbit. These conditions correspond to the 
point xin= 0.825 mm and x’in=-5 mrad of the phase space at the injection plane.  
The 1st train makes the first revolution alone, and there are no bunches interacting 
with its out-of-phase wake. During the second revolution, there is the contemporary 
presence of the 1st and 2nd trains which cross the deflectors with some horizontal 
displacement. The two trains are interleaved with a separation of 2π/5 RF and their 
bunches interact through the out-of-phase wake. This generates a first perturbation 
that deviates the bunches from their ideal trajectories. Similar processes take place 
during the next interleaving phases and, when the 5 trains are finally merged in a 
single one, the bunches aquire a certain spread in the horizontal phase space. 
A plot of the position and angle of the bunches with respect to the nominal orbit taken 
at the 1st deflector output at the end of the merging process is shown in Fig. 4.20. The 
corresponding plots of the bunch in the phase space and of the Courant-Snyder 

                                                 
71 Considering a fixed longitudinal position in a storage ring, a certain macroparticle at the position (x,x’) of the 
transverse phase space oscillates, turn by turn, around the same ellipse (this is propeirly true if one neglect the 
synchrotron radiation damping that is, however, negligible if one consider few turns in the ring). The equation 
of the ellipse is given by [110]: 

Iyxxx =++ 22 ''2 βαγ  
 

and the quantity I is called the Courant-Snyder Invariant. The area of the ellipse is π times I. 
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invariant are shown in Figs. 4.21-4.22. In the tracking code the transport matrices M12 
and M21 are given by the nominal combiner ring optics [104].  
The Figs. 4.20-4.22 represent the so-called “systematic effect” of the wake field since 
the perturbations in the final bunches transverse positions are not driven by initial 
injection errors. The average and maximum values of the Courant-Snyder invariants 
are respectively Ioav≅ 8⋅10-3 mm mrad Iomax≅ 4.2⋅10-2 mm mrad. 
The spread of the macroparticle Courant-Snyder invariant values caused by the 
systematic effect is a small fraction of the CTF3 bunch design emittance72 
(ε≅ 0.4.mm.mrad @180 MeV). 
 

 
Fig. 4.20: positions and angles of the bunches with respect to the nominal orbit taken at the 

1st deflector output at the end of the merging process. 

 
Fig. 4.21: bunches in the transverse phase space after  

the recombination process: “sistematic effect”. 

                                                 
72 The emittance of a single bunch is defined as the area occupied in the phase space x,x’ by a certain fraction of 
the bunch particles divided by π [111]. This means that each point in the plot of Fig. 4.21 should be considered 
as a distribution function with an area equal to επ. 
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Fig. 4.22: Courant-Snyder invariant of the bunches after the recombination process. 

 
 
Errors in the injection of the trains 
 
Referring to the case of an equal injection error for all the bunches of the 5 incoming 
trains73, the build-up mechanism for the final invariant spread is just the same as that 
described previously even if, in this case, the initial errors can drive the process to 
larger final errors.  
The bunch trains footprints in the horizontal phase space at the output of the 1st 
deflector for an injection offset of 1 mm and for an injection error of 0.633 mrad in 
angle (both corresponding to an initial value of the Courant-Snyder invariant Iin=0.716 
mm mrad74) are reported in Fig. 4.23. 
 
 

 
Fig. 4.23: bunch train in the horizontal phase space for an injection offset of 1 mm (a) and for 

an injection error of 0.633 mrad in angle (b) 

                                                 
73 This is the case, for instance, if one assumes that the error can fluctuate only from pulse to pulse due to some 
jitter in the beam transport. 
74 The invariant is calculated with respect to the perfect injection case x=0.825 mrad x’=5 mrad, i.e., the position 
(0,0) is the position of perfect injection. 

a b 
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Performing different simulations with different initial conditions it may be seen that, 
in general, the maximum value Iomax, the average value Ioav and the standard deviation 
σIo of the Courant Snyder invariants of the final distributions are not constant for a 
given initial value Iin of the invariant, but, due to the nature of the wake, depend also 
on the position and angle of the incoming trains. 
Considering all the possible injection errors (Fig. 4.24) for a given Iin and calculating 
the maximum and average values for the corresponding final distributions, one obtains 
the result shown in Fig. 4.25 where for any possible error the average invariant with 
the relative error bars is reported. 
For any given initial value Iin, there are some errors that give the largest Iomax value 
(Ipomax), and the largest Ioav value (Ipoav). 
The plots of Ipomax and Ipoav (this last including the ±rms error-bar) for Iin ranging from 
0 to 2 mm mrad are shown in Fig. 4.26.  
It may be seen that, for the optics parameters considered and with the exception of the 
Iin≅ 0 case, it is always Ipoav<Iin, which means that, on the average, the deflectors wake 
gives a sort of "cooling" of the Courant-Snyder invariant of the bunch center of mass. 
On the other hand, from the same figure one has Ipomax/Iin<2.6, and the magnification 
factor is reduced to about 1.5 for all bunches staying within one standard deviation 
above the average (≈70% of the bunches). 
The previous results have been obtained considering the nominal betatron phase 
advance between the deflector 1 and 2. Different phase advances φ give different 
amplification factors and the minimization of the ratios Io/Iin is one of the criteria for 
the choice of this ring optical parameter. 
As an example the ratios Iomax/Iin and Ioav/Iin are reported in Fig. 4.27 in the case of an 
injection error caused by a pure displacement of 1 mm, for various values of the 
betatron phase advance. 
The nominal phase advance corresponds to 262°, which is close to the minimum. 
Modifications of the phase advance in the range of ±10° does not significantly change 
the scenario. Anyway, some tunes outside the range shown in Fig. 4.27 may give 
magnification factors larger than 10. 

 
 

Fig. 4.24: possible injection errors in the horizontal input phase space. 
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Fig. 4.25: average invariant with the relative error bars for any possible injection error. 

 

 
Fig. 4.26: maximum and average values of the final invariant as a function of the input 

invariant. 
 

 
 

Fig. 4.27: ratios Iomax/Iin and Ioav/Iin in the case of an injection error caused by a pure 
displacement of 1 mm for various values of the betatron phase advance. 
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Simulations results including a finite bunch length 
 
The design bunch length for CTF3 is between 1.5 and 2.5 mm and it is a very 
important parameter to be controlled in order to have a good efficiency in the power 
generation. In fact, in frequency domain, the spectrum of the bunches is given by the 
eq. (1.93) and an excessive increase of the bunch length may give a loss of power at 
the 30 GHz due to the exponential factor exp(-ω2σz

2/2c2). Furthermore, as illustrated 
in the following, an increase of the bunch length can give loss of current due to the 
fact that the tails of the bunch may grow in terms of Courant Snyder invariant because 
of the finite wave length of the RF deflectors field and wakes. 
On the contrary, an increase of the bunch length, reducing the charge density, may 
give, at high bunch current, a reduction of the collective effect in terms of coherent 
synchrotron radiation and interaction with the short range wake field [104]. 
The value of σz=3 mm seems to be a maximum acceptable value for the bunch length. 
The effects of the beam loading in the RF deflectors considering a finite bunch length 
can be simulated dividing the bunches into slices (Fig. 4.28). Each slice can be 
considered as a macroparticle and the complete simulation can be performed. 
Assuming a perfect injection of the trains and the absence of the wake field in the 
deflectors, one obtains the transverse bunch slice output positions after the 
recombination plotted in Figs. 4.29a and b. 
In this case, also, there is a certain increase of the bunch emittance75 calculated with 
respect to the central slice of the bunch. Nevertheless it is a negligible effect if 
compared with the bunch design emittance (Table 4.3). 
 

 
Fig. 4.28: discretization of the bunch in a finite number of slices. 

