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I ntr oduction

The control and the manipulation of the beam can be considered as the main “goals’
in the particle accelerators research.

The correct control of the transverse and longitudinal beam sizes and position allows
optimising the luminosity performance of the machine (as in colliders) or the light
guality (asin synchrotrons).

In the transverse plane, the beam profile is determined by properly setting the currents
in the magnets (dipole, quadrupoles, and sextupoles) while, in the longitudinal plane,
by the combined effects of the acceerating field gradient, synchrotron radiation
emission and dipole magnets configuration.

At high beam currents, however, the wake fields, produced by the interaction of the
beam with the vacuum chamber components, interact with the beam itself causing
deformation of the longitudinal bunch profile and possible longitudinal and transverse
instabilities.

The study of these collective effects is very important in order to preserve the beam
guality and to avoid the loss of the beam.

This is done, in general, finding a correct modd of the wake fields in the accelerator
and analysing the effects of this wake fields on the beam itself.

The first step is achieved by means of analytical treatments, electromagnetic (e.m.)
simulations or devices measurements that allow determining the fields produced by
the interaction beam-vacuum chamber components. The second one can be obtained
by analytical theories or by tracking codes that can simulate the beam motion under
the effect of these self-fields.

Microwave structures, installed in the ring to accelerate, deflect or, in general, to
manipulate bunches, have to be, therefore, properly characterized and the “unwanted”
effects have to be carefully analysed or limited by a proper em. design of the
components.

In parallel, diagnostics devices installed in the rings allow tuning the machine
parameters in order to achieve the better performances. The research of compact and
non-perturbative componentsis, therefore, of a big importance.

The present thesis can be inserted on this context.

In the first chapter, the analytical treatment of the longitudinal beam dynamics in
circular accelerators is reported and discussed. A numerical tracking code that allows
studying the single-bunch and the multi-bunch collective effectsiis, aso, described.
The second chapter is dedicated to the description of RF devices used in accelerators.
It includes the description of the standing wave and travelling wave structures, and the
presentation of the em. simulations codes and of the bench measurements techniques.
The proper research activity isillustrated in the three last chapters.

In the third one the beam dynamics in the accelerator DA®NE with a harmonic
system is analysed. DA®NE is a double ring, high luminosity collider working at the
energy of the ® resonance (1.02 GeV in the center of mass). The study and the design



of a high harmonic RF system is mainly motivated by the demand of lifetime
improvement and by the increasing of the natural Landau damping mechanism. The
beam dynamics in the accelerator has been studied with anaytical theories and
tracking codes and the design of the device has been done with em. simulations codes
(MAFIA and HFSS). RF measurements have been, also, made on the constructed
device.

In the fourth chapter, the CTF3 RF deflectors project is illustrated. CTF3 (CLIC Test
Facility) is the third facility of the project CLIC (Compact Linear Collider) at CERN.
The CLIC studies focuses on high-gradient, high frequency acceleration for multi-
TeV linear collider. Because conventional RF power sources based on modulators and
klystrons are not available at high frequencies, CLIC was based on the novel and
promising concept of Two-Beam Acceleration (TBA). The basic idea of the TBA isto
properly recombine the bunch train (Drive Beam) generated by a conventional linear
accelerator in order to create an high peak current beam with a time spacing between
bunches considerably reduced. This bunch structure is realized by a novel technique
of bunch recombination, using RF deflectors, which converts a long bunch train, with
a large bunch spacing, into a sequence of short trains with a bunch spacing
considerably reduced, which is used for the high frequency power production. The
design of the deflectors for the Combiner Ring of CTF3 includes both the study of the
beam dynamics effects in the ring than the design of the devices. The beam dynamics
study has been developed by modelling the wake field in the deflectors and by writing
atracking code that allows studying the multi-passage multi-bunch effects. The design
of the deflectors has been done, instead, by the simulation codes MAFIA and HFSS.
M easurements results are reported and discussed.

The last chapter illustrates the study of a microwave bunch-position monitor. A large
number of bunch length monitors exist either in the time domain than in the frequency
domain. In particular the devices that use the microwave spectroscopy are based on
the analysis of the beam characteristics in the frequency domain. By this analysisit is
possible to obtain the bunch parameters in the time domain such the bunch length or
the position inside the vacuum chamber. Different techniques have been proposed to
couple the field radiated by the bunch in a transmission line leading the signal to the
detection system. The proposed monitor is a resonant small coaxial cavity coupled to
the beam pipe through four small dots. If the length of the cavity is properly chosen,
the beam power spectrum lines excite resonant modes in the cavity and, probing the
field by a small antenna, it is possible to characterize the beam in term of average
bunch length and pasition. In the chapter, the analytical approach based on the Bethe's
Theory is reported with the simulations results obtained by MAFIA and HFSS.
Measurements made on a prototype are also discussed and compared with the
theoretical results.



Chapter 1

Beam dynamicsin circular accelerators

A storage ring may be considered as a complex of components that guides the particle
beam inside the vacuum chamber.

The motion of a single particle is determined by the external magnetic fields created
by the dipole, quadrupole and sextupoles that provide the transverse focusing of the
beam, by the RF longitudinal eectric field that accelerates the beam, by the
synchrotron radiation emitted by the particle in the bending magnets and by the wake
fields generated by the interaction between the beam and the vacuum chamber
components.

The first paragraph of this chapter introduces the concepts of wake fields and coupling
impedances.

The longitudinal equation of motion for a distribution of particles is derived in the
second paragraph. The equation of Haissinki, describing the bunch distribution at low
current, is aso discussed. The single bunch effects in high intensity beam are, then,
introduced and a tracking code that allows studying the single bunch dynamics is
described.

The multi-bunch beam dynamics is treated in the third paragraph where the
macroparticle mode isillustrated. A tracking code for the multibunch dynamics study
is, aso, described. It alows studying the multi-bunch beam dynamics with non-
uniform filling patterns including the presence of a bunch-by-bunch feedback system
in thering.

The longitudinal beam dynamics is also affected by a natural damping mechanism
called Landau damping that is discussed in the fourth paragraph.

Finadly, in the fifth paragraph, the beam lifetime due to the Touschek effect is
presented.

1.1 Wakefields and impedances

The beam traveling inside a complicated vacuum chamber induces e ectromagnetic
(em.) fields which may affect the dynamics of the beam itself.



The em. fields induced by the beam are called wake fields due to the fact that they are
left, mainly, behind the traveling charge.

The study of the longitudinal and transverse beam dynamics requires the knowledge
of these induced “self-fields’ which may limit the performance of the accelerator in
term of beam quality and stored current.

The em. fields generated by a charge q; traveling with a constant velocity v=/c on a
tragjectory parallel to the axis of a vacuum chamber in the structure, can be derived
solving the Maxwell equations satisfying proper boundary conditions [1].

The energy lost by a trailing charge q under the effect of these fields can be written in
the form® (Fig. 1.1):

U,(rsr)=- [F(srs.rist)ds  witht= % ir

structure

(1.1)

where F, is the longitudinal force on the charge g and 7 is the time distance between q;
and g. The quantity U, represents the energy lost (U>0) or gained (U,<0) by the
chargeq.

The longitudinal wake function wy(r,r,,7) is defined as the energy lost by the trailing
charge per unit of both charges g, and qg:

u,(r,ry;7)

w,(r,r,;7)= -
1

(1.2)

According to the definition (1.2) it is possible to calculate the wake function produced
by a bunch distribution by the convolution:

0

wz(g,gl;r):il [iehw e - har

(1.3)

where i4(7) is the bunch distribution of total charge q;. Usualy W, is called
longitudinal wake potential.

The vacuum chamber is formed by a smooth beam pipe with regular cross section
(circular, rectangular or dliptic) and by various devices such as RF cavities, kickers
and the diagnostic components. The exact solution of the Maxwell equations for the
whole structure is impossible to obtain even with the most sophisticated computer
codes [2] and, usually, one analyses a component at a time and sum-up the various
effects even if this procedure may lead to inexact estimates at high frequencies where
interference effects are not negligible.

! The charges are considered ultrarelativistic BIL;
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Fig. 1.1: coordinates system used to describe the wake fields.

In the frequency domain the spectrum of the longitudinal wake function is called
longitudinal coupling impedance:

Z,(r,r0)= [w(r.ry7)eiodr

(1.4)
It is measured in Ohm and, historically, it has been introduced in the early studies of
theinstabilities arising in the ISR at CERN [3].
Vice versa the wake function is given by:
1 _
w,(r,r;7) == [Z,(t.r; w)elodr
(1.5)

Similarly the trailing charge q experiences a Lorentz force which has transverse
components. The transverse momentum kick is given by:

U.(rrir)= [E(srs.ryt)ds

structure

(1.6)
The transver se wake function is defined as:
L_Jt (Ll[l: T)
W, rg7)=——m™m™
w,(r,r,;7) @
(1.7)
and the transver se coupling impedance is defined as:
Z(nrsw)=j [w(rryr)eiodr
_ (18)
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Using simple relations given by the Maxwell’s equations it is possible to derive the
following eguations between the longitudina and the transverse wakes and
impedances:
10
—;EW (r rl,r) D”wz(r rl,r)
(1.99)

L(L,Ll;w)——D Z,(r.r;w)

tr=z

(1.9b)
these relations are often referred to as the Panofsky-Wenzel theorem [4].

1.1.1 Cylindrically symmetric structures

So far the case of general boundaries has been considered without restrictions on the
transverse position of both charges.

Assuming a structure with cylindrical symmetry the density charge g, can be
represented as follows [5]:

_Golr-n) oy 1
p= J(s Sl)r;)“ 5—cos(me)

m0

(1.10)
where ¢ of Fig. 1.1 has been supposed equal to 0.
According to the above expression the charge g, can be thought as a superposition of
charged rings with angular dependence cos(mg). In the presence of cylindrical
symmetries the em. field created by the distribution (1.10) can be derived as the sum
of multipole terms showing the same angular dependence. The resulting wake
function will show the following form:

w(rr)=Yw, (i)
" (1.11)

In the case of ultra-relativistic charges (1) it can be shown that the wake function
has the following radial dependence [6-8]:

w,(r,r,;7)= Zrmrmw (t)cos(m)

(1.12)
The impedance is then given by:

Z,(rr;w)= Zrmrmz _(w)cos(mg)

(1.13)
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The monopole term (m=0) does not depend on the radial position of both charges and
for charges traveling on the axis of the structures is the only non-vanishing term in the
summeations (1.12)-(1.13).

Similarly the transverse wake can be written as a superposition of multipoles terms of
theform [9]:

for the

dipoleterm
2w, =—om i, (oos(mgf -sin(mld S Lw, = -ow, (),
(1.14)
and the transverse impedance as a superposition of the terms:
for the
dip?lf_t‘erm
Zt,m = % mr m—lrlmZZ]m (C())[COS(mCD)F - S' n(mCO) / = Zt.l = C(E) Zz,l (w)Ll
(1.15)

The transverse dipole term m=1 is proportional to the transverse displacement of the
leading charge while it does not depend on the transverse position of the trailing one.
It is, aso, the non-vanishing term if r=0.

1.1.2 Short range wake fields: broad band resonator model

The short range wake fields can be defined as the wake fields acting on a distance
equal to the bunch length (see par. 1.2.1) while the long range wake fields as those
acting on a distance larger than the bunch length.

To study the longitudinal single bunch dynamics, it is often possible to consider the
effect of the short range wake fields only, neglecting the multi-turn or the coupled
bunch interactions generated by the long range wake fields. This implies that, in the
frequency domain, the single bunch cannot resolve the details of the sharp resonances
and it rather experiences an average effect.

The impedance of an accelerator (that is usually a very complicated function of
frequency with many sharp peaks) can be replaced, in this case, by some “broad band
model impedance’.

These models are usually characterized by a small number of parameters and they
allow analytical evaluation of the stability limits or growth rates of single bunch
instabilities.

The first introduced broad band resonator model [10] considers an average
impedance of the form:

(1.16)
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where the radial dependence has been neglected.

Only three parameters, the shunt impedance R, the angular resonant frequency w and
the quality factor Q, are necessary to describe the impedance frequency behaviour. For
long bunches R is estimated by averaging the resistive part of the parasitic resonances
(see par. 1.1.3), the quality factor is usually taken equal to 1 while the resonant
frequency is taken as the cut of frequency of the first monopolar propagating mode of
the beam pipe.

These choices are somewhat arbitrary and are satisfactory only for the case of long
bunches, when the whole bunch spectrum lies within the beam pipe cut-off.

A new broad band impedance model was proposed by S. Heifets [11] as the further
development of K. Bane's approach used in the analysis of the SLC damping ring
impedance [12,13]. The longitudinal impedance is described phenomenologically by
the expansion:

2,()= 6 (o) +Rlo,)+la+ (e faiglo)+ 1Tz (o)

(1.17)

The first term of the expansion represents a low frequency inductive impedance. This
impedance is typical for tapered sections, shielded bellows, vacuum ports and small
discontinuities such as dots, shallow cavitiesin flanges and so on.

The second resistive contribution is given essentially by the cavitiesin thering [1].

The third term has a structure of the resistive-wall impedance [ 1] while the fourth term
has the same dependence on w as the impedance of a cavity with attached tubes at
high frequencies[1].

The parameters L, R, B, Z. of the broad band model can be extracted by computer
code results by fitting the numerical wake potential to the above analytica
expressions [14].

1.1.3 Long range wake fields: resonant cavities

Cross-section variations in an accelerator vacuum chamber can create resonant
cavities. Part of the field excited in the cavities is trapped reflecting back and forth and
generating the resonant modes.

The field excited in a cavity by the bunch is the typical example of long range wake
field because it can interact with the other bunches of the beam or with the same
bunch in different turns.

The classical example of RF cavity is that used to accelerate the beam (see par. 1.3.3
and 2.1). In this case the fundamental mode (usually the first monopolar mode) is used
to supply energy to the beam by an external RF generator coupled to the cavity. All

2 The only monopolar term is considered.
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the others modes called Higher Order Modes (HOM) are parasitic modes and can
cause multibunch instabilities (par. 1.3) and additional parasitic power loss.

Monopole modes

As shown in par. 2.1 the longitudinal coupling impedance of a monopole mode can be
approssimated in the form:

2 (@)= =
1+ jQ[w—wfj Q
w W

(1.18)

The parameters Q and w are the quality factor and the angular resonant frequency of
the resonant mode while the parameter Rs is called shunt impedance. All three
parameters depend on the cavity shape and material.

The wake field corresponding to the impedance (1.18) is given by:

W, (o1 7) = %e_;f {Cos(a)'r 7)- chru cos(w', r)}H (r) withe, =w, [1- 4(122

(1.19)

where H(7) isthe Heaviside function.

From the above formula it follows that the interaction between the charge and the
resonant mode can be schematized by an RLC paralld circuit driven by a point-charge
current ip(7)=0.X7) representing the bunch, as shown in Fig. 1.2. The longitudina
wake fidd w,(7) is simply given by V(7)/q;.

w, [V/nC]

vy <8 — " O o=as

t[ns]
Fig. 1.2: (@) RLC circuit that model the interaction between the resonant impedance and the
beam; (b) wake function of aresonator with Q=5000, R=1 KQ, f=1GHz.