                                                 
75 The r.m.s emittance of a the bunch with respect to central slice can be defined as [111]: 

�
∆

=
slices T

ii

Q

dq 2

ε  

where the quantities ∆di are the distances in the horizonthal phase space between the slices and the central one, 
qi is the charge of the slice i and QT is the total charge of the slices. 
The r.m.s. emittance is an indication of the spread of the slices around the central one in the phase space (it is 
equal to zero at the input of the deflector) and can be direcly compared with the emittance of the beam or with 
the Courant Snyder invariant. 
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Fig. 4.29: transverse bunch slice output positions (a) after the recombination (perfect 
injection of the trains and absence of the wake field); (b) slices in the phase space  

 
 

Table 4.3: r.m.s. emittance of the bunches referred to the central slice  
after the recombination process and without wake in the deflectors 

 

TRAIN 
NUMBER 

r.m.s. 
emittance  

[mm*mrad] 
Train 1 0.043 
Train 2 0.173 
Train 3 0.027 
Train 4 0.143 
Train 5 0.015 

 
 
The effect of the beam loading is shown in Figs. 4.30a and b. 
In this case a nominal phase advance has been assumed and the output position and 
angle of the slices for the whole trains has been found. In Fig. 4.30b the output 
invariant of the central slices of bunches are reported as a function of the bunch 
number. Comparing this figure with the Fig. 4.22 one can observe that for the central 
slice of the bunches the output invariants are comparable with those obtained without 
considering the bunch length. 
The r.m.s.emittances with respect to the central slice are reported in Fig. 4.31. In this 
case, also, the increase of the emittance is negligible if compared with the bunch 
design emittances. 
The output invariants of the central slices and the r.m.s emittances have been 
calculated in the case of different injection errors. 
The results are plotted in Figs. 4.32a and b. The beam loading effects do not change, 
for the central slices of bunches the scenario discussed in the case of σz=0. The r.m.s 
emittance growth due to the finite bunch length is, in the worst case, equal to the 
design emittance and can be considered a controllable effect. 

a b 
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Fig. 4.30: (a) output position of the slices as a function of the bunch number without injection 

errors and wake fields; (b) output invariant of the central slices of bunches. 
 
 

 
Fig. 4.31: r.m.s.emittances with respect to the central slice. 

 
 

 
Fig. 4.32: output invariants for the central slices and the r.m.s emittances for different 

injection errors. 



 130

4.3 RF Deflector Design 
 
 
The design of the RF deflectors has been done scaling to the CTF3 working frequency 
(2.99855 GHz) the dimensions of CERN RF separators with a reduced number of cells 
[112]. 
These are disk-loaded backward waveguides working in the 2π/3 EH11 hybrid mode 
already optimized for beam deflection. 2π/3 mode means that, at the working 
frequency, the phase advance per cell is 2π/3. 
The final 10 cells structure is sketched in Fig. 4.33a.  
As described in the following the design of the single cell has been aimed to find the 
correct cell dimensions in order to have the correct phase advance at the working 
frequency fRF. In parallel, the design of the coupler cells has been aimed to minimize 
the reflection coefficient at the input port in order to obtain the maximum transmitted 
power and the minimum reflection coefficient. 
 
 
4.3.1 Single cell design 
 
With the electromagnetic code MAFIA the scaled single cell 2D profile has been 
simulated and the local sensitivity of the 2π/3 mode frequency with respect to the 
variation of each cell dimension has been computed (Table 4.4). 
The 2π/3 EH11 mode can degenerate in 2 frequencies of orthogonal polarity. The 
vertical one has been shifted far enough from the operating mode (horizontal polarity) 
in order to avoid its excitation by the RF generator or by the beam itself. This has been 
achieved by means of 2 longitudinal rods crossing off-axis the cells as shown in Fig. 
4.33b. 
 
 

 
Fig. 4.33: sketch of the final 10 cells RF deflector structure. 

 

a 
b
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Table 4.4: local sensitivity of the deflecting mode frequency vs. cell dimensions 
 

Dimension Sensitivity 
A ∂f/∂a=-13.2 MHz/mm 
B ∂f/∂b =-49.7 MHz/mm 
C ∂f/∂t = 2.9 MHz/mm 
D ∂f/∂d =1.2 MHz/mm 

 
Table 4.5: final dimensions of the cell and RF deflectors parameters 

 

a= 21.43 mm 

b = 56.01 mm 

d = 33.33 mm 
Final cell dimensions 

t = 9.53 mm 
f=2.9986 [GHz] 

(MAFIA) 
 

2.9983 [GHz] 
(HFSS) 

 
vg=-0.0237*c 

(MAFIA) 

RF deflector parameters 
(HFSS and MAFIA) 

R/Q=1460.[Ω/m] 
(HFSS) 

 
 
 
The frequency shift of both polarities, caused by the break of the azimuthal symmetry 
due to the rods, has been calculated with the code HFSS. The obtained shifts have 
been of ∼ 50 MHz for the vertical polarity and of ∼ 80 KHz for the operating horizontal 
mode. 
Finally, the frequency of the 2π/3 mode has been calculated with HFSS considering 
the 3D cell profile with rods. Since the code uses a regular polygon to model a circle 
or an arc, depending on the starting vector for faceting, the polygon can be entirely 
inside or outside the arc to be modeled. This error can be in principle reduced 
increasing the number of faces but, unfortunately, this gives numerical and 
convergence problems. In order to control this systematic error, in the final single cell 
simulations the radius of curvature have been properly corrected in order to have the 
corresponding polygon areas equal to those of the ideal circles76. The final dimensions 
of the single cell are reported in Table 4.5 with the 2π/3 mode frequencies obtained by 
HFSS (3D cell with rods) and by MAFIA (2D cell without rods). 

                                                 
76 Simulating some known resonating structures and comparing the results with analytical calculations it can be 
shown that the error in the frequency calculation is reduced by a factor of 10. 
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In this case a precision of ∼ 500 KHz in the frequency of the 2π/3 mode is satisfactory. 
In fact, as shown in Appendix A4.4 an error in the resonant frequency of the mode 
corresponds to an error in the phase velocity of the field given by the equation: 
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(4.22) 
And the effective maximum transverse kick normalized to the nominal one is given 
by: 
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(4.23) 
In Fig. 4.34 the transverse kick normalized to the nominal one is plotted as a function 
of the frequency error. One can immediately observe that an error of 1 MHz gives a 
reduction of the transverse kick of∼ 0.4%. 
The R/Q has been calculated following the formula (4.12) where E/2 is the amplitude 
of the fundamental harmonic of the deflecting field. 
The dispersion curve of the deflecting mode obtained by MAFIA is plotted in Fig. 
4.35 and the absolute value of the electric and magnetic fields in the 3D structure 
simulated by HFSS are plotted in Fig. 4.36. 
 

 
Fig. 4.34: transverse kick normalized to the nominal one as a function of  

the cell resonant frequency error. 
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Fig. 4.35: dispersion curve of the deflecting mode obtained by MAFIA. 

 

 
Fig. 4.36: absolute values of the electric and magnetic fields in the  

3D structure simulated by HFSS. 
 
 
4.3.2 Coupler simulations  
 
In order to evaluate the coupler efficiency the whole structure has to be simulated. 
Since the structure is symmetric with respect to the horizontal plane the volume to 
simulate can be reduced considering one half of the structure and a perfect magnetic 
plane (Fig. 4.37a).  
To reduce, further, the volume to simulate it is possible to do the following 
considerations. The structure shown in Fig 4.37b can be considered as a symmetric 
structure with respect to the longitudinal plane. The excitation at the input port can be 
considered, therefore, as the superposition of the two excitations shown in Fig. 4.38. 
In the “odd” case the longitudinal symmetric plane is a short circuit while in the 
“even” case it is an open circuit. 
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The total S11 can be calculated, therefore, as a sum of the S11 obtained in the two 
simulations. 
The obtained absolute value of the reflection coefficient (|S11|) at the device input port 
is plotted versus frequency in Fig. 4.39b while the HFSS simulated structure is shown 
in Fig, 4.39a with the magnetic field components in the “even” case.  
As shown in Fig. 4.39b it is evident that, at the working frequency 2.99855 GHz, just 
few percent of the input power is reflected. 
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Simmetry plane 

Input 
couplers 

Beam axis 

 
 

Fig. 4.37: symmetries in the RF deflector 
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Fig. 4.38: equivalent circuit of the RF deflector excitation. 
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Fig. 4.39 (a) HFSS simulated structure; (b) absolute value of the reflection coefficient 

obtained by HFSS. 
 
 
4.4 RF Deflector Measurements  
 
 
The deflectors have been made of OFHC high quality copper using hard soldering 
(brazing) technique well mastered in production processes of accelerating structures in 
S band. Soldering has been done in steps, in hydrogen atmosphere. The single cells of 
the deflectors have been produced in the form of cups (Fig. 4.33b). 
Before the production of the final deflectors, an aluminum full-scale prototype has 
been fabricated in order to verify the validity of the performed calculations. 
The measurements (single cell resonant frequency, dispersion curve) have confirmed 
the simulation results for the two different polarities. 
The deflector components have been, then, fabricated with the aid of numerical lathe 
and milling machines. Intermediate measurements made on prototypes copper cells 
and final structure have been performed in order to control the dimensions of the cells 
and the changes introduced by the soldering procedure. 
A dedicated test set was constructed to check the frequency of each cell before 
soldering. Each cell (Fig. 4.40) has been short circuited with two plates (Fig. 4.41) and 
the frequencies of the first two monopoles and dipoles have been measured and 
compared with those obtain by HFSS simulations. The frequency deviations due to the 
presence of measuring antennas, to the air77 and to the cell temperature with respect to 
the nominal one (30°C) have been taken into account with a progressive decoupling of 
the antennas and performing the measurements at different temperatures. The 
comparison of the calculated and measured frequencies in a sample of 8 cells is 
reported in Table 4.6.  

                                                 
77 The erair=1,0008 and introduces a shift in the resonant frequency of the cells of the order of some hundreds of 
KHz. 
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Fig. 4.40: RF deflectors cells before soldering. 
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Fig. 4.41 sketch of the short-circuited cell. 

 
 

Table 4.6: Comparison of calculated and measured frequencies of cells ready for soldering.  
 

 Monopole 1 Monopole 2 Dipole 1 Dipole 2 
HFSS simul. 2105.7 [MHz] 2176.8 [MHz] 3010.9[MHz]  3226.0 [MHz] 
Cell number Mesured frequency deviation [KHz] 

1 -295 -674 96 -846 
2 -395 -599 -179 -846 
3 -325 -549 -79 -771 
4 -435 -675 -189 -926 
5 -375 -535 -264 -840 
6 -335 -594 -44 -826 
7 -335 -554 -104 -825 
8 -295 -534 -104 -826 
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In order to measure the dispersion curve of the structure, 8 cells +2 half-cells have 
been assembled as shown in Fig. 4.42. The |S12| plot is shown in Fig 4.43 for both 
polarities and the sampled dispersion curve is plotted in Fig. 4.44. 
To evaluate the effect of soldering procedure, a series of 4 pilot copper cells have been 
measured before and after soldering showing that the change in the resonant frequency 
due to the soldering procedure is completely negligible. 
The phase advance per cell and the reflection coefficient at the input port of the 
deflector (Fig. 4.47) have been, finally, measured with the technique illustrated in the 
par. 2.4.5. The first results are plotted in Figs. 4.45 and clearly shown that from cell to 
cell there is a phase advance in the range of ±5° that completely satisfy the tolerance 
requirements. The SWR measured at the input port and plotted in Fig. 4.46, where it is 
clearly shown that, at the working frequency, the reflected power is of the order of few 
percent. 
 

 
Fig. 4.42: cells assembly in order to measure the dispersion curve of the structure 

 

 
Fig. 4.43: |S21| of a 8 deflector cells+2 half cells assembly  

(a-horizontal polarity; b-vertical polarity). 



 138

 
 

Fig. 4.44: sampled dispersion curve of 8 cells+2 half-cells of the RF deflectors 
 

 
Fig. 4.45: phase advance per cell measurement results. 

 

 
Fig. 4.46: SWR at the input port of the deflector. 
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Fig. 4.47: Final RF Deflector. 
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Appendices to Chapter 4 
 
 
 
Appendix A4.1: Calculation of the coefficient cn

+ of eq. (4.3) 
 
 
Considering an electric density current J(ω) at a certain waveguide section z1-z2 (Fig. 
1.A4.1), it is possible to calculate the coefficients cn

+ of the eq. (4.3) by the simple 
formula [65]: 

( )
( ) ( ) ( )

�

�

⋅×

⋅−
=+

2

20

0

2
S

tntn

V

zj
zntn

n
dSzhe

dVeJzee

c

n ωβω
ω �  

(1.A4.1) 
 

where the sign “-” refers to the case of forward waves while the sign “+” to the 
backward ones78. 
The density current, in the time domain, of a particle of charge q that moves through 
the waveguide (Fig. 4.6) at the speed of light, is given by: 
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where s is the distance along the particle trajectory, s0 is the unit vector tangent to the 
trajectory and (x’,y’) is the reference system on the plane normal to s0. In the 
frequency domain the equation (2.A4.1) becomes: 
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Considering the beam loading 90° out-of-phase in RF deflectors, one has to consider, 
in the scalar product E⋅J of eq. (1.A4.1), only the longitudinal component of the 
electric field and density current. For a particle moving in the structure J ≅ J⋅z0 and the 
coefficient cn

+(ω,z1,z2) for a backward wave79 can be written in the form: 
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78 For forward waves the group velocity (vg=dω/dβ) and the phase velocity (vph=ω/β) have the same sign while 
for the backward ones have opposite signs. 
79 The RF deflectors for CTF3 are backward structures. 
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where r(z')|particle trajectory is the transverse position of the particle along the structure 
(function of the longitudinal position z') and Π'n is given by: 
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It is easy to verify, from the analytical formulae [73], that80: 
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where Πn is the power flow along the structure81. 
If the deflector length is L and the particle enters at z=0 one obtains the following 
expression: 
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and, therefore the eq. (4.4). 
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Fig. 1.A4.1: sketch of a waveguide excited by an electric current 
 
 
 
 
 
 
 
 

                                                 
80 This is valid, in general, for all propagating fields in which the longitudinal dependence (z) and the transverse 
one (r,ϑ) are separated in the form e(r,ϑ ,z)=et(r,ϑ)·ez(z) [65]. 
81 In the case of backward wave Πn is negative. 
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Appendix A2: Approximated expression for the field in the case of 
dispersion curve linearization in a limited range of 
frequency 

 
 
Considering the equation (4.4) one can develop to the first order in ω the exponential 
term obtaining: 
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Substituting in the equation (4.4) one obtains (82): 
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The second approximation in the interval [ω*-∆ω/2, ω*+∆ω/2] comes out from the fact 
that the group velocity vg for this kind of structures is few percent of the velocity of 
light. 
The field is simply given by the expression (4.6) where one has to develop to the first 
order the exponential term -jβ(ω)z obtaining: 
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82 ω*/c=β(ω*). 
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Considering the integral in dω limited between ω*-∆ω/2 and ω*+∆ω/2 one obtain: 
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(4.A4.2) 
where sinc(x)=sin(x)/x. 
 
 
 
Appendix A4.3: Intuitive approach for the wake field calculation in a tw 

RF deflector 
 
 
Considering the resonant field configuration of eq. (4.1) with a local excitation 
proportional to the leading charge displacement, the energy per unit length stored in 
the section corresponding to the abscissa z after the charge passage is given by: 
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(1.A4.3) 
 

where -½V(z) is the voltage seen by the charge q (83), r(z) is the q displacement with 
respect to the axis and E/2 is the field amplitude. 
Remembering the definition (4.12) of the R/Q and that: 
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one simply obtains that the amplitude of the excited field at the abscissa z is given by: 
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(3.A4.3) 
 

Since vg<<vph it is reasonable to suppose that the E field generated by the particle 
passage has the rigid amplitude profile given by (3.A4.3), a phase velocity equal to c 
and a negative group velocity vg obtaining the equation (4.13). 
 
 
 
 
                                                 
83 The factor ½ comes out from the beam loading theorem. 
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Appendix A4.4: Phase velocity and kick deviation as a function of a cell 
frequency error 

 
Since vph=ω/β it follows that: 
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(1.A4.4) 
The integrated transverse force along the structure for a particle with a velocity equal 
to c is given by: 
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(2.A4.4) 
the initial phase ∆ϕ of the travelling wave can be chosen in order to maximize the 
integrated transverse force: 
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and the maximum integrated force becomes: 
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Since LFdzF
L

nom 0

0

⊥⊥ =�  it follows directly the eq. (4.23). 
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Chapter 5 
 
 
Resonant bunch length-position monitor for ultra short bunches  
 
 
 
 
 
The measure of the bunch length and transverse position of the beam inside the 
vacuum chamber is a very important issue in both circular and linear accelerators.  
It allows tuning the machine parameters in order to obtain the better performances in 
terms, for example, of luminosity or beam power extraction as in the CTF3 case. 
A large number of bunch length monitors exists both in the time domain and in the 
frequency domain. In particular, the devices that use the microwave spectroscopy 
[113_115] are based on the analysis of the beam characteristics in the frequency 
domain. By this analysis it is possible to obtain the bunch parameters in the time 
domain such as a bunch length or a position inside the vacuum chamber. 
Different techniques have been proposed to couple the field radiated by the bunch in a 
transmission line leading the signal to the detection system. 
In this chapter the design of a bunch length-position monitor is discussed and the 
microwave measurement results made on a prototype are illustrated.  
In the first paragraph the theoretical analysis of the device is presented. In the second 
paragraph the simulations results obtained by HFSS and MAFIA are reported and in 
the last paragraph the theoretical results are compared with the measurements made on 
a prototype. 
 