14



In the figure Ry is the shunt impedance of the resonant mode and L, C are related to the
resonant frequency and quality factor trough the well know relations:

1
W =, |—
LC
Q=wRC

(1.20)

Referring to the same circuit, when the bunch interacts with the mode, it losses
instantaneously, an amount of energy equal to:

U= q12 _CL)rqul2 _WZ(T - O+)q2
2C 20 2 '

(1.21)

the last equality is known as the fundamental theorem of the beam loading [15]: it
states that, if /=1 the energy losses by the particle q; (normalized to q;) is exactly one
half the value of the wake function calculated with 7 0",

Dipolar modes

Thelongitudinal coupling impedance of a dipolar mode is given by (par. 2.1):

Z, ()= 2ol
1+jQ1(w _ar)lj

(1.22)

where the parameters Ry, Q;, w: are, now, referred to the dipolar mode and the
distance b isintroduced in order to maintain Ry, expressed in Ohm.
The transverse coupling impedance corresponding to the same resonant mode is given

by:

Ry c
Z(w)= R M= b’ w
, W W : w o
1+JQ{ - wlj 1+JQ1[w - le
rl rl

(1.23)

The longitudinal and transverse wake field, generated by the interaction with this
dipole mode, is given by:

o,
w,,(r,r;7)= %Rﬁ%e 29 {cos(a)'rl r)- 2(;0;) sin(w, r)}H (r)  withw =, [1- 4é2
1 1%r 1

(1.240)
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G,
w(r.rir) = - e sin(a, ()
r 1

(1.24b)

1.2 Single bunch longitudinal beam dynamics

A generic particle of the beam, in a circular accelerator, follows a curvilinear
tragjectory inside the beam pipe losing energy because of the radiation emitted in the
bending magnets (synchrotron radiation) and because of the interaction with the
devices in the accelerator. This loss of energy is compensated by the RF accelerating
field in the cavitiesinstalled in the ring.

The synchronous particle is defined as the particle that enters in the cavity when the
oscillating field has an amplitude that compensates exactly the loss of energy in the
ring.

To describe the longitudinal beam dynamics it is convenient to introduce the
following quantities:

Lo:  length of the circumference followed by the synchronous particle;

To:  revolution period of the synchronous particle;

Eo:  nominal energy of the synchronous particle at the exit of the RF cavity;

z longitudinal displacement of a generic particle with respect to the
synchronous one at the exit of the RF cavity (if z>0 the particle is ahead
of the synchronous one);

Az, variation of the longitudinal position of a particle in a revolution period
(2(t)-z(t-To));

& energy deviation of a generic particle respect to the synchronous one;

Ae.  energy variation in one revolution period (&(1)-£(t-Ty));

a.:  momentum compaction: it is the variation of the circumference length
with respect to the particle with the nomina energy. It is determined
from the fact that the radius of curvature in bending magnets depends on
the energy of the particle itself:

a, = (Ls B Lo)/ Lo
elE,
(1.25)
where L, isthe circumference length of an off-energy particle.
By the previous definitions it is possible to write the following equation:
Az=L,-L, =-La, >
0
(1.26)
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The energy radiated by an off-energy particle can be calculated for small energy
deviations as[16,17]:
U(e)=U, +De
(1.27)

where Uy is the average radiated energy of a synchronous particle and D (>0) is called
damping factor.

The eectromagnetic radiation occurs in quanta of discrete energy and each time a
guantum is emitted the energy of eectrons makes a small discontinuous jump that
disturbs the trgjectory of the particle. This emissions may be considered instantaneous
and following a purely random Poisson process [18]. The cumulative effect of many
such disturbances in the trgjectories introduces a kind of “noise” into the various
oscillation modes causing their amplitude to growth until the quantum excitation is, on
average, balanced by the damping of the oscillation due to the damping factor D
(7=DI2T, is called damping time).

The equation that links the change in energy with the longitudinal position of the
particleis then:

Ae=eV(2)+V'(2)-[u, + De + R(T, )]
(1.28)

where V(2) is the accelerating voltage in the RF cavity seen by a particle occupying
the position z with respect to the synchronous one, V' (2) is the accelerating voltage
due to the wake fields® and R(Ty) is the difference between the radiated energy in one
turn and its average val ue.

Dividing the equation by T, and substituting the finite differences with a time
derivative’, one obtains the equations that describes the longitudinal dynamics’:

dz £
—_= _Cac _
dit E,
de _ elv(z)+Vv'(2))-[u, + De +R(T, )
dt T,
(1.29)
The equation of motion becomes:
d?z D dz ca, (oY Ca, 3
s X CAVO R IR L R
(1.30)

% The hypothesis is that the energy exchange between the particle and the RF cavity (or wake field) are
concentrated at the exit of the RF cavity. This is, in general, acceptable since the revolution time is much
smaller than the characteristic times of the analyzed phenomena.

* This approximation can be considered correct for the same reason discussed in the previous note.

® The particle is considered ultra-relativistic.
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The motion of a single particle in the phase plane (z¢&) is characterized by two
opposite effects: the damping due to the coefficient D that forces the particle to
collapse in the center (0,0) and the quantum excitation given by the term R(T,) that
gives the opposite effect.

The equation of motion can be also written using the Hamiltonian formalism [19].
Defining the potential well of the parti cleas:

$(2) = j {ev(z)+V'(2)]-UJdz
0 0 0
(1.31)
and the Hamiltonian as:
E
H — 2 + 0
(z,6) = ZEOe C¢( 2)
(1.32)
the equations of motion (1.29) become:
dz oH
C_
dt oe
de_ oH_D__R)
dt oe T, T,
(1.33)
In case of apure sinusoidal RF voltage the term V(z) can be written in the form:
Vv (z) =V cos(wS - 271L zj
LO
(1.34)

where h is called harmonic number and @ synchronous phase (defined by
cos(¢2)=Uo/€Vge)

Neglecting the non conservative terms D, V' and R(To) the equation of motion
becomes:

2
d Z+&evRF co{(os —27112)— il U,=0
dtz2  E,T,
(1.35)
For small oscillation amplitudes® the longitudinal equation of motion can be written in
the form:
dzz a.2rhe

dt2 E T2 VRF Sln(gas)

W2

S

(1.36)

® Under this condition (z<<Ly/27h) V(2) becomes:

V., (2) 0Y%0 4 Z1Ves sin(g.) ,
e L,
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Fig. 1.3: trgjectories of the particle in the phase space (z,¢).

Particles orbiting in a circular accelerator perform, therefore, longitudinal oscillations
at the frequency fs=cy2rcalled synchrotron frequency and given by:

fs = fO\/% heVRF SII’]((DS)

(1.37)
where fj is the revolution frequency (fo=1/T).
These oscillations correspond to eliptical trajectories in the phase space (z,€).
For large amplitudes the dlipses are distorted by the non-linearities of the motion but
curves are still close on themselves until a certain maximum amplitude (Fig. 1.3). If
the maximum amplitude overcomes the range z,-zmin the motion becomes unstable
and the particle motion assumes the characteristic of libration.
The lines separating the regime of libration from the regime of stable oscillation are
called separatrices and the area within separatrices is commonly called the RF bucket.
The maximum energy deviation of a particle that perform stable oscillation is called
energy acceptance (or momentum acceptance Ap/polmax) and it is given by [20]:

&

Eol o

_ | Ve ;
= 2cosg, - (-2
\/ Iach[ cosg, - (- 2¢,)sing)

(1.38)

The energy acceptance plays an important role since it determines the capture
efficiency at injection and the Touschek lifetime of stored beams (par. 1.5).

1
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1.2.1 Distribution function and Fokker-Plank equation

To study the collective effects it is necessary to introduce the distribution function of
the particles in the phase plane W(z¢&t). As usuadly, the product W(z&;t)dzde is the
probability to find one particle in the area dzde of the phase space at the timet.
Thelongitudinal distribution function o(zt) is given by:

o(zt)= ifLIJ(z,e;t)de

(1.39)
The fraction of the total particles between z and z+dz at thetimet is given by p(zt)dz
Similarly the energy distribution is given by:

ACHE _[LIJzet)d

(1.40)
the bunch length and the energy spread are defined respectively as:
:\/Ip(z;t)(z— z)’dz
:\/J'pg (&;t)e-2)de
(1.42)

where z and £ are the mean values of the distributions (1.39)-(1.40).
The time evolution in the phase space of the distribution function is given by the
Fokker-Plank equation [21,22]:

OW__OHOW_ OHOW D (aw j 102w (R(,))
—=—Cc——+c— e+ 4 -/
ot 0z 0¢ o€ az o€ 20 T,

(1.42)

where <R(T)*> represents the standard deviation of the radiated energy.

The first two terms on the right are related to the conservative forces acting on the
bunch while the third and the fourth terms represent the radiation term and the effect
of the quantum excitation respectively.

Both the coefficient D and the standard deviation <R(Ty)?> can be calculated knowing
the characteristics of the magnets in the accelerator [23].

The Fokker Plank equation represents the more general expression to describe the
evolution of the distribution function in the phase plane both in the single bunch and
in the multi-bunch case. Unfortunately the analitycal solution of this equation doesn’t
exist and, in order to study the single or the multi-bunch beam dynamics, some
assumptions have to be done to simplify the problem.

20



1.2.2 Stationary distribution: the Haissinski equation

Experimentally when the number of particles is low, the bunch distribution is time
independent. Under this condition (da&=0) the Fokker-Plank equation becomes
solvable and the distribution function is given by [24]:

_ D . 26D

l'IJ(Z, E) — me <R(To)2> ac2<R(T0)

()
)

(1.43)

The equation (1.43) is called the Haissinki equation and, integrated over z or &, allows
to find the longitudinal and the energy distribution function respectively:

o ;
p(Z) = ﬁe 015<R(T0)2>¢( ) = ﬁe_aczlza.ezo¢(2)
144
__ D £2 £2 ( )
p.(e)=p.e " =peh
(1.45)

It is important to observe that, in the stationary case, the energy distribution function
does not depend on the potential well but only on the machine parameters and it has a
gaussian profile. On the other hand, the longitudinal distribution depends on the
potential well.

At very low bunch current, neglecting the self field and considering a sinusoida
accelerating voltage’ the longitudinal bunch distribution becomes simply:

22

p(z) = pe %%
(1.46)
where the oy is given by:
o =g 9
z0 £0 an)s
(1.47)

If the bunch current increases, however, it is not possible to neglect the self-field and
the (1.44) becomes (see Appendix A1.1):

- Z22 - EOQ2ezdz"wp(z')wz(z‘—z")dz'
,O(Z) — ﬁe 20%, a.l,o? -([ _-[0
(1.48)

where Q is the bunch total charge.
The sdf-induced em. fields cause the so-called potential well distortion and deform
the original gaussian distribution function.

" Linearized near the point z=0.
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Fig. 1.4: longitudinal bunch distributions as a function of the number of particles for
different types of impedance: (a) purely inductive; (b) resistive;
(c) purely capacitive; (d) broad band resonator.

The integral equation (1.48) is, in general, numerically resolvable and, knowing the
characteristics of the accelerator impedance, it allows finding the longitudina
distribution of the bunch as afunction of current [22,25].

Typica longitudinal bunch distributions are shown in Fig. 1.4 as a function of the
number of particles and for different types of impedance. A pure inductive wake (Fig.
1.4a) does not give energy losses, the bunch remains therefore symmetric and assumes
a parabolic shape. With the other types of wake there is a change in the shape of the
longitudinal distribution and, moreover, the bunch center of mass moves in order to
compensate the energy | osses.

As remarked initially, the equation (1.43) is valid for a stationary bunch. In the
synchrotron machines, however, this hypothesis is not satisfied at high bunch density
current and other phenomena have to be taken into account to explain the behavior of
the bunch distribution.

1.2.3 Perturbative theory and turbulent regime

If the characteristic times of the dangerous instabilities are shorter compared to those
of the damping and diffusion phenomena one can neglect, in the Fokker-Plank
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equation, the terms related to the diffusion and radiation phenomena obtaining the so
called Vlasov equation:

oW _ O0HoOW K o0H oW
- =—C——+Cc—H—8M
ot 0z 0¢& 0 0z
(1.49)
Following the treatment originally proposed by F. Sacherer [26] and successively
developed by other authors [27], the time dependent W can be written as a sum of the
stationary distribution Wy and of a coherent perturbation W, in the form®:

W(z.gt) = W, +e 3R, (2

m=-—oco

Wl(i,ga,t)

(1.50)
where 2 and @ are polar coordinates in the phase space (z,€).
Supposing that the W, function is a weak perturbation of the unperturbed distribution
W, and that the characteristic time of the dangerous instabilities are shorter compared
to those of the damping and diffusion phenomena, one can use the Vlasov equation
with the expression (1.50) obtaining the following eigenvalue system for the radial
function R,

(Q-ma, )R (3) = - 2R 0% (2) S IOMJF{Q ijda)? R (2)3, (i’ 2]2' dz

T, 0z~
(1.51)

where J,, isthe Bessd of order m.
In the case of zero current (Q=0) one obtains the following egenvalue and
eigenvectors.

Q(m) = M,
RMW =5
(1.52)
And the possible coherent mode of oscillations can be written in the form:
Lplm (21 q]" t) = ejm(wsot_W)
(1.53)

where each mode is determined by the azimuthal number m.
If the bunch current increases the equations (1.51) should be solved in order to find
the coherent modes of oscillation.

8 Inthe (%, plane the W, function is periodic with respect to gof 2rmand it is possible to consider its Fourier
expansion obtaining the expression (1.50).
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Experimentally, when the single bunch current increases above a certain threshold, the
energy spread of the bunch starts growing (contrary to the Haissinski equation). This
effect is know as the microwave instability, because of the high frequency signals that
can be observed in these conditions. The consequent bunch lengthening is very fast
and the phenomenon is also called turbulent since the high frequency signals often
become fluctuating or turbulent. The physical nature of the turbulence is not well
understood and severa different theories based on the solutions of the eg. (1.51) or
based on empirical results, have been developed [28,29].
It is widely beieved [27,30,31] that these phenomena are caused by the bunch
longitudinal coherent mode coupling. The instability can manifest itself either through
the coupling among the azimulthal modes or the radial ones having the same
azimuthal number.
Usually the empirical Boussard criterion [32] is used to estimate the threshold for the
instability. The discussion of the applicability of the criterion can be found, for
example, in [28]. The criterion establishes that above the threshold current given by
the relation:

el |z(n)/n g

2ma.02E,

(1.54)

where |, is the peak current, Z is the broad band impedance and n=wy/ w with w=c/a,,
the bunch “enters’ in the turbulent regime.