 
 
 
 

5.1 Analytical approach 
 
 
Bunch length monitor 
 
The monitor consists of a small coaxial cavity coupled to the beam pipe trough four 
slots (Fig. 5.1 and Table 5.1). If the length of the cavity is properly chosen, the beam 
power spectrum lines excite the resonant TEM modes in the cavity. Probing the field 
by a small antenna it is possible to measure the amplitude of two beam power 
spectrum lines [116-118]. 
More precisely, as illustrated in the par. 1.3.3, the Fourier components of an infinite 
train of gaussian non-oscillating bunch are given by the equation (1.83).  
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Beam pipe axis 

probe The prototype has 
rounded corner 

L 

 
Fig. 5.1: sketch of the microwave monitor. 

 
Table 5.1: monitor dimensions 

 

d 30 mm 

b 10 mm 

L 52 mm 

w 2 mm 

l 5 mm 

h 1 mm 

 
 
Knowing the ratio between the nth harmonics component of the beam and the average 
powers extracted by a probe coupled with the field in the cavity at two different 
harmonics: 
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the bunch length can be determined with the formula: 
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where PE1,2 are the average powers extracted by the probe at the frequencies ω1,2. 
The ratios (5.1) can be obtained in three different ways: 
 

a) by an analytical treatment of the e.m. problem; 
b) by the results of an e.m. simulation code; 
c) by a calibration of the monitor with bench RF measurements. 
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The first approach allows determining the main key parameters that gives the 
extracted power as a function of the monitor dimensions. 
The second approach allows validating the theoretical results choosing more in detail 
the probe dimensions in order to obtain a certain coupling factor between the field in 
the cavity and the antenna. 
The third way can be considered, finally, as the final step that allows determining the 
calibration coefficients for the constructed devices. 
Analytically, the amplitude of the resonant e.m. field in the cavity as a function of the 
beam current can be obtained by the modified Bethe’s theory [119,120]. 
This theory has been already applied for the study of similar problems [121] and it is 
well described in literature. 
The basic idea is to find the equivalent electric and magnetic dipole momenta of the 4 
holes as a function of the beam current and hole dimensions. This dipoles momenta 
with intensities proportional to the electric and magnetic field of the primary field 
radiated by the beam with a correction factor that takes into account the excited field 
in the cavity itself, allows finding the amplitude of the resonant field in the cavity and, 
therefore, the ratios (5.1). 
Following the calculations reported in [116] the ratio between the average powers 
dissipated in the cavity P1,2 (

84) and the beam current spectrum lines are given by: 
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(5.3) 
 

where ω1,2 and Q1,2 are the resonant angular frequencies and the quality factors of the 
two TEM modes, αE, αM are the electric and magnetic polarizabilities (see Appendix 
A5.1) and the other quantities are defined in Fig. 5.1. 
The Q-factors of the resonant TEM modes and αE, αM can be determined knowing the 
monitor dimensions and the material conductivity. 
As an example, with the dimensions of Table 5.1, the P1,2 values and the ratio P1/P2 are 
reported in Table 5.3 (first column). 
The values of P1 and P2 as a function of the bunch length are reported in Fig. 5.2 
assuming a 100 mA average beam current and a full coupling between the Fourier 
components of the beam and the resonant modes. 

                                                 
84 The power dissipated in the cavity is proportional through the β coupling coefficient of the antenna to the 
power dissipated in the external load PE (see eq. (2.18)). 
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Fig. 5.2: values of P1 and P2 as a function of the bunch length assuming 
 a 100 mA average beam current and a full coupling between the Fourier 

 components of the beam and the resonant modes. 
 
 
 
Beam position monitor 
 
The monitor can be also used to determine the transverse position of the beam. In this 
case the amplitudes of the two first dipolar modes TE111 excited by the off-axis 
passage allow calculating the transverse displacement of the bunches. 
The TE modes have to be properly tuned in order to resonate at one of the frequencies 
of the beam power spectrum lines.  
In this case, the average power extracted by two probes coupled with the two dipolar 
modes (85) can be expressed as a function of the beam current and transverse 
displacement and can be written in the general form: 
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(5.4) 
 

where the ( )TEI ω~  is the beam power spectrum line at the resonant frequency of the 
TE111 modes, r is the transverse displacement of the beam and φ is the angle between 
one of the two dipolar mode and the beam displacement. 

                                                 
85 The two polarities ore 90° tilted. 
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Knowing by theory, simulations or measurements the calibration coefficient )(
,0

E
TEP π  

and the beam power spectrum line, the eq. (5.4) allows to determine the values of r 
and |cos(φ)| by a measure of the powers )(

,0
E

TEP π . 

The analytical treatment based on the Bethe’s theory follows steps similar to those 
done in the TEM modes calculation [122]. 
The normalized power dissipated in the cavity (PTE) can be expressed by the formula: 
 

2r
Q

G
P

TE
TETE ω=  

(5.5) 
 

where QTE is the quality factor of the TE111 mode and the function G depends only by 
the cavity geometry (as reported in [122]). 
As the general theory of dipolar modes states (par.1.1.3), the extracted power is 
proportional to the r2. Considering the dimensions of Table 5.1, the value of 
P’TE=PTE/r2 is 169 [W/m2A2]. The PTE value is plotted in Fig. 5.3 as a function of the 
transverse displacement r. 
 
 

 

 
Fig. 5.3: values of PTE as a function of the transverse  

displacement r assuming φ=0: theory and simulations (HFSS). 
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5.2 Simulations results 
 
 
Bunch length monitor  
 
To compare the analytical results with the simulations it has been considered an 
impedance model for the beam-cavity interaction. Knowing the R/Q of the resonant 
modes TEM1,2, the ratios (5.1) are simply given by: 
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(5.6) 
 

The R/Qs, the Q factors and the resonant frequencies of the resonant modes can be 
determined simulating the structure with the eigenmode solver of HFSS and MAFIA 
and are reported in Table 5.2 considering the dimensions of Table 5.1. 
 
 
 

Table 5.2: R/Qs, resonant frequencies and the Q factors  
obtained by HFSS and MAFIA 

 

  HFSS MAFIA 

R/Q 1.17e-6 Ω 8.67e-7 Ω 

Q 6300 6300 TEM1 

f 2.883 [GHz] 2.883 [GHz] 

R/Q 6.94e-6 Ω 4.71-6 Ω 

Q 8790 8950 TEM2 

f 5.762 [GHz] 5.762 [GHz] 

 
 
 
 
The HFSS simulated structure with the E field lines of the TEM1 mode is shown in 
Fig. 5.4a. Because of the symmetries just one eighth of the structure has been 
simulated with the proper boundary conditions.  
The longitudinal electric field obtained by HFSS and calculated at the center of the 
beam pipe is reported in Fig. 5.4b.  
Considering the dimensions of the prototype, the obtained average normalized 
dissipated power P1,2 and the normalized ratio P1/P2 are reported in Table 5.3 (second 
column) and compared with the analytical and measurement results. 
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Fig. 5.4: (a) HFSS simulated structure with the E filed lines; (b) longitudinal electric  

fields obtained by HFSS and calculated at the center of the beam pipe. 
 
 
 
Beam position monitor  
 
As done for the TEM modes an impedance model for the beam cavity interaction can 
be adopted also in this case. 
According to the theory, for small displacements from the beam pipe axis the power 
dissipated in the cavity can be expressed as: 
 

2
2

2 ~

'

'

2

1~
Ir

P

Q
Q

R
IPP

TE

TE
TE

TE
TETE

�����

==  

(5.7) 
 

the R’TE/QTE can be determined simulating the structure by HFSS or MAFIA.  
In this case it is necessary to simulate one quarter of the structure because of the 
cos(φ) dependence of the field with the proper boundary conditions.  
The HFSS simulated structure with the E field lines is shown in Fig. 5.5a while the 
longitudinal electric field for different axis displacements is reported in Fig. 5.5b. 
The plot of PTE as a function of r is reported in Fig. 5.3 and compared with the 
analytical result. The resonant frequency given by HFSS is 3.744 GHz while the Q 
factor equal to ∼ 9000 . 
 
 

a 

b 
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Fig. 5.5: (a) HFSS simulated structure with the E field lines; (b) longitudinal electric  

fields obtained by HFSS and calculated for different axis displacements 
 
 
5.3 Prototype measurements 
 
 
Considering a small probe coupled to the cavity modes, the normalized total average 
dissipated powers in the load+cavity are related to the average dissipated powers in 
the load connected to the probe by the simple formula (see par. 2.1.2): 
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where β1,2,TE is the coupling coefficients between the probe and the cavity modes 
TEM1,2 and TE111 respectively, )(

,2,1
E

TEP  is the dissipated power in the external load in the 

three cases and TEI ,2,1

~  is the absolute value of the beam Fourier component 

corresponding to the three resonant mode frequencies. 
Following this general consideration it is possible to correctly compare the 
measurement with the theoretical results. 
 
 

a 

b 
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Fig. 5.6: bunch length-position monitor aluminum prototype. 

 
 
 

Bunch length monitor 
 
Wire measurements have been made on the aluminum prototype shown on Fig. 5.6. 
The prototype dimensions are those of Table 5.1 referred to Fig. 5.1. A small antenna 
coupled to the E field has been inserted to probe the signal on the cavity. 
As illustrated in par. 2.43, in the wire measurement the beam current is substituted 
with the current flowing on a wire (in this case of radius r=1.5 mm).  
The measurements setup is shown Fig. 5.7a and schematically represented in Fig 5.7b 
(the equivalent circuit is equal to those discussed in the par. 2.4.3).  
In order to avoids reflections at the input ports 1 and 2 two tapered sections of length 
Ltap=20 cm have been inserted in order to match the 50 Ω impedance of the Network 
Analyzer with the impedance of the coaxial waveguide made by the inner wire and the 
beam pipe (Zc ≅ 114 Ω). The measured transmission coefficients |S21| and |S31| are 
shown in Fig. 5.8. 
Since the |S21| is almost equal to 1 the networks A and B (tapered section) realized a 
perfect matching and is, therefore, possible to use the formula (2.38) for the transfer 
impedance calculation. The total average dissipated powers in the external load are 
simply given by: 
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(5.9) 
 

The results obtained by measurements must be considered as calibration coefficients 
that allow calculating the normalized average dissipated power in the load, and, 
therefore, the σz when the bunch length monitor is inserted in the accelerator (eq. 
(5.2)). 
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Fig. 5.7: (a) measurements setup; (b) schematic representation of the measurement and 

equivalent circuit. 
 

 
Fig. 5.8: (a) measured transmission coefficients S31 in the range 2-6 GHz; (b) measured 

transmission coefficients S31 and S21 near the TEM resonances. 
 
 
The total average dissipated powers in the cavity+external load are given by: 
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In order to compare the measurement results with the theoretical calculations the 
powers given by eq. (5.10) have to been properly normalized to the theoretical Q 
factors. In fact, since in the prototype there are additional losses due to RF contact in 
the final assembly, the Q factors (also unloaded) are very low compare to the 
theoretical one (QM1≈1400, QM2≈1600).  
 

a 
b 
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Following the formula (5.6) one has to do the following normalization: 
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Q
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(5.11) 
The P′1,2 powers and the ratios P′1/P′2 obtained after this further normalization are 
plotted in Table 5.3 with the theoretical and numerical results. 
As pointed out previously, in the wire measurements the beam current is substituted 
with the current flowing on a wire. This procedure induces some “intrinsic” errors in 
the evaluation of the calibration coefficients (5.1) as discussed in the par. 2.4. These 
errors can be, in principle, controlled (or evaluated) performing different 
measurements with a reduced wire radius. Unfortunately, doing this, the length of the 
tapers has to be increased in order to guarantee the correct matching. Measuring, 
anyway, the resonant frequency and Q factors by the |S33| at the antenna port with and 
without the wire inside the beam pipe, one notes that the perturbation induced by the 
wire, in this two quantities, is completely negligible. 
The possible measurements uncertainty can be, instead, summarized as follows: 
 
a) since the matching of the impedances with the tapered section is not perfect, 

the reflected wave at the port 2 introduces a perturbation in the cavity field and, 
consequently, an error in the evaluation of the transfer function between the 
beam current and the cavity field. 
Considering the measured scattering parameters and the calculations developed 
in the par. 2.4.3, it is possible to estimate the introduced uncertainty in the 
evaluation of the transfer function and, therefore, in the P1,2 calculations. This 
is of the order of ∼± 0.2% for P1 and ∼± 1% for P2. 
 

b) The wire inside the beam pipe can be slightly of axis. Also this induced error 
can be evaluated performing different measurements in different prototype 
positions and as evaluated to give a negligible effect. 

 
The differences between the theory, the simulations and the measurements can be 
explained considering that: 
 

a) the theory has some “intrinsic” limitations in the evaluation of the 
coefficient αE, αM due to the finite depth of the slots [120] and due to the 
approximation l<<λ; 

b) in the simulations the mesh near the axis of the beam pipe has to be heavily 
increased in order to correctly evaluate the R/Q because the E field on the 
beam pipe axis has an amplitude much smaller than in the cavity. This can 
give some numerical noises even if the solution converges in few adaptive 
passes. 
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c) the prototype has some non-negligible differences with respect to the 
structure considered in the theory and simulations: two screws that are used 
as tuners of the TEM modes, the antenna and the rounded corners (Fig. 5.1). 
Moreover, due to the non-perfect RF contacts there are more losses than can 
give a certain perturbation of the field in the cavity. 

 
Table 5.3: Comparison between the normalized dissipated powers. 

 

 THEORY HFSS MAFIA MEAS 

P1 2.01e-3 0.74e-2 0.55e-2 1.58e-2 

P2 0.73e-2 0.61e-1 0.42e-1 0.89e-1 

P1/P2 1.38e-1 0.60e-1 0.65e-1 0.88e-1 

 
 

Beam position monitor 
 
To excite the dipolar modes the wire inside the beam pipe has to be properly displaced 
from the axis of the beam pipe. To do this, a thin nylon wire has been connected to the 
central wire in order to displace it from the beam pipe axis in a controlled way [122] 
and exciting one of the two polarities (φ=0 in the general formula (5.4)). The 
measurements set-up, except this, is the same as that discussed in the previous section. 
The |S31| is reported in Fig. 5.9 as a function of frequency for few mm wire 
displacement. The values of the two peaks corresponding to the TEM modes do not 
depend on the axis displacement. On the contrary the value of the peak corresponding 
to the TE111 mode is very sensitive with respect the displacement itself and the |S31| 
grows linearly with the axis displacement (Fig. 5.10). 
Also in this case the formula (5.9) allows to determine the calibration coefficients of 
eq. (5.4) and, since the considered axis displacements are much less than the beam 
pipe radius, the characteristic impedance Zc can be considered constant and equal to 
∼ 114 Ω. The corresponding )(E

TEP  grows, therefore, quadratically with the axis 
displacement. 
To correctly compare the measurement and theoretical results and the theoretical one 
has to make the normalizations (5.10)-(5.11). In the range 0-1 mm the three results 
give a quadratic behavior of the average dissipated power of the form: 
 

2
2 ~

' IrPP TETE =  

(5.12) 
 

The obtained PTE as a function of r is reported in Fig. 5.11 and compared with the 
theoretical and simulations results. 
Similar comments to the previous section can be done for the measurement errors and 
theory approximations. 
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Fig. 5.9: |S31| as a function of frequency for few mm wire displacement. 

 
Fig. 5.10: |S31(ωT)| corresponding to the TE111 mode as a function of the axis displacement 

 
Fig. 5.11: values of PTE as a function of the transverse  

displacement r assuming φ=0: theory, simulations (HFSS) and measurement. 
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Appendices to Chapter 5 
 
 
 
Appendix A5.1: Expression of the Q factor and polarizabilities 
 
 
The quality factor of the TEM modes is simply given by: 
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where the quantities are defined in Fig. 5.1 and the skin depth δ is given by: 
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The electric and magnetic polarizabilities are given by: 
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Conclusions 
 
 
The aim of this work has been to illustrate the study of three different microwave 
devices for the control and the manipulation of particle beam in accelerators.  
The study has included both the analysis of the beam dynamics effects induced by the 
devices and the e.m. design of the devices themselves. The first purpose has been 
achieved by using analytical theories or numerical tracking codes, while the design of 
the components has been done using e.m. simulation codes (MAFIA and HFSS) or 
e.m. theories (as in the case of the bunch length-position monitor). 
Each device has been, then, completely characterized with microwave measurements 
and the experimental results have been compared with the theoretical ones. 
 