In the criterion expressed by eq. (1.54) both I, and Z(n)/n depend on the bunch length,
which is proportional to the energy spread. For a gaussian bunch the peak current is
given by:

| =R
" 2no,
(1.55)
In the equation (1.54) the equality shows the threshold value for the bunch charge Q
given by:
Q - (27-[)5/20—30 E2 hVRF Sln((os)
™ML, ° [z(n)/n)

(1.56)
where gy is given by (1.47).
Below this value the Haissinski equation can be solved obtaining a constant value g,
and the bunch length g,. Above this value it is possible to estimate a theoretical o, by
solving the equations (1.54) with the sign “="and (1.44) obtaining [33]:

_[c2QT,LVee sinle) [2(n) T
0' =
z (27T)5/2 | n |

(157)
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1.2.4 Single bunch dynamics simulations

The analytical treatment of the single bunch turbulent regime is important in order to
understand the physical phenomena in the single bunch dynamics. However, the
theoretical estimates of the bunch length and energy spread are valid under certain
conditions and, in general, do not include the all effects as the azimuthal and radial
mode coupling.

To resolve the problem, as a whole, smulation programs based on finite difference
equations have been developed [30,13,34-36].

The motion of Ny macroparticles representing the bunch of total charge Q is described
in the longitudinal phase space by the equations:

gin—l
EO
e = e+ dv(z)+V (2] -U, D& - 0,,RZD

- -1 _
Zin - Zin LOac

(1.58)

where &" and z", are the energy and position coordinates of the macroparticle i after n
revolutions in the storage ring.

Following the treatment reported in [18], the statistical quantity R(To) in the (1.28) has
been substituted with the quantity:

R(T,)=0o,,RV2D
(1.59)
where R is a random number obtained from a normally distributed set with mean 0

and o=1.
The accelerating voltage is simply given by:

V(Zin) =Vee CO{(”S _2L_7'lh Zi”j

0

(1.60)
while the voltage induced by the short range wake fields is given by:
N i=LN,
vi(z) = - S - )
N, =
(1.61)

where w,(2) is the machine wake function.
In order to reduce the computing time the macroparticles are distributed in Ny, and the
induced voltage is calculated as:

V'(Zi )= _egp jleN:U'ﬂ\'b(zi )Wz(zj 4 )

s z>7

(1.62)
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where z are the coordinates of the bin centers and Ny(z) is the number of
macroparticles in the bin with the center at z.

The induced voltage at the position of the macroparticles is found by a linear
interpolation between the V' (z).

The parameters Ns and Ny, have to be chosen in order to minimize the computing time
avoiding, contemporary, artificial numerical errors.

As an example, the results of the numerical simulations for the DA®NE main rings
are summarized in Fig. 1.5. The main DA®NE design parameters are shown in Table
1.1 and the wake function® as calculated by numerical codes [37] is reported in Fig.
1.6.

In the simulations 310° macroparticles have been tracked over 4 damping times. The
figures shows the g, and g/E, as a function of bunch current, calculated for two RF
voltages (Vrr=100 KV and Vr=250 KV).

The normalized bunch profile with Vg=250 KV obtained by the simulation is
reported in Fig. 1.7a. The distribution is wider than a gaussian due to the bunch
interaction with the inductive machine impedance and dlightly distorted due to the real
component of the impedance. The microwave instability threshold is lower and the
bunch energy spread is higher for the higher RF voltages, as expected because of the
high density current.

In the Fig. 1.7b the g, and the g/JE, are plotted as a function of the turn number. It is
clear that the regime is not a stationary one and both quantities oscillate turn by turn.

Table 1.1: DA®NE design parameters

Energy (Eo) 510 [MeV]
RF frequency (frr) 368.26 [MHZ]
Harmonic number (h) 120
Revolution frequency (fo) 3.0688 [MHZ]
Machine length (Lo) 96,6 [m]
Momentum compaction (ac) 0.017
Maximum current per bunch (lpmax) 44 [mA]
RF Voltage (Vrer) 100+250 [KV]
Damping time (1p) 17.8 [mg]
Max. beam current (I max) 5.2 [A]
Max. number of colliding bunches (Np) 120
Synchrotron losses (Uo) 9.3 [KeV/turn]
Natural bunch length (o) 1.3+0.8 [cm]

° More precisely, the wake function is substituted with the wake potential of a very short bunch (2.5 mm)
because the numerical codes can not calculate the e.m. field for a d-function current distribution.
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Fig. 1.5: results of the numerical simulations obtained with the single bunch simulation code:
(@) rms bunch length; (b) bunch centroid; (c) rms energy spread.
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1.3  Multi-bunch beam dynamics

Up to now only the effects of the short range wake fields in the single bunch dynamics
have been taken into account. They give an increase of the g, and can cause
microwave instabilities and energy spread growth.

In an accelerator, however, the complete single and multi-bunch beam dynamics is
determined by the combined effects of the short and long range wake fields and by the
non linear effects of the accelerating field.

It is pratically impossible to do a complete analytical study of the single/multi-bunch
beam dynamics for high bunch current and some simplifications have to be done.

1.3.1 Macroparticle model

A simplified model for the study of the coherent effects produced by the long range
wake fields is the so called macroparticle model. It is based on the assumption to
consider each bunch as a macroparticle without interna structure neglecting the
intrabunch collective motions. The macroparticles can be modeled as a pure
ofunctions (g,=0) or as a rigid profile distributions (for example gaussian) with a
certain o..
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Supposing N, equispaced o-macroparticles of charge Q, the equation of motion for
each bunch with respect to the “ synchronous position” can be written in the form™®:

d?z dz ca ca
nr D 2o (2)- £ U, =0
diz T, dt E,T, E,T,

(1.63)

Where the quantum fluctuation given by the term R(T,) has been neglected™.
The total accelerating voltage V+(z,) is given by the RF system and by the long range

wake fields by the equation:
2h sz Vg
LO
(1.64)

Vi (Zn) = Ve CO{% -
where the synchronous phase @ does not depend on the considered bunch because the
bunches are equispaced and they have the same charge'?. The total voltage induced by
the long range wake fields on the macroparticle n, is given by the sum of the particles
contributionsin all the previous turns'®;

At

Under the condition of small oscillation amplitudes (z,, z,.<<Lo/Np) it is possible to

make a linear expansion of the voltages:
h n
t-|q—-——+— [T, |-zt
(q_LJrLjL |:Zh( (q Nb + ij 0] Zn( ):l
Nb Nb 0

(1.65)

i h n dw
v, D—E E W, -——+— L, [+—F

h=0 g=0 b
(1.66)
Vi cod 1,202, | v, cof ) PPV S0,
I‘O I‘0
(1.67)
The equation of motion becomes:
2 Np-1 o
U2 DO g, =908 Y 51 M 2 t‘{q—1+ih
dtz T, dt ET, &% | dz (q—ﬁmn]% N, N,
(1.68)

19 >0 means that the macroparticle is ahead of the “synchronous position”.

1 The quantum fluctuations in the emission of synchrotron radiation are asingle particle motion property and do
not affect the multibunch macroparticle motion.

12 From this point of view the bunches are undistinguishable.

13 The espression of the wake field can be given as a function of zwhere z=cr.
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with the incoherent angular frequency™ and synchronous phases defined by™:

; Ny—1 oo
w2 = 9 27V sm(gos) ZZQ _
E,To Lo h=0 =0 [ +L]Lo
N, Ny
_ ccrce{zmvRF sin(g,) _i 27N, Im[Z(kowo)]}
EOTO LO k=0 Lo
(1.69)
e 27'ko
eV cos(@,) =U, +e) ' > Qu, — +N— =U, +2l Z Re[Z(koa)o)]
h=0 g=0 b b
(1.70)
Thelast equalitiesin the equations (1.69)-(1.70) are proved in Appendix A1.2.
The N, equations given by (1.68) represent a system of coupled oscillators.
The solution of the system can be found in the form:
2,t)= a0
(1.71)
obtaining the following eigenvalue problem (see Appendix A1.3):
Np-1
(Qz—j Q- wzja = Zah (o))
O
(1.72)
where:
n-h
. cae & ) -i2m,
M,1(0)= 5% 5 (p, -2 (p, -l 1
EoToly 5=
(1.73)

The matrix [Mn(Q)] is a cyclic matrix [38] and the N, eigenvalues give the following
complex frequencies of oscillation:

. D . ca.e c R
Q2 - jT—OQ’u SR = Tl QNb;;o(pw -2,)2'(p, -2,)

(1.74)
where p,, = (N, - #)w, and £=0,1,2,...,Ny-1 is the mode number. The corresponding
eigenvectors are;

(1.75)

1 qa isrelated to the slope of the total RF voltage: the accelerating one+the voltage induced by the wake fields.
3 |n the summations (1.69-70) the impedance Z does not include the fundamental mode in the main cavity that
is already taken into account in the cosine term (in other words, the beam loading in the main cavity is
compensated by the external RF generator).
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The multibunch modes of oscillation are, therefore, characterized by a proper coherent
angular frequency given by Re[ Q,]=a,,, by a growth rate given by Im[Q,]=a¢,and by
aproper phase relationship between the amplitudes a,.

In Fig. 1.8 as an example the modes 0 and 1t are schematically represented.

Assuming that D/T<<a, and that a°<<(?,«” (*°) the coherent angular frequency of
oscillation and the corresponding growth rate of the mode ( are given by:

@ w2{1+E'”e > (p, -2, )imz[p, - Q]]}

A TN |

p, =0, )Rez|p, -2, ] - }

g = la.e i{
i 264) 4 EoTo 120 +(p|( o tQ, )Re[z[pl( w T4, ]]

(1.763)

(1.76b)
where |I=QNy/T, is the average beam current.
The imaginary part of the impedance gives, therefore, a shift of the coherent angular
frequency of the mode with respect to the incoherent angular frequency «y while the
real part determines whether the mode is stable (a>0) or unstable (a<0)*’.

—> < —> <«
- —> <« —>
— O o—o 00— 80 o—00>

MODE n

Fig. 1.8: schematic representation of the modes 0 and 1t

16 The dangerous unstable modes satisfy always these conditions.

7 1n the equations (1.76) the coherent frequency of oscillation appears in both sides. In order to evaluate the
growth rate and the coherent angular frequency it is necessary to solve the equation numerically or to suppose
small coherent angular frequency shift (a, ) in order to approximate €, in the the right side of the equations
with ax.
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The fact that the impedance has to be evaluated at the angular frequencies
W, ~(Npl-t) ar-2,, can be intuitively understood looking at the spectrum of an
oscillating beam given by (see Appendix A1.4):

1(@)=1> 8w Nylaw,) - jl Zi‘cz p,Sw-p, +Q,)=
| =—co |==c

- II_ZD:J((U_ Nblw‘))_ il %i{pwd(w_ Py +Q#)_ pl(—y)a-(w+ Pi - —Qy}

1=0

(1.77)

In the frequency domain, the interaction between the bunches is generated through the
coupling impedance of the accelerator at the frequencies corresponding to the line
spectrum of the oscillating bunches. The first summation does not depend on the
bunch oscillation amplitude (the corresponding lines are often called power spectrum
lines) while the second summation gives the so-called synchrotron sidebands
proportional to the oscillation amplitude.

If the mgjor contribution to the impedance is given by a high Q resonator the formulae
can be simplified considering in the summations (1.76) only the spectrum lines near
the resonant frequency of the resonator. If, as an example, its resonant frequency is
between the angular frequencies (Np+1)ay and (Np+2)ay (as shown in Fig. 1.9), the
real part of the impedance gives the following growth rates for the modes =1, =2,

L=Np-1, L=Ny-2:
ay === (Nl + 2, + 2, )RE[Z[(N | + Doy + Q]

== (2K, 0 )Rzl + 2 +0]

la.e

ach—l :m((’\lbl +1)w0 _QNb—l)Re[Z[(NbI +1)w0 _QNb—l]]

s = %((Ng +2)w, ~Qy, JREZ|(N, +2)a0, — 0, |

(1.78)

The real part of the impedance makes unstable the modes (=1 and =2 and stable the
modes 1=N,-1 and L=N,-2.

Following these results it is possible to plot the so called stable and unstable sideband
for the multibunch modes as a function of frequency (Fig. 1.10). This intuitive view of
the possible coupled bunch instabilities excited by a given impedance is a useful
method to evaluate easily the stable or unstable modes for a given impedance.
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Fig. 1.10: stable and unstable lines of the multibunch modes

In the previous formulae the bunches have been modeled as J-functions with g,=0.

Assuming, instead, a gaussian rigid profile for the bunches, the previous formulae
have to be modified as follows [41]:

® p,u—Qu . T
2, = @21+ EIO%ZSZ IzZ(pw -0, )imz(p, -© )e[ I

—00

A = Zaia’EeT i (pw _Qy)Re[Z(ply )e[ =0 }

(1.79)
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(1.80)

where <W,> is the wake potential “averaged” over the bunch distribution.
The exponential factors take into account the finite length of the bunches. In fact, in
this case, the spectrum of the oscillating bunches is given by:

Nylayo, 1 (Hy < )Uz

(=13 so-ngake T 2 S0 do-p, 0kt e

1.3.2 Perturbative theory

The macroparticle model considers bunches as macroparticles without internal
structure. The multibunch coherent effects in the distribution function can be treated
starting from the Vlasov equation and following the perturbative treatment as done for
the single bunch effects.

Assuming N, equal spaced gaussian bunches and supposing that the time dependent
wake fields do not modify the stationary distribution Wy, one obtains the following
complex coherent angular frequencies[26,27]:

0 g ) TS (pl,, ) b W,KM”

a)E027702| = P

(1.82)

where |, is the modified Besseal function. The modes are, now, characterized by two
indices. the azimutha one m (m=1,2,3,...), and that related to the coupled bunch
motion ..

As in the case of the macroparticle model, the imaginary part of @, if positive,
indicates a possible unstable mode.



As evident from (1.82), for the first azimuthal mode m=1 (called dipolar mode of
oscillation) the equation gives the same result of the macroparticle model in the case
of small coherent frequency shift®,

From the eq. (1.82) and from the properties of the Bessel functions the more
dangerous azimuthal modes, for a given impedance, are those related to low values of
m.

1.3.3 Beam-accelerating cavity interaction: beam loading

The accderating field is provided to the beam by an external RF generator that excites
an oscillating longitudinal eectric field in the RF cavity (par. 2.1). The beam itself,
nevertheless, excites a longitudinal electric field in the RF cavity that has to be
properly compensated by the external RF generator and by the tuning system™.

The general model to describe the interaction between the beam and the RF system is
plotted in Fig. 1.11 [40]. In the figure the RLC circuit models the resonant cavity, the
transformer models the coupler between the external generator |4 and the cavity and
the current generator | model s the beam.

The bunches can be considered as current pulses sampling the total accelerating
voltage Vrr (given by the external RF generator and by the beam current itself) at the
synchronous phases ¢.. In order to maintain the total accelerating voltage equal to Vgr
with a reasonable amount of reflected power, the extra negative voltage generated by
the beam has to be properly compensated.

The Fourier components |, of a train of equally spaced non oscillating gaussian
bunches are related to the beam current I(t) by the relation®:

1(t)= I_+i - cos( pN,;t)
p=1
(1.83)
where | isthe average beam current and |~p isgiven by:
_ A
|p:2|p:2|e2[ &)
(1.84)

'8 In this case Q, in the right side of the equation (1.74) can be approximated by ma and in the left side
Q- 2(Q-w)w’. Moreover, 1,(x) in the eq. (1.82) can be, in general, approssimated with x/2 since, in
general, x<<1.