Control of bunch length with a high harmonic cavity in DAΦNE 
 
The study and the design of a high harmonic RF system for the accelerator DAΦNE 
has been mainly motivated by the demand of lifetime improvement and by the 
increasing of the natural Landau damping mechanism. The beam dynamics in the 
accelerator DAΦNE with a harmonic system has been analysed both using analytical 
theories and simulation codes. In particular the problem of the gap in the bunch filling 
pattern has been carefully analysed and the final bunch distribution and Touschek 
lifetime have been calculated. 
The use of a passive harmonic cavity in the lengthening regime can improve the beam 
lifetime of the DAΦNE beam by a factor equal to ∼ 80% if compared with the present 
operation condition. Nevertheless, the presence of a gap in the bunch filling pattern 
produces a spread in the Touschek lifetime and bunch distribution. 
The analysis of the cavity parked option has shown the possibility to recover 
approximately the operating conditions before the harmonic cavity installation. 
The design procedure has been described and the obtained results have been compared 
with measurements. The HOM damping realized with ferrite rings shows that all the 
higher order modes in the cavity are well damped. 
 
RF Deflectors for CTF3 
 
The beam dynamics in the Combiner Ring of CTF3 has been studied by modelling the 
wake fields in the RF deflectors. Different approximated formulae have been 
considered and discussed. A multi-particle multi-bunch tracking code has been written 
in order to study the multi-passage multi-bunch transverse beam dynamics. 
The code has been developed considering both the case of bunches without finite 
bunch length than the case of a finite length. 
The obtained results have shown that the emittance growth due to the wake fields in 
the deflectors is a small fraction of the bunch design emittance if the trains are 
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injected perfectly on axis. Some injection errors and ring phase advances can, 
however, increase the transverse emittance of a factor more than 10. 
The design of the devices, realised by HFSS and MAFIA, has been discussed. The 
final RF deflectors measurements have been shown and compared with the theoretical 
results showing a very good agreement. The recombination with the contructed RF 
deflectors have been also successfully tested in the CTF3 Preliminary Phase [123] at 
low current. 
 
Resonant bunch length-position monitor for ultra short bunches 
 
The study of a bunch length-position monitor has been done using both the Bethe’s 
theory and the simulations codes HFSS and MAFIA.  
The monitor consists of a small coaxial cavity coupled to the beam pipe through four 
slots. Probing the resonant fields by a small antenna, it is possible to determine the 
bunch length and the position of bunches inside the beam pipe. 
The wire measurements made on a prototype in the longitudinal and transverse cases 
have been discussed and compared with the theoretical results.  
The obtained theoretical and experimental results confirm the potential application of 
this device as a bunch-length position monitor. The very low coupling impedance of 
the device and the possibility of a calibration by simply wire measurements make the 
device hopefully usable in the accelerators machines.  
 



 161

Bibliography 
 
 
 
[1] L. Palumbo, et al., “Wake Field and Impedance”, CERN 95-06, Vol. I, Geneve 

1995. 
 
[2] “Computer Codes for Particle Accelerator Design and Analysis: a 

Compendium”, LA-UR-90-1776, 1990. 
 
[3] V.G. Vaccaro, CERN ISR-RF/66-35, 1966. 
 
[4] W. K. H. Panofsky and W. A. Wenzel, “Transverse Deflection of Charged 

particles in Radio Frequency Fields”, Rev. Sci. Instr., Vol 27, 1956. 
 
[5] A. W. Chao, “Physics of Collective Beam Instabilities in High Energy 

Accelerators”, John Wiley & Sons, 1993. 
 
[6] A. W. Chao, “Coherent instabilities of a relativistic bunched beam”, SLAC 

PUB-2946, 1982. 
 
[7] T. Weiland, “On the Computation of Resonant Modes in Cylindrical Symmetric 

Cavities”, Nucl. Instr. and Meth. in Phys Res.,Vol. 216, pp. 329-349, 1983. 
 
[8] T. Weiland and R. Wanzemberg, “Wake Fields and Impedances”, DESY M-

91-06, 1991. 
 
[9] T. Weiland, “Transverse Beam Cavity Interaction”, Nucl. Instr. and Meth. in 

Phys. Res., Vol. 212, p. 13, 1983. 
 
[10] A. Hofmann and B. Zotter, “Improved Impedance Models for High Energy 

Accelerators and Storage rings”, CERN-LEP/TH-88-51, 1988. 
 
[11] S. Heifets, “Broad Band Impedance of B-Factory”, SLAC AP-93, 1992. 
 
[12] K. Bane, “The Calculated Longitudinal Impedance of the SLC Damping Ring”, 

SLAC PUB-4618, 1988. 
 
[13] K. Bane, “Bunch Lengthening in the SLC Damping Rings”, SLAC PUB-5177, 

1990. 
 
[14] M. Migliorati, et al., “Bunch Lengthening in DAΦNE Main Ring”, DAΦNE 

Technical Note G-22, LNF Frascati 1993. 



 162

[15] P. B. Wilson, “High-Energy Electron Linacs: applications to storage ring RF 
Systems and Linear Collider”, SLAC PUB-2884, 1982. 

 
[16] J. D. Jackson, “Classical Electrodynamics”, Wiley NY, 1975. 
 
[17] M. Migliorati, “Progetto DAΦNE (Double Annular Ring for Φ Nice 

Experiment) - INFN Frascati: Studio e Simulazione della Dinamica 
Longitudinale dei Fasci di Particelle”, Tesi di Laurea A.A. 1990-91, 
University of Rome “La Sapienza”, 1991. 

 
[18] M. Sands, “The Physics of electron Storage Rings. An Introduction”, SLAC-

121, UC-28 (ACC), 1919. 
 
[19] H. Goldstein, “Classical Mechanics”, Addison-Wesley, 1973. 
 
[20] J. Le Duff, “Longitudinal Beam Dynamics in Circular Accelerators”, CERN 

94-01, Vol. I, Geneve 1994. 
 
[21] C. Bernardini and B. Touschek, “On the Quantum Losses in an Electron 

Synchrotron”, LNF Internal Note n. 34, LNF Frascati 1960. 
 
[22] M. Migliorati, “Effetti Collettivi nella Dinamica dei Fasci in una Macchina 

Acceleratrice Circolare con Applicazioni al Progetto DAΦNE”, PhD Thesis, 
Roma, University of Rome “La Sapienza”,1996. 

 
[23] R. H. Helm, et al., “Evaluation of Synchrotron Radiation Integrals”, IEEE 

Trans. on Nucl. Sci. NS-20, p. 900, 1973. 
 
[24] J. Haissinski, “Exact Longitudinal Equilibrium Distribution of Stored Electrons 

in the Presence of Self-Fields”, Il Nuovo Cimento, Vol. 18 B, N 1, p. 72, 1973. 
 
[25] S. Petracca, “Efficient Analytical and Numerical Solutions of Haissinki 

Equation”, Particle Accelerators, Vol. 42, 1, p. 45, 1993. 
 
[26] F. Sacherer, “Methods for Computing Bunched-Beam Instabilities”, CERN/SI-

BR/72-5, 1972; F. Sacherer, “A Longitudinal Stability Criterion for Bunched 
Beams”, IEEE Trans. on Nucl. Sci. NS-20, 825, 1973; F. Sacherer, “Bunch 
Lengthening and Microwave Instability ”, (Part 1, Part 2) CERN/PS/BR/77-5, 
77-6, 1977. 

 
[27] For example: A. Chao, op. cit.; B. Zotter, “Longitudinal Stability of Bunched 

Beams”, (Part 1, Part 2, Part 3), CERN-SPS/81-18, 81-19, 81-20, (DI), 1981; J. 
L. Laclare, “Bunched Beam Coherent Instabilities”, CERN 87-03, Vol I, p. 
264, Geneve 1987. 



 163

 
[28] J. M. Wang and C. Pellegrini, “On the Condition for a Single Bunch High 

Frequency Fast Blow-up”, Proc. of the High Energy Accelerator Conference, 
CERN, 1990. 

 
[29] K. Oide, “A Mechanism of Longitudinal Single Bunch Instability in Storage 

Rings”, Particle Accelerators, Vol. 51, pp. 43-52, 1995. 
 
[30] M Zobov, et al., “Bunch Lengthening and Microwave Instability in the DAΦNE 

Positron ring”, DAΦNE Technical Note BM-3, LNF Frascati 1998. 
 