B Asillustrated in par. 2.1 the tuning of the resonant frequency of a cavity is realized with devices (tuners) that
dlightly modify the volume of the cavity changing its resonant frequency.

% The Fourier components of a train of non-oscillating bunches are double the real part of the J&function
amplitudes of the beam spectrum (1.77) considered for 0.
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Fig. 1.11: equivalent circuit to describe the interaction
between the beam and the RF system.

Analyzing the circuit of Fig. 1.11 at the RF harmonic, the beam is equivalent to an
extra admittance loading the RF system and given by:

1 _2,e® 2l coslg,) j 21 sin(g)
Ve Ve Ve

4

beam

(1.85)

The beam loads the RF system as an extra resistance in paralld to an extra inductance
which are both inversely proportional to the beam current.

The resistive part of the beam equivalent impedance describes the energy transfer
from the RF source to the beam and gives a condition to optimize the coupling
coefficient B (par. 2.1) for the best matching generator-loaded cavity:

14 2Rl o cos((ps)
* Ve

(1.86)

The inductive part tends, on the other hand, to shift the resonant frequency of the
cavity+beam system, and, beyond some current threshold, the system is too largely
detuned that the RF generator can not sustain the required accelerating field anymore.
To avoid that, a tuning system automatically changes the resonant frequency of the
cavity shifting it toward lower values to compensate the positive beam equivalent
inductance.

The complex admittance of the loaded cavity as seen by the RF generator is given by:

1 :{1+ Q9 2, cos(@) _ 21 psin(qos)}n2
R Ve Ver

V4

cav+beam

(1.87)
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The compensation of the beam reactance, if the cavity starts from perfect tune at zero
current (=0), issimply given by:

0.5= R2I, sin(g,)

RF

(1.88)

If, instead, the cavity starts from a non zero detune at zero current (&z0) the
expression becomes™:
R2Ipcos(gos)j

N +Qy0p| I+ —/————
° 0 ( (L+ BV

R2I sin(@,)

RF

(1.89)

The cavity detuning, therefore, increases linearly with I and is inversely proportional
to Vge.

As an example the resonant frequency of the DA®NE cavity is reported in Fig. 1.12
for two different acce erating voltages and initial detuning.

The impedance of the cavity interacts, also, with the two sidebands of the mode 0. The
coherent angular frequency and the growth rate of the mode O are then given by:

Wi, = wg{l-l_ EI acez {(hwo - Qo)lm[z(hwo - Qo)] + (hwo + Qo) Im[z(hwo + Qo)}}
S (1.909)
Uy = %{(hwo _Qo)Re[Z(hwo - Qo)] - (hwo + QO)Re[z(ha)o + Qo)}
(1.90b)

The resonant frequency of the cavity w is below akr=ha, and the mode O is,
therefore, stable while its coherent angular frequency decreases accordingly to
(1.90a).

2 In order to compensate the beam inductance it is enough to put:

Qo= R2I ;,/sm((as) +Q,
RF
However, the tuning system changes the tuner position in order to maintain constant the difference between the
phase of the generator incident wave and the cavity voltage. This gives the equation (1.89).
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Fig. 1.12: resonant frequency of the DA®NE cavity as afunction of current.

1.3.4 Simulations of the multi-bunch longitudinal beam dynamics

As pointed out in the par. 1.3.1-1.3.2 the analytical study of the longitudinal beam
dynamics of a beam interacting with an impedance can be performed only in the case
of small oscillation amplitudes of equispaced and equal bunches. A complete
analytical treatment of the beam dynamics in the presence of a bunch-by-bunch
feedback system (that controls the longitudinal coupled bunch instabilities) and/or in
the presence of bunches with different chargeis, practically, impossible.

Simulation codes, that execute a tracking of the bunch longitudinal oscillations, allow
to study the multibunch beam dynamics including the effects of the feedback system,
HOMs interaction and synchrotron radiation damping.

In the code developed for the longitudina beam dynamics study in DA®NE [41],
each bunch is modeled as a single macroparticle of a given charge. Under this
condition it is possible to simulate only the “rigid” dipole oscillations that are,
however, the most dangerous for the beam stability (par. 1.3.2).

The quantities necessary to describe the motion of the bunch n are the energy
deviation €, with respect to the nominal energy E, and the phase deviation Ag, taken
with respect to the synchronous one (A@=@s-271hz./L,).

The algorithm can be divided into three main parts:

a) propagation around thering;

b) interaction with the accelerating mode in the RF cavity and with the
impedances due trapped modes in the devices of the ring;

C) interaction with the feedback system.
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Propagation around the ring

In the propagation around the ring, each bunch losses energy because of the
synchrotron radiation (U,,q) and because of the interaction with the ring impedance
(Uimp)-

Following the treatment of par. 1.2 the energy deviation and the phase deviation at the
exit of thering are related to the input quantities by the equations:

(60,).0 =(60,),, + 2% (e,

(Ea)oa =€)y = U0 + Dl )y -Uire

(1.91)

Interaction with the accel erating mode and HOMs

Both the interactions with the fundamental mode in the RF cavity and with the HOMs
(in the cavity or in other devices of the ring) are modeled with lumped eement
circuits in the same point of the ring?.

The variables v,(t) and i,(t) (voltage and current in the inductance respectively)
execute free oscillations between the passage of two bunches and can be represented
in theform [42]:

| _ wrm : ' _ 6(')rmRm ; '
[Vm (t)J _ e_c;%nt COS(C() rm t) 2Qma)',m S n(w rm t) Qmw.rm S n(w rm t) (Vm (tO )j
im(t) —wfm(?’“ sn(w',,t) cos(w', t) + w”“' sn(w',,t) im(tO)

(1.92)

where V(to), im(to) are the starting conditions and the quantities @, @ m, Qm and Ry,
are related to the mode m and have been defined in the par. 1.1.3.
When a bunch of charge Qy, crosses the impedance it is sufficient to add the quantity:
av, =-“aq,

(1.93)
to vi(t) and to continue the propagation.
The phase and energy deviations after the interaction with the RF cavity and HOMs
are, therefore, given by:

2 The change in the longitudinal position in one turn along the ring is a negligible effect and al the impedances
can be concentrated in the same point.
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(8, ) = (86, ).
(E0)oe = (60)p + Ve 00504, ), + 20, 1)+ TV,
(1.94)

where the interaction with the fundamental mode cavity impedance has been included
in the summations and the last term is the energy lost by the bunch and stored in the
HOMSs as the fundamental theorem of the beam loading states (see eg. (1.21)).

Interaction with the feedback system

Because of the high current stored in modern storage rings like DA®NE, coupled
bunch instabilities driven by the HOMs in the accelerating cavity or in other devices
of thering, have fast rise times.

A powerful longitudinal feedback [43,44] is necessary to damp the dipole oscillations
and, in the ssimulation code, this deviceis properly included.

The system installed in DA®NE is a bunch by bunch time domain feedback also
adopted in other factories [45]. The system provides the correction energy to each
bunch at every turn by means of alongitudinal kick. The phase error signal, detected
by a longitudinal pick-up, is digitized and processed with a DSP digital filter which
computes the correction signal K, by the algorithm:

(1.95)

The filter coefficients ¢; are computed in order to provide the -90° shift necessary to
convert the phase error into the energy correction and G isthe DSP gain.

The DSP output is amplified and sent through a digital-analog converter to a kicker
amplifier. In the smulations code developed for DA®NE, the input file concerning
the feedback allows to change the system configuration varying the gain of the
different devices, the number of coefficients and the maximum kicker voltage.

InFig. 1.13 it is shown atypical frequency response of the whole feedback chain.

The whole system provides, in general, the -90° degree shift for a certain frequency of
the signal Ag,. This frequency should correspond to the oscillation frequency of the
unstable modes that, in case of small coherent frequency shift, corresponds to the
incoherent synchrotron frequency. If the coherent frequency shifts induced by the
impedances (in some modes) are not negligible the whole system has to be optimized
in order to provide the optimum energy correction at the correct frequency.

40



~
a
T

Amplitude [dB]

L Il L L 1
10 20 30 40 50 60
frequency [KHz]

Phase [deg]
=)

1 1 1 1
10 20 30 40 50 60
frequency [KHz]

Fig 1.13: typical frequency response of the DAPNE feedback chain.

1.4 Landau damping

As discussed in the previous paragraphs there is a large number of collective
instability mechanisms acting on a high intensity beams.

Up to now the only considered damping mechanism is the natural damping induced by
the radiation emission.

A strong effort, in the RF cavities design, is done to optimize the cavity shapes or to
apply different HOM damping techniques in order to reduce the growth rates of the
possible instabilities [48-53]. Comparing, however, the characteristic rise time of the
possible coupled bunch instabilities (induced for example, by HOMs in the RF cavity)
with the natural damping time, one discovers that there are, in general, some possible
unstable modes [37].

Digital bunch-by-bunch feedback system instaled in the modern storage rings can
fight the dipole (and with some limitations also the quadrupole) coupled bunch
longitudinal instabilities.

However, another “natural” damping mechanism, that can fight the single and the
multi-bunch instabilities, exists: the Landau damping.

It works when, in a system of oscillators, there is a certain spread in the natura
oscillations frequencies. This spread in the bunch is induced, in the case of
longitudinal beam dynamics, by the non-linearities of the acceleration voltage.

The intuitive physical origin of this mechanism is discussed, for example, in [5].
When a periodical external force (in the case of an accelerator, as example, the force
induced by a resonant mode) excites the oscillators system (the particles in the bunch)
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what one expects is that the medium oscillations amplitude grows with time. By
calculations, on the contrary, the whole system remains stable. This is because the
stored energy is not distributed more or less uniformly in the particles but is
selectively stored in particles with continuously narrowing range of frequencies
around the frequency of the driving force.

These intuitive considerations can be more precisely applied to the beam dynamics
[54]. Following the treatment reported in [22,55] it is possible to obtain the system of
eigenvalue equations for the radia functions Ry, in the form:

[me —mw(i)]Rm(i) " 2rmec 1 0¥, < Z(pw —Qmﬂ)Jm[(DW —Qmﬂ)i}al (pw ‘me)

TO 2 52 | =—c0 pl,u _me C
(1.96)
where
o(@)=[R(2)3 (% zjzdz
0
(1.97)

Considering a coherent motion driven by a narrow band resonant impedance, one
obtains the following relation for Q:

Z[_(Nbp+,u)a)o _Q] =] (Nbfr;e/i)wo G?Q)

(1.98)
where G(Q) is given by:

G (Q):Tawo J2|:(Nbp+/'1)wo 2} 1 dz
" 1oz " c Q- ma(2)

(1.99)
The sability limit is found imposing Im(Q)-0 and finding in the plane
[Re(Z),Im(Z)] atheoretical stable region.
A typical stability diagram for the dipole mode, using the DA®NE design parameters,
is shown in Fig. 1.14 considering the non linearities induced by the RF voltage. In the
same plot it is shown the stability limit if one introduces a third harmonic RF system
to lengthen the bunches (see Chapter 3). The strong non-linearities induced by the
harmonic voltage give a strong enhancement of the Landau damping [56].
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Fig 1.14: typical stability limit diagram using the DA®NE design
parameters with and without a harmonic cavity.

1.5 Beamlifetime dueto Touschek scattering

The beam lifetime is usually defined as the time the beam intensity decays to a certain
fraction of its initial value (half or 1/€). The effects that cause the reduction of the
current in acircular accelerator can be summarized as follow [57]:

a) Effect of noise on guantum emission;

b) Scattering by residual gasin the beam pipe;

C) Multiple traversal of resonances,

d) Beam-beam effects;

e) Scattering between particles inside the bunch (Touschek scattering);

The lifetime given by al these effects is related to the final aperture available for the
particle motion.

Transverse plane

Aperture limitation in the transverse plane does not necessarily mean a physica
limitation but also the limitation due to the dynamic aperture [58]. Normally, in fact,
non linear magnetic fields in the accelerator cause a limitation of the maximum
transverse oscillation amplitudes. The dynamic aperture of the machine defines a
certain stable region in the transverse phase space where these oscillations are stable.
Also in the case of dynamic aperture limitations the particle are lost at the physica
aperture, but non-linear effects blow up the transverse motion (betatron motion) and
limit the “ stable” initial amplitudes to values far below the physical aperture.
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Longitudinal plane

In the longitudinal plane the particles are lost either at the RF energy acceptance limit
or at the momentum acceptance of the dynamic aperture. The first effect is the limit of
self focusing for the longitudinal motion described in par. 1.2. The second effect is
given to the fact that for non synchronous particle (off-energy) the dynamic or
physical?® aperture can be strongly reduced if compared to the synchronous one [59].

A detailed description of thefirst four effects can be found, for example, in [57].

For low energy and high current machines like DA®NE the dominant effect is the
Touschek one.

Particles inside a bunch perform transverse betatron oscillations around the closed
orbit. Due to a scattering effect two particles can transform their transverse momenta
into longitudinal momenta. If the new longitudina momenta of the two particles are
outside the momentum acceptance of the machine®, the particle is lost®>. This effect
was first recognized by Bruno Touschek at the ADA storage ring of Frascati [60].

The resulting beam decay rate is proportional to the number of particles in the bunch.
The beam current, therefore, decays exponentially and for a gaussian particle
distribution the decay timeis given by [61]:

Jrr2eN o

clu.
Vo v a0, )

1_
T
(1.100)

where:
roisthe classical eectron radius®®;
cisthevelocity of light;
y=Eo/m? is the energy of the particles in unit of rest mass (m, is the eectron
mass);
N, is the number of particlesin the bunch;
o'« isthe standard deviation of the angular divergence of the beam?”;
o, and g; are the standard deviations of the transverse dimensions,
g, isthe bunch length;

% Off-energy particles perform transverse oscillation around the so-called dispersion orbit. This orbit depends
on the energy deviation and is different from the on-energy (or ideal) orbit.

2|t is the minimum between the RF momentum acceptance and the momentum acceptance due to the transverse
aperture, either physical or dynamic.

% |n principle the two particles performing synchrotron oscillations can collide head on, in such away that they
transfer their longitudinal momentum into transverse momentum. This collision process istherefore,
insignificant in particle accelerators because the longitudinal motion includes not enough momentum to increase
the betatron oscillations amplitude significantly. On the other hand, transverse oscillations of particles include
large momenta and a transfer into longitudinal momenta can lead to aloss of both particles.

B = efimc?

%' The angular divergence of the beam and the transverse dimensions ¢, ¢ are functions of the point s along the
machine and can be determined knowing the magnet configuration of the accelerator (also called lattice).



Pacc=APac/Po 1S the limiting momentum acceptance of the machine. It is the
minimum between the RF acceptance and the momentum acceptance due to the
transverse aperture, either physical or dynamic.

C(unin) isgiven by:

C(umin):umin j u—lz{uu —1—%In(uu ﬂe‘“du

Unin min

(1.101)
With Unin=(APacd YO ).