[31] A. Chao, et al., “A Weak Microwave Instability with Potential Well Distortion 

and Radial Mode Coupling”, Proc of the 1995 Particle Acc. Conf., Dallas 
1995. 

 
[32] D. Boussard, “Observation of Microwave Longitudinal Instabilities in the 

CPS”, CERN-LABII/RF/INT/75-2, 1975. 
 
[33] M Migliorati, et al., “Bunch Lengthening in DAΦNE main ring”, DAΦNE 

Technical Note G-22, LNF Frascati 1993. 
 
[34] K. L. F. Bane and K. Oide, “Simulations of the Longitudinal Instability in the 

SLC Damping Rings”, Proc of the 1993 Particle Acc. Conf., Washington, pp. 
3339-3341, 1993. 

 
[35] R. Siemann, “Computer Simulation of Bunch Lengthening in SPEAR”, Nucl. 

Instr. and Meth. in Phys. Res., Vol. 203, p. 57, 1982. 
 
[36] T. Weiland, “On the Qualitative Prediction of Bunch Lengthening in High 

Energy Electron Storage Rings”, DESY 81-088, 1981. 
 
[37] M. Zobov, et al., “Collective Effects and Impedance Study for the DAΦNE-Φ 

Factory”, LNF 95/041, 1995. 
 
[38] I. S. Gradshteyn and I. M. Ryshik, ”Table of Integrals, Series, and Products”, 

Accademic Press Inc., 1990. 
 
[39] A. Hofmann, “Beam Instabilities”, CERN 95-06, Vol. I, Geneve 1995. 
 
[40] D. Boussard, “Beam Loading”, CERN 95-06, Vol. I, Geneve, 1995. 
 
[41] M. Bassetti, et al., “A time Domain Simulation Code of the Longitudinal 

Multibunch Instabilities”, DAΦNE Technical note G-19, LNF Frascati 1993. 



 164

 
[42] M. Bassetti, “Finite Difference Equations Calculations of Beam-Cavity 

Coupling Instability”, LNF Internal Note 67/45, LNF Frascati 1967. 
 
[43] S. Bartalucci, et al., “Analysis of Methods for Controlling Multibunch 

Instabilities in DAΦNE”, Particle Accelerator, Vol. 48, p. 213, 1995. 
 
[44] M. Bassetti, et al., “DAΦNE Longitudinal Feedback”, Proc. Of the 1992 

European Particle Acc. Conf., Berlin 1992. 
 
[45] For example: “An Asymmetric B-Factory”, LBL PUB-5303, 1991. 
 
[46] F. Marcellini, “Progetto DAΦNE: Caratteristiche Teoriche e Sperimentali 

della Cavità Acceleratrice e Sviluppo di un Sistema di Soppressione dei Modi 
Superiori”, Tesi di Laurea A.A. 1991-92, University of Rome “La Sapienza”, 
1992. 

 
[47] P. Marchand, “Damping of the Parasitic Modes in the 500 MHz RF Cavities 

for the Storage Ring of the B-Meson Factory Proposed at PSI”, PSI TM-12-89-
06, 1989. 

 
[48] P. Arcioni and G. Conciauro, “Feasibility of HOM-Free Accelerating 

Resonators: Basic Ideas and Impedance Calculations”, Particle Accelerators, 
Vol. 36, p. 177, 1991. 

 
[49] S. De Santis, “Progetto DAΦNE: Sviluppo di un Sistema di Soppressione dei 

Modi di Ordine Superiore della Cavità a Radiofrequenza Mediante 
Accoppiamento con Guide d’Onda Adattate”, Tesi di Laurea A.A. 1992-93, 
University of Rome “La Sapienza”, 1993. 

 
[50] R. Boni, et al., “Kirchoff’s Approximation for Evaluating the Coupling of 

DAΦNE RF Cavity with Waveguide Dampers”, DAΦNE Technical note RF-
15, LNF Frascati 1994. 

 
[51] D. Alesini, et al., “DAΦNE injection kicker: electromagnetic analysis of 

trapped modes and damping antenna design”, Proc. of International Workshop 
on Performance Improvement of Electron-Positron Collider Particle Factories: 
e+e- Factories ’99, KEK Tsukuba (Japan), 1999. 

 
[52] A. Ghigo, D. Alesini, et al., “Hom damping in the DAΦNE injection kickers”, 

EPAC, Vienna 2000. 
[53] D. Alesini, “Studio Teorico e Sperimentale di un’antenna per l’Assorbimento 

dei Modi in una Struttura Risonante con Applicazione al Kicker si Iniezione 



 165

dell’Acceleratore DAΦNE”, Tesi di Laurea A:A 1997-98, University of Rome 
“La Sapienza”, 1999. 

 
[54] H. G. Hereward, “The Elementary Theory of Landau Damping”, CERN PS 65-

20, 1965. 
 
[55] M Migliorati, et al., “Landau Damping of Longitudinal Multi-Bunch 

Instabilities in DAΦNE”, DAΦNE Technical Note G-21, LNF Frascati 1993. 
 
[56] M Migliorati, et al., “Bunch Length Control in DAΦNE by a Higher Harmonic 

Cavity”, Nucl. Instr. and Meth. in Phys. Res., Vol. 354, pp. 215-223, 1995. 
 
[57] A. Wrulich, “Single Beam Lifetime”, CERN 94-01, Vol. I, Geneve 1994. 
 
[58] W. Scandale, “Dynamic Aperture”, CERN 95-06, Vol. I, Geneve 1995. 
 
[59] S. Guiducci, “Beam Lifetime in DAΦNE”, DAΦNE Technical Note L-12, LNF 

Frascati 1993 
 
[60] C. Bernardini, B. Touschek, et al., “Lifetime and Beam Size in Storage Ring”, 

Phys. Rev. Lett., Vol. 10, 1963. 
 
[61] H. Bruck, “Accélérateurs Circulaires de Particles”, Presses Universitaires de 

France, Paris 1966. 
 
[62] G. Dôme, “RF Theory”, CERN 92-03, Vol. I, Geneve 1992. 
 
[63] S. Ramo, et al., “Field and Waves in Communication Electronics”, John Wiley 

& Sons, 1965. 
 
[64] T. Wangler, “RF Linear Accelerators”, John Wiley & Sons, NY, 1998. 
 
[65] R.E. Collin, “Foundation for Microwave Engineering”, McGraw Hill, 1992. 
 
[66] M. Lapostolle and A. L. Septier, “Linear Accelerators”, North-Holland 

Publishing Company, Amsterdam, 1970. 
 
[67] The MAFIA collaboration, “User’s Guide MAFIA Version 4”, CST GmbH, 

Lauteschlagerstr. 38, D-64289, Darmstad; www.cst.de. 
 
[68] T. Weiland, AEÜ Int. Journ. of Electronic and Communications, Vol. 31, p. 

116, 1977. 
 



 166

[69] T. Weiland, AEÜ Int. Journ. of Electronic and Communications, Vol. 31, p. 
308, 1977. 

 
[70] T. Weiland, Particle Accelerators, Vol. 15, p. 245, 1984. 
 
[71] T. Weiland, Particle Accelerators, Vol. 17, p. 277, 1985. 
 
[72] www.ansoft.com. 
 
[73] Y. Garault, “Etude d´une classe d´ondes électromagnétiques guidées : les 

ondes EH; application aux structures déflectrices pour les séparateurs à onde 
progressive de particules relativists”, CERN 64-43, 1964. 

 
[74] A. Falten, et al., Proc. 8th International Conference on High Energy 

Accelerators, p 338, 1971. 
 
[75] M. Sands and J. Rees, “A Bench Measurement of the Energy Loss of a Stored 

Beam to a Cavity”, SLAC report PEP-95, 1974. 
 
[76] H. Hahn and F. Pedersen, “On Coaxial Wire Measurements of the Longitudinal 

Coupling Impedance”, BNL 50870, Particle Accelerators and High Voltage 
MachinesTID-4500, 1978. 

 
[77] M. G. Billing, et al., Proc. of the 1979 Particle Acc. Conf., p. 3583, 1979. 
 
[78] A. Argan, et. al., “On the Sands and Rees Measurement Method of 

Longitudinal Coupling Impedance”, Proc. of the 1999 Particle Acc. Conf, New 
York, 1999. 

 
[79] A. Argan, “L’impedenza Longitudinale negli Acceleratori di Particelle”, Tesi 

di Laurea, A. A. 1996-97, University of Naple “Federico II”, 1997. 
 
[80] F. Caspers, “Beam Impedance Measurement Using the Coaxial Wire Method”, 

CERN PS/88-59,1988. 
 