Since (as pointed out in the note 27) ¢y, g, g are functions of the longitudinal point
s aong the ring, 7 in the equation (1.100) is a function of the longitudinal position.
Thetotal lifetimeisgiven by [59]:

fr(s)as

ring

~N

LO
(1.102)

If the energy acceptance of the machine is the RF acceptance (Apac=Apre), the
Touschek lifetime can be written as:

1 = \/ETochpé 1 C{( Apge jzl
T

y30x'(4n)3’ 2 0,0, 0,0 yo,'

Al

(1.103)

where the quantities that depend on the RF voltage are included in the term A(Vgg).
The plot of the quantity A as afunction of Vge isshown in Fig. 1.18 using the DA®NE
machine parameters. An increase of the Vrr gives an increase of the Touschek
lifetime.
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Fig 1.18: plot of the quantity A(Vre) as afunction of Vge using the
DA®NE machine parameters
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Appendicesto Chapter 1

Appendix A1.1: Haissinski equation with the wake fields contribution

If the wake fields cannot be neglected, the total accelerating voltage is given by (see
eg. (1.3)):
V, (2) =V cos{qoS - ZnhLij -Q j o(z)w,(z-2)dz
0 —c0
(1.A1.2)

Considering the linear expansion of the total accelerating voltage one obtains the
following expression of the potential well:

1a)

aeQr T oy
6(z) = oot z—mj;dz _J;,o(z)w zZ-7")dz

(2.A11)
Inserting this expression in (1.44) one obtains the equation (1.48).

Appendix A1.2: Incoherent synchrotron frequency and synchrotron phase
In the macroparticle model.

Considering that z=ct in the equation (1.5), one obtains:

o jaTy q_L"'L
dWZ —ji CLZ( ) ( Ny, ijda)
(LAL12)
summing over g between -co and +oo (**) and remembering that:
jona = 27T X 2mp
(2.AL2)

% The summation in (1.69) can be performed between -0 and +0 because the wake function is equal to zero for
negative z.
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one obtains:

& od 21 | -2
>l b T [-?mjejm( il
g 0Z (q_Nib-'—NLbJLO = 0 Z(-w)=Z(w)
_ JZZm 27p ""{WTJ
= CTZ T,
(3.A1.2)
since:
S Zm[Nib] _ {O p#kN
h=0 Nb p:ko
and e 7% =1 it is easy to obtain that:
R & Q27kN, (anNb]* _
=—] Z =
h=0 :Z (q_N7+NLjLO k:z—oo CT02 TO
i 2nkN [anij* _Z(anNbJ < 27KN, Z[anij
k=0 TO TO TO
(4.A1.2)
similarly:
e h =, 27kN
QF Swfa- o+t | S T rdzloo, )
h=0 q=-o b
(5.A1.2)

Appendix A1.3: System of eigenvalue equations obtained with the
macroparticle model

Substituting the solution (1.71) in the equation (1.68) one obtains:

[QZ - j_I_EQ—a)SZJ .

0

cae eil& dw -JQTo[q-Nlmi]
=- hade 4 a.e > No
h=0 q=- n

v [ Nb+N ]LO

b

(LAL3)
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Similarly to what done in the previous Appendix it follows that:

h
wly| q——+—
i o[q N, N j

dw, :im":[ dew

dz

h n
— 4+
Nb Nb

(2.A1.3)
L —JnTo[q—Lij _ .
multiplying both membersfor e No NoJ and summing for g=-c0,c0 one obtains:

n

e“‘””[q‘L*j S L az(w)ej(“"g”"[‘wb*wb] i elle-2ag g

since:

iej(w—Q)Toq = Z 5[ -0+ T_mj

q=—w o p=-co 0
it follows that:

i d(;’; [ h n)Loe_JQ (q TﬁNLbJ = J%%p_z_m( pw, + Q)Z(- pw, +Q)e‘i2m[ ™ Nb] _

Nb Ny

1 * it
:_JL_ Z(pwo_Q)Z (pwo_Q)e oo

0 p=—o
(5.A1.3)
substituting in (1.A3) one obtains the equations (1.72)-(1.73).
Appendix A1.4: Spectrum of an oscillating train of bunches
The current of atrain of oscillating bunchesis given by:
=03 3w, - r, -2
k=-c0 h=0 c
(LA1.4)

where:
Z;, = acos(Q#t + (pm)
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the phases @, are equal to:
2n

=—nh
D N, U
(2.A1.9)
remembering that:
25(U KT, )—— Zelq“’ou
k=00 0 g=—o
(3.A1.49)
and that:
e—jacos(ax+¢) — i j—me(a)e—jm(ax+¢)
(4.A1.9)
it follows:
102155 13, (w1 ) 42 e
The Fourier transform of this signal is given by:
= i - - M), —mQ , - @)
()|ZZ 3 (N 5[ oo, —mQ, — ]
(5.A1.49)
if one considers small oscillation amplitudes:
<<#
27(N,| - my)
(6.A1.4)

and remember that Jo(x<<1)[Il J;(x<<1)[X/2, one obtains the equation (1.77).

The equation (1.A1.4), in the case of afinite bunch length, has to be convolved with a
Gaussian distribution. In the frequency domain this implies that the spectrum (1.77)
has to be multiplied by the exponential form factor as shown in the equation (1.81).
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Chapter 2

RF structuresfor linear and circular accelerators

Particles acceleration in modern circular and linear accelerators is performed by
external RF generators coupled to the beam by proper e.m. structures.

These structures can be standing wave (sw) or traveling wave (tw).

In the first case the longitudinal eectric field of the resonant mode in the cavity
provides the correct energy kick to the bunch at each passage through the cavity.

In the second case the em. field travels in the structure, synchronous with the bunch
and the energy gain is distributed along the device.

A huge literature on cavities and tw structures design exists depending on the
accelerator applications, beam energy, kind of particles (electrons, protons, ions,...),
amount of energy to provide to the beam and so on.

The intention of this chapter is to introduce the basic concepts on sw and tw structures
(first two paragraphs) and the simulation codes for em structure design (third
paragraph). The last paragraph is dedicated to describe the most common
measurement techniques for normal conducting devices.

2.1 RF Cavities

A cavity is avolume of space enclosed by metallic walls, except for some holes which
couple the cavity to the outer space. The resonant modes in a cavity can be obtained
by solving the Maxwell equations with the proper boundary conditions at the eectric
walls.

The complete theory of resonant cavitiesis developed, for example, in [62].

The em. field, in a closed cavity and in the frequency domain, can be represented as a
superposition of two kind of modes, the solenoidal ones and the irrotational ones, in
the form:

E = Z anE(sol)n + Z bmE(irr)m
(2.1)
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where the solenoidal and irrotational modes satisfy respectively the conditions:

UXE @y 70 UXEm =0
UE =0 UE z0

—(sol)n —=(irr)m

(2.2)

and E, and H, are the phasor of the electric and magnetic field, respectively, whose
amplitudes are normalized in order to have a certain amount of energy stored in the
cavity.
Different E, (or Hy) modes are, furthermore, orthogonal over the cavity volume (V), it
means that:

[E Eidv =0

cavity
Jﬂ| H,dv =0

cavity

| #k

(2.3)

If a cavity is excited by an éectric current (J) inside the volume, at a frequency near
the resonant frequency of the n™ solenoidal mode™ the phasor of the eectric field is
given by:

E, [JE.av
1 cavi
E(w)=- — o
1+ JQn ( _ rnj n
w, w

(2.4

where wis the frequency of the excitation J, a, is the resonant frequency of the mode
and Q, isthe quality factor defined as:

(2.5)

where P,, and W, represent the average dissipated power on the cavity walls and the
average stored energy in the cavity, they are given respectively by:

Pn :E a)rn:uc |ﬂn|2ds
27 20
(2.6)
W, =2 [enE LAV =0 [ lH,fdv
2y 2y
(2.7)

# Both the irrotational and the solenoidal modes are excited by the electric current. The resonant terms are only
the solenoidal one and they give the biggest contribution to the total field in the cavity [63].
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where g, U are the conductivity and magnetic permittivity of the cavity walls and
Eavn Meay @re eectric and the magnetic permittivities of the material inside the cavity.

2.1.1 Beam coupling impedance of a cavity

If the cavity is excited by a charged particle beam of velocity v whose Fourier
component at the frequency wis given by®:

L(w)=1,e"v
2.8)
the excited electric field is given by *:
Elw)=- 1 gnfbj Ele vz
1 jQ{w_wm] 2P,
W,
2.9)

The complex amplitude of the effective accelerating voltage experienced by the
particleis:

Vv, :J'Ezej%dz

(2.10)

By definition, the longitudinal impedance seen by the beam is then given by:

. 2
‘ _[ Emejvzdz<
Vv, 1 _ R
Z{w)= i T or
1+ jQ{“’—“’f“j S jQ{“’—“’f“j
w, W ©, W

(2.11)

R is defined as the longitudinal shunt resistance of the cavity at its n™ resonant
frequency and it is usually taken on the cavity axis. The equation (2.11) shows that, in
the vicinity of a resonance, the cavity behaves as a parallel resonant circuit driven by
the current generator representing the beam (Fig. 1.2).

The shunt resistance can be also written in the form:

% wis supposed near the resonant frequency of the n™ solencidal mode in the cavity.
3L E in (2.9) depends on the transverse coordinates of the particle, which, in general, vary during the cavity
traversal. For the sake of simplicity the integral is taken at fixed transverse coordinates.
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the quantity T is called transit time factor and it takes into account the fact that, due to
the finite velocity of the particles, the resonant field changes its amplitude during the
traversal of the cavity.

Theratio R/Q given by:

J.Emej%dz

R
Qn ZNn wn

(2.13)
isaquantity that depends only on the cavity geometry.
In a similar way the transverse impedance in one direction, calculated on the cavity
axis, can be derived by the formula:

w 2

0.E,| _evd

1 1 ‘j o= Z‘
Zm(w):E w W 2P, ) R; )
Rz T el

- w w, w

n

(2.149)
R, is the transver se shunt resistance of the mode.
In case of cylindrical symmetry and for the dipole modes one has (1.12)
OnEn[Ex|=p/b Where b<<transverse radius of the beam pipe. It is, therefore, possible
to write:

w12
1 ‘I = (b)eJVZdZ‘ R,
Cc Cc
Z = = n
D(w) wh? _ w W 2P, wh? _ w
Q| 7 Q) ==

(2.14b)

where the integral is performed on a path parallel to the axis of the beam pipe and at a
distanceb.

In general the resonant frequency of the cavity has to be properly tuned in the final
constructed device in order to compensate the mechanical errors or, as seen in par.
1.3.3, in order to compensate the beam loading effects. This is, in general, done by
means of metallic cylinders (tuners) that slightly deform the cavity volume changing
its resonant frequency.



2.1.2 Coupling to cavities

The most straight-forward methods to excites resonant fields in a cavity are:

a) introduction of a conducting antenna, driven by an external RF circuit,
oriented in the direction of the electric field lines of the mode to be excited:;

b) introduction of a conducting loop with the plane normal to the magnetic
field lines;

C) introduction of a hole or iris between the cavity and awaveguide;

d) introduction of a charged particle beam whose current lines are oriented in

the direction of the dectric field lines.

The last case has been discussed in the previous section where the coupling
impedance and the equivalent circuit of the beam cavity interaction have been
introduced.

In the first three cases, instead, in the vicinity of a resonance the whole system can be
represented with an equivalent lumped element circuit as plotted in Fig. 2.1 [63].

In the circuit the elements R, L, C represent the cavity mode, the jX models the
reactive effect of the modes far from resonance, the transformer of turn ratio 1:n
models the coupling between the cavity mode and the waveguide (or transmission
line).

The system cavity-coupler-RF source is a new resonant system with quality factor Q.
given by:

(2.15)

where a is the resonant frequency of the cavity, W is the average stored energy and
Pt is the total average power dissipation given by the power dissipated in the walls of
the cavity (Pcay) plusthe power dissipated externaly in the load Zy (Pey).

Pin

Fig 2.1: equivalent lumped element circuit of the system cavity-coupler-RF source.
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Defining the external quality factor Qg as:

w,W
Q="
(2.16)
the loaded quality factor (Q,) is given by the relation:
1 1 1
- =4+ —
Q Q&
(2.17)
where Q, is the unloaded quality factor.
If one defines the coupling coefficient S as:
Pcav QE I"IZZO
(2.18)
QL isgiven by:
Q =%
L 1+ﬁ
(2.19)

With a simple calculation it is possible to find the absolute value of the reflection
coefficient measured at the input port of the coupler:

FRECE;

1+(Q o)

|pin| =

(2.21)

Measuring |0, as a function of frequency it is, then, possible to completely
characterize the resonator in term of S, Qg and .
In the case of two couplers the transmission coefficient S,; is given by [53]:

2B
__ 1428
SiT——a5
1+ inOJ
1+28

(2.22)

By measuring the |S,| it is possible to completely characterize the resonant mode.
The quantity:

(2.23)
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represents the time constant to reach the steady state regime when a harmonic
excitation is turned on (or the time constant decay when a harmonic voltage is turned
off) [64]. For that reason the quantity (2.23) is called the filling time of the cavity.

The design of a cavity is aimed, in general, at obtaining a certain shunt resistance
(longitudinal or transverse if the cavity is used to deflect the beam) and a proper
quality factor for the resonant mode of interest. Contemporary the design is aimed to
minimize the shunt impedance of the higher order mode that can give rise of
instabilities.

This is done by using em. simulation codes that allow studying the optimum shape
and the coupler characteristics in order to achieve the design goals (par. 2.3).
Measurements and calibrations made on prototypes allow validating and, eventually
correcting, the final dimensions of the device.

2.2 Tw structures

In a tw structure the em. field propagates synchronously with particles and the
acceleration (or deflection) is provided continuously along the whole device.

To obtain the synchronism between the wave and the bunches, the phase velocity of
the propagating e.m. field has to be equal to the particles velocity.

It is well know that, however, the phase velocity of a wave in a uniform waveguide is
always larger than the speed of light so that an em. field propagating along a uniform
guide could never be synchronous with any charged particles even if ultra-relativistic.
On the contrary, periodic structures can support waves with phase velocity much less
than the velocity of light.

The generic eectromagnetic properties of such type of structures can be understood
looking at the Floquet's theorem. It states that, in a given periodic waveguide, the
fields in two sections, distant D (where D is the period) are equal within a complex
constant. Consequently, the field in a periodic structure is described by a solution of
the form:

{E(ql,qz, z)=e*E (0,0, 2)
H(4,0,,2)=e#H (q,0,,2)

(2.24)
where E, and H,, are periodic functions of z with period D, and q;, g, are the transverse
coordinates in aplane normal to z.

The function E, can be expanded into an infinite Fourier series giving the following
form of the propagating field:
—j(ﬁ+2?m]z

[ ——

E(0.0,2)= Y Ep(dia)e 7
(2.25)
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Fig 2.2: (a) typical tw accelerating structure; (b) typical dispersion curve.

Each term in the expansion is called spatial harmonics and has a propagating constant
B, with the following phase (v,n) and group velocities (vy):

v w_  w
ph T o T
B, g+2m
A5
_dw _dw
°odg, dB

(2.26)

The group velocity is the same for all the harmonics and represents the velocity of the
power flowing in the structure [65].

Typical accelerating structures are disk loaded waveguides (Fig. 2.2a) with the
dispersion curve similar to that illustrated in Fig. 2.2b. The curve is periodic in S with
period 277D and each period is related to a spatial harmonics.

As usually happens, the zero order harmonics is synchronous with the particle beam
while the other space harmonics do not perturb the motion of the beam as they pass
through the bunch and produce no net effect.

The most relevant design parameters for atw accelerating structure® are [66]:

a) shunt impedance per unit length defined as:
__E5,
r,=—22—
dP/dz
(2.27)

% Similar parameters can be defined for deflecting structures.
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b)

d)

where Egy, is the amplitude of the eectric field of the spatial harmonic
having the same phase velocity of the bunches and dP/dz is the RF power
dissipated per unit length. A high value of shunt impedance per unit length
is desiderable since it means that a high accelerating filed can be obtained
with a given expenditure of RF power per unit length.

the factor of merit Q defined as:

W

“w
Q dP/dz

(2.28)

where w is the energy stored per unit length.
Ratio ro/Q: it may be obtained from the equations (2.27-2.28):

f_E.
Q ww
(2.29)

similarly to the standing wave cavities this parameter depend only on the
geometry of the cells.

Group velocity: defined in (2.26) is another important parameter for three
reasons:

1) the filling time, i.e., the time required to fill the accelerator with RF
energy, depends upon the group velocity and it is given by:
L

T =—

Vg

(2.30)

where L is the device length.
A high value of the group velocity is preferred from the viewpoints of
minimizing the time the RF pulse must be on.

2) The power flowing in the structure and the energy stored per unit length
of the structure are related through the group velocity as follow:

P
w=—

Vg

(2.31)

since w is proportional to E?, it is clear that a low value of Vg IS
preferred from the viewpoint of obtaining maximum accelerating fields
for agiven power flow.

3) In genera decreasing vy results in an increase in rq and ro/Q. Therefore,

a low value of vy is preferred from the viewpoint of obtaining high
values of rg and ry/Q.
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Frequency. Almost al the basic accelerator parameters have freguency
dependence. The choice of frequency is, therefore, one of the first and most
important tasks when undertaking the design of a new accelerator.
In particular, since®:
ro O a2
(2.32)

from the point of view of conserving power, the operating frequency should
be chosen to be as high as practicable. However, since the RF power from
the available single sources drops off more rapidly with frequency than ry
increases with frequency, it is not likely that extremely high frequencies
will be advantageous. Low frequencies are preferred, moreover, because the
dimensions of the structure scales as «" and too small irises can intercept
the beam. Finally, the required tolerances of fabrication are more difficult to
provide for small structures.

The tw structures are fed through couplers similar to those shown in Fig. 2.3. In order
to completely transmit the power from the coupler to the structure, the first cell
dimensions must be properly chosen to have zero reflection coefficient at the input
coupler itsalf.

;

active cells
Fig 2.3: typical couplersin tw structures,

2.3 E.M. smulation codes

Optimization of the cavity shape in both the sw and tw structures is of great
importance in the design procedure since for efficient operation, the shunt impedance

* The realtion (2.32) can be derived by simple considerations on the frequency dependence of the quantitiesin

(2.27).
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of the accelerating mode has to provide the required voltage across the structure using
a minimum input power. The power dissipation and surface field distribution need to
be known so that proper provision can be made for cooling the cavity and avoiding
excessively high surface fields which could result in multipactoring (or quenching of
supercunducting structures).

In paralld, the detailed knowledge of al the em. modes supported by the cavity are
necessary to allow their suppression by designing dedicated damping system or by
changing the characteristics of the higher order mode themselves.

For most practical cavities, however, the geometry is sufficiently complicated that
analytical solutions for the electromagnetic fieddd distributions and for the
characteristics of the modes supported by the structure do not exist.

The simulations codes enable, therefore, rapid calculation and optimization of the em.
field of RF structures with arbitrary shapes.

Numerical methods for determining em. fields are generaly based on the
discretization of the region of interest into discrete e ements.

The local equations, boundary conditions and driving function for each mesh e ement
are, then, formulated and the whole set of equations are solved simultaneously.
Different methods of volume discretization and field approximation have been
developed both in the frequency and in the time domain.

MAFIA and HFSS are two of the most commonly used e.m. simulation codes.

MAFIA

The first code, MAFIA [67] (MAxwell Finite Integration Algoritm) is based on the
Finite Integration Technique (FIT).

The FIT was originally developed for frequency domain applications [68,69] and was
extended to static and transient field computation from the need for solving many
different problemsin the design of large scale accelerators [ 70].

The entire volume is discritized in cubic cells and the values of the E-field and H-field
are considered at the edges of the cubes or at the center of the faces (Fig. 2.4).

Doing this, a double grid is considered in the discretised volume and the Maxwell's
equations written in the integral form are transated into the grid space as a set of
matrix equations [ 71] (the Maxwell's Grid Equations-M GE).

Following this approach the differential operators such as the divergence or the curl
are identified with topological matrices having analytical and algebraic properties that
ensure accurate numerical results and enable an agebraica self-testing of the
numerical results.

The methods can be applied both in the time domain and in the frequency domain.
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In the first case the solution can be performed iteratively starting from certain initial
conditions and following the behavior of the field at each time step. This method can
be used both for wake field and for Scattering parameters cal culation®.

Grid E
_— —
Dual grid H
-———- |_:>

Fig. 2.4: volume discretization technique in the FIT.

In the second case it is necessary to resolve a system by the inversion of a matrix and
it can be applied for eigenmodes calculations or frequency domain response. In
general the numerical resolution of the system requires an amount of CPU memory
that grows exponentially (or polinomially) with the number of unknowns (number of
cells) while in the iterative method the memory requirement grows linearly with the
number of cdlls.

An example of discretised sphereis shownin Fig. 2.5a

HFSS

The second code HFSS [72] (High Frequency Structure Simulator) employs, instead,
the Finite Element Method (FEM) to generate the e.m. field solution.

In the FEM technique the full problem space is divided into small regions and the
field in each sub-region is represented by alocal function.

In HFESS the geometry is automatically divided into a mesh of tetrahedra.

At each vertex, HFSS stores the components of the field that are tangential to the three
edges of the tetrahedron itself.

In addition, the system can store the component of the vector field at the midpoint of
selected edges that is tangential to aface and normal to the edge.

% In this second case it is enough to perform a Fourier transform of the signals in time and calculate the
complex ratios between the incident and reflected (or trasmitted) waves.
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The value of the vector quantities (E or H) at points inside each tetrahedron is
interpolated from these nodal values.

By representing field quantities in this way, the system can transform Maxwell's
equations into matrix equations that are solved using traditional numerical methods.

In this case, as in the frequency domain solver of MAFIA, the memory requirement
grows exponentially (or polinomially) with the number of tetrahedra and there is, in
general, a trade-off between the size of the mesh, the desired level of accuracy and the
amount of available computing resources.

To produce the optimal mesh, HFSS uses an iterative process in which the mesh is
automatically refined in critical regions where the variation of the field is higher
(adaptive solution). When the selected S-parameters converge within a desired limit,
the system breaks out of the loop.

As an example a meshed sphereis reported in Fig. 2.5b.

| Hoem ymiinn s |

i | ] IIHEIIEI s
T REES :

_® M smmmmanEy ‘
Fig 2.5: example of discretized sphere: (a) MAFIA; (b) HFSS.

2.4 Bench measurements on RF structures

The bench measurements can be performed in both the sw and tw structures and can
be done using a Vector Network Analyser (VNA).

2.4.1 Resonant frequency

The resonant frequency of a sw structure can be measured by the |Sy| (or |S;1]) from
two antennas, coupled to the field (see formula 2.22 (or (2.21)).

In sw structures this measurement can be performed, for example, in order to
characterize the fundamental mode and the higher order modes in a resonant cavity in
terms of Q factor and frequencies.

In tw structures the resonant frequency of each cell (properly short-circuited) can be
measured, before the soldering procedure, finding possible mechanical errors or
imperfections. Also the dispersion curve of the whole structure can be sampled in N+2

63



JULLLL

Fig 2.6: measurement set-up to sample the dispersion curve of atw structure.

M
|

VNA

points assembling N plus 2 half cells and measuring the resonant frequency of the
assemble structure as shown in Fig. 2.6.

The N cdls plus 2 half cels resonate, in fact, a the N+2 angular frequencies
(n=0,1,...,N+1) given by® [73]:

w, = f(Lnj
" D(N +1)
(2.33)

where w=f(p) isthe dispersion function in the (8,«) plane and D is the period.
The formula (2.33) shows that the dispersion curve of the infinite tw structure is
exactly sampled in N+2 points.

2.4.2 Longitudinal and transverse beam coupling impedance
The standard way to do bench measurements of the beam coupling impedance is the

coaxial wire method [ 74-80].
The technique assumes that:

a) a bunch of an ultra-rdativistic beam has a very similar em. field
distribution to a short pulse on a coaxial line[1];
b) the coupling impedance seen by the beam is equal to the

impedance seen by the TEM mode in the coaxial waveguide.

The sketch of the measurement setup and the equivalent circuit are shown in Fig. 2.7.
In the figure the networks A and B allow to match the characteristic impedance of the
VNA (usualy 50 Ohm) with the characteristic impedance of the coaxial waveguide
(Zo).

The matching can be redlized, in general, with a resistive network Fig. 2.8a or with
tapers Fig. 2.8b. Due to parasitic effects (inductance and capacitor) in the resistors, the

% These frequencies can be simply obtained considering a sum of aforward (e'¥©?) and reflected (€*“?) wave
and imposing the boundary conditions at z=0 and z=L.



first method is adopted in the case of low frequency impedance measurements
(usualy up to 1-2 GHz) while the second method allows measuring impedances at
high frequencies depending on the ratio between the taper length and the initial and
final diameters.

The exact relation between the measured S-parameter, Sypur (%), and the unknown
impedance Z is given by:

z:2zcl_SZl
1

(2.34)

where Z. is the characteristic impedance of the coaxial waveguide.
In practical bench measurements the measured S;;pyr IS compared with a reference
S1rer that is obtained measuring the S-parameter of a coaxial waveguide without the
DUT (*:

1- S21DUT

Z — ZZC S’ZlREF
S21DUT

SZlREF
(2.35)

This normalization procedure can be useful if the matching network introduces some
errorsin the measurement itself.

The characteristic of the em. field are perturbed by the presence of the wire. First of
al the wire lowers the Q of high Q DUTs like cavities and usually detunes the
resonance frequency. The wire, moreover, changes the boundary conditions of the
whole structure and permits exchange of em. energy between the DUT and the VNA
for frequencies below the waveguide cut-off.

wire DUT .
matching
/ network
VNA

Zo Z0
. 1 ]
"] 2 = i
= — -

Fig 2.7: sketch of the wire method used to measure
the beam longitudinal coupling impedance.

match
netw
WU

yorew

%6 DUT-Device Under Test.
" The formulais known as the Hahn-Pedersen formula.
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Fig 2.8: typical matching networks.

Experimentally, however, comparing the measured R/Q of know resonant structures
with that obtained by analytical or numerical calculations, one obtains errors of few
percent if the length of the cavity is small compared with the beam-pipe diameter and
the wireradius is much smaller than the beam pipe radius.

Unfortunately, a general analytical theory that allows validating the method does not
exist and the way to proceed is to simultaneously compare the measurements results
with other type of measurements (as those illustrated in par. 2.4.4) or simulations
[53,81].

The method can be also applied in order to evaluate transverse impedances.

The standard technique is to stretch two parallel wires across the DUT. The two wires
can support both an odd and an even mode and for the transverse impedance
measurement only the first has to be excited. For this purpose one uses a 180° hybrid
transition that excites the odd mode and suppresses the even one.

In this case the formula to eval uate the transverse impedance is ssimply given by [82]:

1_ leUT
Cc
Z - Z 1REF
abZ o(odd) S21DUT
SZlREF

(2.36)

where b is the distance between the wires and Zoqq) iS the characteristic impedance of
the odd mode. The formula is directly derived from the eg. (1.15) that relates the
longitudinal and the transverse impedance of a transverse mode.

Similar considerations, than in the longitudinal case, can be done on the validity of the
method.
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2.4.3 Beam transfer impedance

The beam transfer impedance is defined as a ratio between the voltage signal V ge,(w)
detected trough a device coupled to the beam and the Fourier series component T(w)
of the beam:

(2.37)

Following considerations similar to those done in the previous paragraph, the beam
current can be substituted with the current flowing on awire (Fig. 2.9a).

Referring to the circuit shown in Fig. 2.9b, if the perturbation induced by the device
coupled to the beam is negligible (|S;2gev| 1L = |S114ev|(0) and the reflection coefficients
of the matching network are almost equal to zero, the absolute value of the transfer
impedance can be easily evaluated measuring the scattering parameters Sz ror and
Sy1tor and applying the formula (Appendix A2.1):

(2.38)

where Z. is the characteristic impedance of the coaxial waveguide and Z; is the
characteristic impedance of the network analyzer.

wire .
matching
/ network
|oad
VNA
Port 1 Port 2
dev. dev.
Zo Z. N

match
netw

I

T T
MU
yorew

Port 1

Fig 2.9: (a) sketch of the beam transfer impedance measurement setup;
(b) equivalent circuit.
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2.4.4 Field mapping by perturbation method

The field in the cavity can be sampled by introducing a perturbing object along the
beam pipe and observing the change in resonant frequency [83,84]. Fig. 2.10 shows
the typical set up for the measurement.

For the case of a small sphere of radiusr, if the unperturbed field may be considered
uniform over a region larger than the bead, the relative frequency variation is given
by:

Aw, mi & -1 u -1
- €o Es + 1, HJ
w w g +1 u +1

r

(2.39)

where W is the total stored energy in the cavity and Eq, Hp are the fields at the bead
position.
For adidectric (14=1) or metal (4 — 0, & — o) bead the equation (2.39) becomes:
3 —

Aw, :_77_(50 &, 1E§J

) W £ +1
Aw T u -1

r=—_77 r H 2

s 0

r

r

(2.40)

Shaped beads such as needles or disks can be used to enhance the perturbation and
give directional sensitivity [84].

To determine the direction of the field components is particularly important when
dealing with the higher modes of a complex cavity shape where the measured mode
frequency will not be a sure identifier of the dominant field direction.

By a map of the longitudinal electric field it is possible to calculate the longitudinal
and transverse coupling impedances with the formulae (2.12)-(2.14).

cavity

bead
|
:

TEmEsSsEsEEETTN
_—————————

VNA

Fig 2.10: sketch of the bead pull measurement set-up.
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2.4.5 Phase advance per cell for tw structures

In the case of tw structures, the process of tuning is intended to adjust the phase
advance of every cell to the design since random and systematic errors can remain
after the device machining and fabrication.

Random errors are usually corrected by deformation of the cell walls or by the use of
tuning plugs. Systematic errors, instead, can be corrected by adjustment of the
operating temperature or driving frequency™.