[81] F. Marcellini, D. Alesini, et al., “Beam coupling impendance measurements of 

the DAΦNE vacuum chamber components”, Proc. of International Workshop 
on Performance Improvement of Electron-Positron Collider Particle Factories: 
e+e- Factories ’99, KEK Tsukuba (Japan), 1999. 

 
[82] L. S. Walling et al., “Transmission-line impedance measurements for an 

advanced hadron facility”, Nucl. Instr. and Meth. in Phys. Res. A, Vol. 281, p. 
433, 1989. 

 



 167

[83] L. C. Maier, J. C. Slater, J. App. Phys., Vol. 23, No. 1, p. 68, 1952. 
 
[84] E. L. Ginzton, “Microwave Measuremnts”, McGraw-Hill, Ch. 10, 1957. 
 
[85] L. H. Chang, et al. “Effects of the Landau Cavity on the Electron Beam”, PAC, 

1997. 
[86] M. Boscolo, et al., “Simulations and Measurements of the Touschek 

Background at DAΦNE”, EPAC, Paris 2002. 
 
[87] M. Zobov, D. Alesini et al., “Luminosity performace at DAΦNE”, Proc. Of the 

2002 European Part. Acc. Conf., Paris, 2002. 
 
[88] A. Gallo, D. Alesini, et al., “Design status of a high harmonic RF system for 

DAΦNE”, Proc. Of the 2000 European Part. Acc. Conf., Vienna, 2000. 
 
[89] A. Ghigo, D. Alesini, et al.,”DAΦNE Broadband Impedance”, Proc. Of the 

2002 European Part. Acc. Conf., Paris, 2002. 
 
[90] J. Le Duff, “High Luminosity”, CERN 95-06, Vol. I, Geneve 1995. 
 
[91] M. A. Furman, “Hourglass Effects for Asymmetric Colliders”, PAC, p. 422. 

San Francisco 1991. 
 
[92] A. Gallo, “A RF Feedback for DAΦNE”, DAΦNE Technical Note RF-6, LNF 

Frascati 1992. 
 
[93] A. Poncet, “Ion Trapping and Clearing”, CERN 95-06, Vol. II, Geneve 1995. 
 
[94] J. M. Byrd, et al., “Transient beam loading effects in harmonic RF system for 

ligth sources”, Phys. Rev. Spec. Top., Vol. 5, 2002. 
 
[95] A. Gallo private communications. 
 
[96] S. Guiducci, “Beam Lifetime Studies in DAΦNE”, Proc. Of the 2002 European 

Part. Acc. Conf., Paris 2002. 
 
[97] A. Gallo, D. Alesini et al., “The DAΦNE 3rd Harminic Cavity”, Proc. Of the 

2001 Part. Acc. Conf., Chicago, 2001. 
 
[98] T. Tajima, “Development of High-Order-Mode (HOM) absorbers for KEKB 

superconducting cavities”, KEK Report 2000-10, 2000. 
 



 168

[99] W. Hartung, et al., “Measurement of the Microwave Propertirs of Some 
Absorbing Materials”, Proc. Of the Workshop on Microwave-Absorbing 
Materials for Accelerators, Virginia 1993. 

 
[100] M. Zobov private communications. 
 
[101] J. Delahaye, et al., “CLIC, a 0.5 to 5 TeV e+/e- Compact Linear 

Collider”,.EPAC, Stockholm 1998. 
 
[102] H. Braun, et al., “The CLIC RF Power Source: a Novel Scheme of Two-Beam 

Acceleration for Electron-Positron Linear Colliders “, CERN 99-06, Geneve 
1999. 

 
[103] H. Braun, “A new Mwthod of RF Power Generation for Two-Beam Linear 

Colliders”, CERN/PS/98-14 (LP), Geneve 1998. 
 
[104] “CTF3 Design Report”, CERN PS 2002-008 (RF), Geneve 2002. 
 
[105] C. Milardi, D. Alesini, et al., “CTF3 Compression System”, EPAC, Paris 2002. 
 
[106] D. Alesini, et al., “The RF Deflectors for CTF3”, CTFF3 Technical Note, 

INFN-LNF Accelerator Division, LNF Frascati 2001. 
 
[107] D. Alesini, “The theory of beam loading in RF deflectors for CTF3”, CTFF3 

Technical Note, INFN-LNF, LNF Frascati 2002. 
 
[108] P. Bernard, et al., “On the design of disc-loaded waveguides for RF 

separators”, CERN 68-30, 1968. 
 
[109] P. Bernard, et al., “New disk-loaded waveguides for the CERN RF separator”, 

CERN 70-26, 1970. 
 
[110] J. Rossbach and P. Schmüser, “Basic Course on Accelerator Optics”, CERN 

94-01, Vol. I, Geneve 1994. 
 
[111] J. Buon, “Beam Phase Space and Emittance”, CERN 94-01, Vol. I, Geneve, 

1994. 
 
[112] D. Alesini, et al.,”RF Beam Deflectors for CTF3 Combiner Ring”, Proc. Of the 

2002 European Part. Acc. Conf., Paris, 2002. 
 
[113] M. Di Giosa, “Studio di un Dispositivo per la Misura della Lunghezza dei 

Pacchetti di Particelle Ultra-Corti negli Acceleratori di Particelle”, Tesi di 
Laurea A.A. 1999-2000, University of Rome “La Sapienza”, 2000. 



 169

 
[114] C. Martinez, “Determination of Longitudinal Electron Bunch Lenghts on 

Picosecond Time Scales”, PhD Thesis, Univeritat Politècnica De Catalunya, 
1999. 

 
[115] J. C. Swartz, et al., “Nondestructive diagnostics for relativistic picosecond 

bunched electron beams”, Phys. Rev. E, vol. 52 n. 5, pp 5416-5424, 1995. 
 
[116] B. Gagliardo, “Studio Sperimentale di un Dispositivo per la Misura della 

Lunghezza dei Pacchetti negli Acceleratori di Particelle”, Tesi di Laurea A.A. 
2000-2001, University of Rome “La Sapienza”, 2001. 

 
[117] L. Palumbo, D. Alesini et al., “Conceptual Study of an Ultra-Short Bunch 

Length Monitor”, Proc. Of the 2001 Part. Acc. Conf., Chicago 2001. 
 
[118] D. Alesini, et al., ”Electromagnetic simulations and RF Mesurements Results 

of an ultra-short Bunch length monitor”, Proc. Of the 2002 European Part. Acc. 
Conf., Paris 2002. 

 
[119] H. A. Bethe, “Theory of diffraction by small holes”, Phys. Rev., vol. 66, 1944. 
 
[120] R. E. Collin, “Field Theory of Guided Waves”, IEEE Press, New York, 1991. 
 
[121] S. De Sanctis, et al., “Coupling Impedance of a Hole in a Coaxial Beam Pipe”, 

Phys. Rev. E., vol. 54, pp. 800-805, 1996. 
 
[122] C. D’Alessio, “Studio Teorico e Sperimentale di un Dispositivo 

Elettromagnetico per la Misura della Posizione dei Pacchetti di Particelle 
negli Acceleratori”, Tesi di Laurea A.A. 2000-2001, University of Rome “La 
Sapienza”. 

 
[123] G. Geschonke (ed.), et al., “CTF3 Design Report-Preliminary phase”, CERN/PS 

2001-072, 2001. 



 170

Acknowledgements 
 
 
 
First of all, I would like to express my deepest gratitude to the prof. L. Palumbo who 
gave me the opportunity to work on the accelerators research. He is for me a constant 
and fundamental guide. Thank you. 
I would like also to thank A. Gallo and F. Marcellini. They have helped and guided 
me from my first steps in the accelerator research. I have worked with them and I have 
always esteemed their broad knowledge in physics and their friendship. 
Also M. Migliorati deserves a special thank for his teachings and his fundamental 
support. 
I would like to express my deepest gratitude to the researchers of the Accelerator 
Division of the LNF-INFN, where I have worked during these years: to R. Boni 
responsible of the RF Group, to A. Ghigo responsible of the CTF3 collaboration, to G. 
Vignola, S. Bertolucci (now director of the LNF) and P. Raimondi responsible of the 
Accelerator Division, to M. Zobov for his useful suggestions and his support and to B. 
Spataro for his help and attention to my future. Thank you. 
I would like to thank also A. Mostacci that supported me especially in the last part of 
the work and B. Gagliardo and C. D’Alessio (ex)students of the University of Rome 
“La Sapienza”. 
 