Contemporary, the matching of the input coupler is done by adjusting the dimensions
of the coupler cell to insure a low reflection coefficient at the input and output of the
structure.

The problem is that the two processes are not independent.

The schematic measurement set-up for the cells tuning procedure is shown in Fig.
2.11. The dephasing per cell is measured by using a movable plunger in order to
reflect the traveling wave. By measuring the phase of the reflection coefficient at the
input coupler as a function of the short position it is possible to determine whether the
n™ cell is correctly tuned.

The difficulty isthat, if the coupler cdl is not well matched, the phase of the reflection
coefficient depends on the internal coupler reflections and it is not possible to
distinguish the two effects.

By changing the em. properties of the coupler with the matching section it is possible
to cancel this uncertainty and to correctly tune the cells. Different ideas have been
explored for this purpose [66]. The basic strategy is to use Smith chart plots of the
reflection coefficient as a function of different plunger positions and to correct the
mismatch of the coupler by changing the reactive matching section in order to cancel
these reflection contributions.

Reactive

matching VNA
v/ U U U
N ? | N N

Fig 2.11: sketch of the phase advance per cell measurement set-up.

% The first method allows changing slightly the dispersion curve of the structure while the second method the
operating mode.
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Appendicesto Chapter 2

Appendix A2.1: Beam transfer impedance calculation

The circuit of Fig. 2.9 is reported more in detail in Fig. 1.A2.1 where the line
impedances have been put equal to 1 (this is aways possible re-defining the currents
and voltages [65]).

Supposing that the perturbation induced by the device is negligible it follows that
&' by’ and that b,’ a," and that the device can be substituted with a transmission line
of negligible length.

The total incident and reflected waves at the ports 1 and 2 can be found considering
the superposition of two different excitations as shownin Fig, 2.A2.1.

In the case of “odd” and “even” excitation one obtains respectively:

a, =Y a, =Y
° 4 ° 4
Ze—ja V 2e-ja V
by, =[811 ‘SLZ—_V,J— by, =(Su +Slz—_mj—
1-S,e 4 1-S,e 4
a1 "= —\i a1 "—!
? 4 ° 4
" S,LZZe_]a V n Slzze_]a V
= - - |— = + — | —
P (S” 1-S,e7e )4 P S 1-S,e7 ) 4
__ Sl v L o SV
*® 1+S,ev 4 * 1-S,ev 4
:L! b :L\i
* 1+S,ev 4 * 1-S,e’" 4

(LA2.D)
where a = AL and |Sj| is the scattering matrix of the matching networks.

Thetotal incident and reflected waves are given by:
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(2.A2.1)
Thetotal reflection coefficient at theinput port 1 isthen given by:

_b _ S5S,e”*
SllTOT - a =5t @
(3.A21)
and the total transmission coefficient between the port 1 and 2 is given by
_b"_ se
S21T0T - g - 1—3222?
(4.A2.2)
Theratio between the incident wave at the input port 1 and the traveling wave in the
coaxial waveguideis given by:
b_ S,
8 1-She
(5.A21)
Considering the equations (4.A2.1) and (5.A2.1), if |S,[[D the ratio between the
power incident at the port 1 and the power flowing in the coaxial waveguide is given
by:
PCO&X 2
P-_ D‘SIZ‘ D‘SLZTOT‘
(6.A2.2)
If Ss17o7 iSthe total transmission coefficient between the input port 1 and the port 3 it
follows that:

P P
e b

~2

c

‘2 :>1’\7dev‘2 _ ‘Sl3TOT‘2 1
2 Z, ‘SIZTOT‘ 2

(7.A2.1)
from this expression it follows directly the equation (2.38)
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Chapter 3

Control of bunch length with a high harmonic cavity in DA®NE

The Frascati ®-factory DA®NE is a double ring, high luminosity collider working at
the energy of the ® meson resonance (1.02 GeV in the center of mass).

The sketch of the factory is shown in Fig. 3.1. In the two rings electrons and positrons
travel in opposite directions and collide in the two interaction points IP1 and 1P2.

The most relevant DA®NE design and present parameters are summarized in Tables
1.1-3.1.

The study and the design of a high harmonic RF system is mainly motivated by the
demand of lifetime improvement for storage rings with lifetime limited by the
Touschek effect such as low energy machines. In such case, the implementation of the
hardware providing an RF harmonic extra-voltage to the beam is aimed at reducing
the RF slope at the bunch center to lengthen it and to maintain, contemporary, a high
energy acceptance.

There is aso another reason for tacking into consideration RF harmonic systems. The
non-linearities introduced by the harmonic voltage tend to weaken the possible
coherent instabilities through the Landau damping mechanism (par. 1.4) and may be
therefore beneficial for both the single and the coupled-bunch beam dynamics [56,
85].

However, the introduction of a harmonic cavity aso perturbs other aspects of the
longitudinal dynamics affecting the overall machine performances.

Thefirst paragraph of this chapter is dedicated to the study of the beam dynamics with
the RF harmonic system in the lengthening regime. It includes both the multi and the
single bunch effects and the lifetime calculations.

In the second paragraph the harmonic cavity design is discussed while the last
paragraph is dedicated to illustrate and discuss the measurement results.
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Fig 3.1: sketch of the Frascati ®-factory DA®NE.

3.1 Beam dynamicsin DA®NE with the harmonic cavity

The Touschek effect is especially harmful in DA®NE because of the low beam energy
and high bunch charge density necessary to get the required luminosity per bunch
(par. 1.5). The effect results in production of beam induced background in the detector
[86] and in the necessity of frequent beam injections due to low beam lifetime [87].
The situation should be improved using a harmonic RF system [88].

It consists in the addition of a second RF voltage to the main one at the frequency nfge
in order to reduce the RF slope at the bunch center. Doing this it is also possible to
increase the main RF voltage maintaining an acceptable value of the bunch length.
The combined effects of the lengthened bunch and the increase of the energy
acceptance increase the lifetime of the machine.

In the case of DA®NE n has been chosen equal to 3 after a complete investigation
over various possible harmonics as a good trade-off between efficiency and
compactness requirements.

The required harmonic voltage can be obtained by powering the cavity with an
externa RF source (active option) or by letting the beam current interact with the
harmonic cavity fundamental mode impedance (passive option®).

In the case of the DA®NE rings the passive option has been chosen since it is far less
complicated and expensive compared with the active one and since a very moderate
harmonic voltage is required to obtain a reasonable bunch length. Furthermore it does
not present major drawbacks from the beam dynamics point of view and the quite high
stored multi-bunch current in operation allows sustaining the required harmonic
voltage without difficulties.

¥ |n this case the required power to sustain the harmonic voltage is given by the RF main system through the
beam.
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Table 3.1: present DA®NE operation parameters

Energy (Eo) 510 [MeV]
RF frequency (frr) 368.29 [MHZ]
Harmonic number (h) 120
Revolution frequency (fo) 3.0688 [MHZ]
Momentum compaction () 0.025+0.035
Max. beam current (1 max) 1.3 [A]
47+51 over 60

Number of colliding bunches (Np)

or 100+105 over 120 ()

Max. current per bunch (lpmax)

[26 [mA] with 47-51 bunches over 60
(13 [mA] with 100-105 bunches over 120

RF voltage (Vrr)

100+120 [KV]

Bunch spacing (Tp)

5.43 [ns] (=2/frr) with 47-51 bunches over 60
2.71 [ns] (=V/fgre) with 100-105 bunches over 120

Synchrotron losses (Up)

9.3 [KeV/turn]

Impedance 10sses (Uinp)

[R.5 [KeV/turn] (I,CR2OmMA, € ring)
4.5 [KeV/turn] (I,CR0MA, €' ring)

Natural bunch length (00)

1.4+1.6 [cm] (Vre=120KV)

Bunch length (o)

[2.4[cm] (e" and I,LR2OMA, Vge[1120KV)
(2.8 [cm] (e and I,[ROmMA, Vge[1120KV)

Vertical B-function at the IP (B'y) [B[cm]
RF acceptance (er/EO) [0.55% (with Vge[1120KV)
Beam lifetime (1) [11.000+2000 [5]

As pointed out in par. 1.2.4 the bunch length in DA®NE depends on the bunch current

and the lengthening process due to the wake fields can be well ssmulated by the single
bunch tracking code.

“0 The first option has been adopted for the collisions in the first interaction point with the experiment KLOE
[87], while the second one for the collisions in the second interaction point with the experiment DEAR. When
the bunches collide in one interaction point they are vertically separated in the other region.
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The present DA®NE operation parameters are summarized in Table 3.1. The RF
voltage is equal to =120 KV and the bunch length at typical operating conditionsis 2.4
cmand 2.8 cmin the e and € ring, respectively*.

In the future the current per bunch could increase from 20-25 mA to 30-35 mA, in
order to increase the machine luminosity (see note 43). Single bunch measurements
aready performed on the two rings at the present operational RF voltage show that the
bunch length at 35 mA is about 2.8 and 3.3 cm in the € and € ring respectively [89].
These values are adready at the limit allowed by the present value of the vertical -
function at the interaction point. This means that, with the present machine set-up,
there is no chance of lengthening further the bunch without affecting the machine
luminosity*.

The only possible strategy to improve the lifetime using a harmonic voltage is based,
therefore, on the RF acceptance increase, which can be obtained increasing the peak
voltage of the main RF system. In this case the harmonic voltage is used to reduce the
total RF slope at the bunch center in order to keep the bunch length near the hourglass
limit.

The choice of the harmonic frequency and of the harmonic system parameters has
been aimed to match the previous considerations and to satisfy the beam dynamics
reguirements (as discussed in the following). After a complete investigation over the
2" the 3 and the 4™ harmonic frequencies the 3 harmonic has been chosen as the
working frequency of the DA®NE harmonic cavity as a good trade-off between
efficiency and compactness requirements.

The DA®NE 3" harmonic system parameters are reported in Table 3.2 (¥).

The cavity has to be considered as a resonant impedance powered by the beam 3fge
spectrum line. The shunt impedance of the cavity has been chosen quite low (Ry=480
KQ) in order to weaken the coherent effects induced by the beam. On the other hand,
this will ask for some extra power to the main RF system that is not an issue in the
DA®NE case™.

“! The difference in the € ring is due to the higer broad-band impedance because of the presence of the ion
clearing electrodes. The model of the DA®NE short range wake field does not includes, for the moment, this
contribution to the wake and, therefore, predicts with good accuracy the lengthening of the € ring.

“2 The luminosity of a collider is the number of reaction events produced per unit reaction cross section. The
most simple formulathat gives the luminosity of acollider is[90]:

where Ny* is the number of particles per bunch for each beam, N, is the number of bunches in each beam, fo is
the revolution frequency, o x and o y arether.m.stransverse dimensions of the beam at the interaction point.
The transverse dimensions of the beam near the collision point (s=0) are given by the equation:

o(s)0 B +;i*
where the Bfunction at the IP f§ is related to the magnet configuration of the machine. In order not to loose
luminosity due to of the so-called hourglass effect [91] the bunch length has to be less than £ .

3 The parameters Qo and Ry related to the harmonic cavity are those of the constructed device (par. 3.2).
“ The average power dissipated in the harmonic cavity is P4=Vrss?/2Ry. A lower Ry gives more dissipation.
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Table 3.2: DA®NE 3™ harmonic system parameters

Main RF voltage (Vger) 200 [KV]
Main cavity shunt impedance (R) 1.9[MQ]
Main cavity Q-factor (Qo) 31500
Main cavity input coupling factor (3) (4.6
Detuning of the main cavity at 1=0 (Q_do) 12
RF harmonic frequency (fren=3 frr) 1104.87 [MHZ]
RF harmonic voltage (VreH) 56 [KV]
Harmonic cavity shunt impedance (Ry) 0.48 [MQ]
Harmonic cavity Q-factor (Qon) 18500
Natural bunch length (o,0) [(R.5[cm]
_ _ _ [R.9 [cm] with 1,=17 mA
Bunch length in the lengthening regime (o) _
[B.1[cm] with [,=34 mA
Momentum compaction (0c) 0.034
RF acceptance ere/Eo [0.7%

In order to get the required voltage with the proper phase at any operation value of the
beam current, the harmonic cavity has to be properly tuned between the revolution
harmonics 3hay and (3h+1) . Referring to the equivalent circuit of the beam cavity
interaction (Fig. 1.2), the cavity detuning is given by the following equation:

Qooy = -

(3.1)

where I,is the 3h line of the beam Fourier series (eg. (1.83)), and
H=3hawy trer-trer/ 3N,

Tuning the cavity above the 3h revolution harmonic provides the right phasing with
respect to the main RF voltage to lengthen the bunches. In fact, considering the
harmonic voltage equal to 56 KV, and a typical operating current 1=1 A, the absolute
value of the Quydy is larger than 10, this mean that the impedance of the harmonic
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cavity sampled at the 3 harmonic frequency is mainly imaginary and produces a
harmonic voltage that is almost completely out of phase with respect to the beam.

A plot of the main and harmonic voltages and their sum, together with the resulting
potential well isshowninFig. 3.2at 1=1.6 A.
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Fig 3.2: (&) main and harmonic voltages; (b) resulting potential well.
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Fig 3.3: natural and lengthened bunch profile with the harmonic cavity
(a-34 mA/bunch, b-17 mA/bunch),

The natural bunch profile with this cavity detuning, as given by the Haissinski
equation, is plotted in Fig. 3.3 with the lengthened profile obtained by the single
bunch simulation code at two different bunch current: 17 mA and 34 mA.

This RF working point should provide, therefore, a bunch length close to the
hourglass limit, with an RF acceptance 30% higher with respect to the present
DAFNE operating conditions. In addition, since the harmonic voltage makes the
natural bunch length larger, the lengthening process is less pronounced, which
indicates that microwave effect and single bunch dynamics are relaxed (par. 1.2.3-4).
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3.1.1 Analysis of the coupled bunch instabilities in case of uniform filling
pattern

Considering Ny, equidistant bunches, the coherent angular synchrotron frequencies and
the growth rates of the p-mode are given by the equations (1.76)-(1.79) using a
macroparticle model with or without considering the bunch length and by (1.82) using
the perturbative theory.

The incoherent synchrotron angular frequency wx is, in the case of eq. (1.76)-(1.82),
the frequency of the small amplitude oscillations, while in (1.79) it is the average
frequency oscillation amplitude over the bunch length (1.80).

In principle, the formulae (1.76)-(1.79) can be applied aso in the limit of o, -0 (
Moreover eg. (1.82) is valid only for small perturbations of the unperturbed Haissinski
profile even if it takes into account the whole distribution function instead of a rigid
bunch profile.

The calculation of the “real” coherent frequency shift in the case of strong
perturbations and in the presence of non-linearities in the total RF slope (as in the case
of the harmonic cavity) is an open problem.

A multi-particle multi-bunch tracking code could give a possible solution to the whole
problem but, in this case, the parameters of the system have to be found tentatively
and the physical phenomenology can be definitively lost. Eventualy, in a further
study, such a code can be used for the optimization of the working point obtained by
the analysis of the beam dynamics with the approximated analytical equations.
Considering only the contribution of the main and harmonic cavities the most affected
coupled bunch modes are the modes “07, “1”, and “Np-1" with sidebands close to the
resonant frequencies of the main and harmonic cavity impedances (Fig. 3.4).

45) .

—— mode 0
---- mode 1 A
_.__ mode Nb-l ! E

main cavity and hh cavity impedances

i I il
359 360 361
f/fo

Fig 3.4: sidebands of the modes 0,1 and Ny-1 close to the main
and harmonic cavity impedances.

% |n this case the bunches become unstable. Thisis also caled the second Robinson limit.
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The fact that, for a certain parameter set, wy, can tend to O for a certain beam current,
can be physically explained in the following way: as w, -0, the restoring force for
the oscillation mode p due to the total RF accelerating field is completely
“compensated” by the force due to the long range wake field and the “equivalent” RF
slope for such a mode approachesto 0.

Following this explanation, since in the eg. (1.79) the incoherent synchrotron angular
frequency is averaged over the bunch, it may happen that some particles “inside” the
bunch reach the second Robinson limit before the whole bunch considered as a rigid
macroparticle and that bunch becames, therefore, unstable.

For this reason it may be interesting to calculate the formulae (1.79) considering the
incoherent angular synchrotron frequency of a particle that performs small amplitude
oscillations (the ws in this case is given by (1.69)). The ratios between the coherent
and the incoherent values of the synchrotron frequencies for the modes “0”, “1” and
“Np-1" are shown in Fig. 3.5 as afunction of the total stored current, considering both
the formulae (1.79)-(1.69) (case 1) and (1.79)-(1.80) (case 2) and different initial
detuning of the main cavity (*°).

As predictable, the mode "0" is the most perturbed since it interacts with the
impedance of both main and harmonic cavities and, in order to prevent the mode "0"
coherent frequency getting too small in the case 1, a large detuning of the main RF
cavity has to be provided (Q_d[1.2).

This condition corresponds to an inefficient operation of the main RF system ([60%
of RF power reflected at the cavity input coupler). However, this is a conservative
estimate since it is based on a linear macroparticle theory and the effects of the
distribution function and large non-linearities of the longitudinal focusing force are
not taken into account®’.

The expected shifts of the coherent frequencies of modes “1” and “Ny-1" are much
smaller, while they are almost negligible for the other coupled-bunch modes. With the
exception of the mode "0", which is damped by a dedicated feedback system as well
as by the Robinson mechanism, the frequencies of al the CB modes remain inside the
operational bandwidth of the DA®NE bunch-by-bunch longitudinal feedback system.
The growth rates of modes “0”, “1” and “Np-1" are shown in Fig. 3.7. The expected
growth rate of mode "1" is much smaller than the typical damping rate provided by the
DA®NE LFB system ([110 psY).

“ As discussed in the par. 1.3.3 the resonant frequency of the main cavity changes if the current increases to
compensate the beam loading effects. The final resonant frequency depends on the initial detuning.

“" The problem of the mode"0" coherent frequency shift could be relaxed by implementing a direct RF feedback
around the RF system [92] that reduces the imaginary impedance sampled by the mode "0" sidebands and, as
consequence, the shift of the mode "0" coherent frequency.
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3.1.2 Operation with a gap in the bunch filling pattern

The modal expansion, which is the base of the theory used in the previous paragraph
to calculate the coherent frequency shifts, is completely appropriate only in the case of
multibunch beams with uniform filling pattern (same charge and shape of each bunch
and no gaps aong the pattern). This condition cannot be fulfilled in DA®NE, since a
gap of 20+30% in the filling pattern is required in the € ring to prevent the ion
trapping [93] and consequently transverse beam emittance blow up.

The analytical results obtained from the theory have to be interpreted as an indication,
and have to be validated, in the presence of a gap in the bunch filling pattern, by
numerical simulations.

In the multibunch tracking code discussed in par. 1.3.4, it is possible to include the
contribution of the passive harmonic cavity adding in the HOMs the impedance due to
the harmonic cavity itself.

Results from tracking simulations of uniformly filled multibunch beams are in a very
good agreement with the theory. However, when a gap is introduced in the bunch
filling pattern, the situation described by the tracking code is strongly perturbed.

The long-range wakes sampled by each bunch depend on the bunch position along the
train. This generates a spread of the parasitic losses along the train and, as
consequence, a spread of bunches synchronous phases. In ALS, where passive
harmonic cavities have been installed, this effect has been already observed [94].

This effect is aready well evident aso in DA®NE, but, due to the large linear range
of the RF voltage, it does not significantly affect the synchrotron frequency and the
shape of each bunch.

The effect is largely magnified in presence of the harmonic voltage for the two
following reasons:

a) to the long-range wakes of the machine one has to add the contribution due
to the harmonic cavity impedance that gives, as illustrated in the following,
further losses spread along the train;

b) the total RF voltage (main+harmonic cavity) has a very little slope around
the synchronous phase and it is, also, strongly non-linear. The result is that
the parasitic loss spread is converted in alarge synchronous phase spread.

This effect can be also conveniently described in the frequency domain. In fact,
because of the gap in the filling pattern, the beam spectrum contains al the revolution
harmonics. In the ideal case, with no gap in the pattern, only the harmonics of the
bunch repetition frequency would be present (see eg. (1.83)).

In Fig. 3.7 the DA®NE beam spectrum near the harmonic 3h is reported in the case of
a uniform filling pattern (60 bunches over 60) and considering a gap (45 bunches over
60) without synchrotron phases spread.
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Fig 3.7: DA®NE beam spectrum near the harmonic 3h in the case of auniform
filling pattern (60 bunches over 60) and considering a gap
(45 bunches over 45) without synchrotron phase spread.

Because of the gap, also other lines are present, and the total accelerating voltage is
given by:
Vi (t) = Vie COS(Wret + @) + Ve COS(Bwpet +¢,) +Vyy, (1)
(3.2
where

Vi (1) ==Re 1,7, (kay, )ejk“rt}
k#h,3h

(3.3)
where Zi(aw) is the total ring impedance, which is mainly given by the two
contributions of the RF cavity and harmonic cavity accelerating modes. In the
expression (3.2) the total voltage V1(t) is represented as a sum of 3 terms: the first one
is the main RF voltage, which is actively excited by the RF system; the second term is
the harmonic voltage, which is passively excited by the beam with an amplitude that
can be varied by changing the harmonic cavity tuning; the third term Vyu(t), contrary
to the previous two, has only the revolution periodicity, which means that it produces
a constant voltage over a given bunch, but different voltages over different bunches in
the train (NH means "non-harmonic" voltage).
The parasitic loss spread can be, therefore, seen as the spread of the non-harmonic
voltage values as sampled by the bunches along the train.
The bunch positions given by the tracking simulation code comparing the present
DA®NE working point to the one proposed for implementing the harmonic cavity are
shown in Fig. 3.8. In the figure dots represent the positions of the macro-particles
distributed over the RF voltage (the non-harmonic voltage is not included in this
representation).
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Fig 3.8: bunch positions given by the tracking simulation code

comparing the present DA®NE working point to the one
proposed for implementing the harmonic cavity (1=1.2 A).
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Fig 3.9: bunches position as a function of the bunch number for atrain
of 47 bunches spaced 2 RF periods with the harmonic cavity.

The bunch positions as a function of the bunch number for a train of 47 bunches
spaced 2 RF periods, including the effect of the harmonic cavity and for total current
values of 0.8, 1.2, 1.6 and 2 A are shown in Fig. 3.9. The synchronous phases
variation is almost linear along the train and changes from 1180 psto [B320 ps.
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Fig 3.10: DA®NE beam spectrum near the harmonic 3h considering
47 bunches over 60 with and without the harmonic cavity

It is also important to observe that the displacing of the bunch positions from the
“unperturbed” synchronous phases produces a significant distortion of the beam
current spectrum. As an example, the spectra of the beam current near the 3h
harmonics are reported in Fig. 3.10 in the two cases. A large head-tail displacement of
the bunch synchronous phases produces a modulation of the "powerful” harmonics
and a distortion of the revolution harmonics around them. It was surprising to find that
in this case the intensity of the line 3h (the beam spectrum line powering the 3™
harmonic cavity) is comparable with that of the adjacent line (3h+1).

The total voltage and the non-harmonic voltage around bunch 1, 12, 24, 36 and 47 are
plotted in Fig. 3.11 for a beam of 1.6 A in 47 bunches. The non-harmonic voltage
sampled at the position of the bunch centroid sets the bunch parasitic loss individua
value (in the case of 94 bunches over 120 and for the sametotal current the situation is
exactly the same in terms of non harmonic voltages and head-tail synchronous phases
Spread).

The non-harmonic voltage over the bunch is an additional perturbation of the potential
well and has to be taken into account to compute the bunch natural and lengthened
profiles. In particular, it may be observed that bunches at the edge of the train seat
close to a maximum or minimum of the non-harmonic voltage and their potentia
wells are almost unperturbed. On the contrary, the phase of the non-harmonic voltage
is almost opposite to that of the 3" harmonic voltage over the central bunch of the
train, so that the lengthening effect is weakened.

Since the bunch centroids occupy different positions along the total RF voltage (which
is largely non-linear) and since the non-harmonic voltage has a different form over the
bunches, each bunch seats at a different RF slope and ends up with its own
synchrotron frequency and charge distribution. Each bunch has, therefore, its own
“natural” length, its equilibrium profile (in the lengthening regime) and its own
Touschek lifetime.
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Fig. 3.11: total voltage and non-harmonic voltage around bunch
1, 12, 24, 36, 47 in the case of 47 bunches over 60
(or 1, 24, 48, 72, 94 in the case of 94 bunches over 120)
with atotal beam current of 1.6 A.
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Fig. 3.12: natural and lengthened profiles of the bunches (1.6 A into 47 bunches)

The natural and lengthened profiles of bunches 1, 12, 24, 36, 47 in the case of 47
bunches over 60 are shown in Fig. 3.12. The beam current is 1.6 A (=34 mA per
bunch). The positions of the bunch centroids have been obtained from the

macroparticle tracking, as discussed before, while the profiles have been obtained
from the single bunch tracking code.
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The r.m.s. natural and lengthened bunch lengths as function of the bunch number are
reported in Fig. 3.13 for the mentioned five bunches and compared with the natural
bunch length with and without gap. The relative energy spreads are reported in Fig.
3.14.

It may be seen that, considering the natural bunch length, the bunches do not reach the
design length. This is because the bunches near the train edges seat outside the low RF

slope region while the RF slope over the central bunches is increased by the non-
harmonic voltage contribution.
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In the strong lengthening regime (34 mA per bunch), however, there is an increase of
the bunch length due to the turbulent regime that strongly lengthens the bunches more
than without the gap. This effect is confirmed by the increase of the energy spread of
the bunches.

A large spread of the synchronous phases is cumbersome at least from two points of
view. First of al, the position of the interaction point (IP) changes from bunch to
bunch which may cause problems to the experiments as well as luminosity
degradation if some bunch centroids collide significantly apart from the waist of the
vertical 3-function. One could argue that, provided that the synchronous phase spread
is equal in the two beams, the IP position remains fixed and only the collision times
vary with respect to the RF clock. But there is little hope that the synchronous phase
spread will be equal in the two rings, since in each ring it is generated by the long
range wake fields associated to al machine HOMs. As a matter of fact, we already
observed a substantial difference in the bunch phase spread in the two DA®NE rings
in present operation which is probably due to a difference in the HOMs distribution in
the two RF cavities (their internal profileis not exactly equal).

The impact of the bunch phase spread on the operational efficiency of the DA®NE
LFB system is the second worrying aspect. The LFB is a synchronous system timed
on the RF clock. In particular, the front-end works at 6fg- while the back-end (the part
of hardware dedicated to kick properly each bunch) works at 3.25fg-. Both hardware
sections will suffer from an excessive phases deviation of the bunch from a common
equilibrium value. In particular, the front-end phase detector has a limited dynamic
range, which can be overcome by an excessive phase spread while the back-end
section can not be properly phased on all the bunches.

The tracked oscillations of bunches 1, 24 and 47 for a beam current of 1.6 A into 47
bunches with and without LFB are shown in Fig. 3.15. It may be seen that the
damping of the LFB is still necessary, even though we know that it can not be
effective on the bunches near the train edges because of the off-time of both the front-
end and back-end sections.

It might be asked if there is a way to limit the spread of the synchronous phases or, at
least, some of its effects. Only in the € ring it is possible to remove the spread by
removing the gap in the filling pattern. This will increase the average beam current,
increasing the background production but not the luminosity, since the extra bunches
closing the gap have no partner bunches in the other beam. Nevertheless, this kind of
operation may have some advantages like a better average lifetime of the €” beam and
aless critical operation of thee” LFB system.

The stability of the LFB system operation could be possibly improved even without
removing the gap. In this case one should, in principle, synchronize the system on a
linearly phase modulated RF tone, to follow the phase displacement from bunch to
bunch. A solution of that kind seems to be feasible from a technical point of view
[95].
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3.1.3 Expected improvement in the lifetime with the 3 harmonic cavity

The DA®NE beam lifetime is dominated by the Tousckek effect [96].

Supposing that the limiting acceptance for the relative momentum deviation is given
by the minimum between the RF acceptance and the physical transverse aperture, the
Touschek lifetime can be calculated in each longitudinal point s of the machine by the
formula (1.100). The total lifetime can be finally calculated by the equation (1.102).
The performed calculations give the results plotted in Fig. 3.16. In the plot the bunch
lifetimes with the harmonic cavity are compared with those calculated in the present
operation conditions (Vre=110 KV) and with Vge=200 KV (without harmonic cavity)
for two different bunch currents (17 and 34 mA).

Considering the case Vrr=110 KV, without the gap, it isimportant to observe that:

a) the bunches have the same lifetime because there is no spread of the
synchronous phases;

b) there is an improvement of [(B0% and [175% in the lifetime with a bunch
current of 17 and 34 mA respectively. This improvement is given by the
enlargement of the energy acceptance and by the fact that the bunch is longer;

c) in the case of 34 mA/bunch the improvement is reduced because the
lengthening process without the harmonic cavity is more pronounced;

In the presence of a gap, because of the synchronous phase spreads, each bunch has its
proper lifetime. Also in this case, however, the average beam lifetime improvement is
[B0% and isworst for the central bunches of the beam that are shorter.

Similar considerations can be done in the case of Vge=200 KV. In this case the
improvement is only given by the fact that the bunch is longer because the energy
acceptance is amost the same ([0.75%).
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Fig 3.16 DA®NE Touschek lifetime improvement with the harmonic cavity.

3.1.4 The cavity parking option

As discussed in the previous paragraphs, the implementation of the harmonic cavity
presents beneficial aspects such as lifetime and Landau damping increase but also
other effects like the amplification of the synchronous phase spread, whose impact on
the collider is not completely predictable.

A back-up procedure consists in tuning the harmonic cavity between two revolution
harmonics sufficiently away from the 3h lines (for instance wge(3+0.5+k)wy with
k=1,2,3).

This option is the so-called “cavity parking”. By parking the harmonic cavity one
expects to recover approximately the operating conditions existing before the
harmonic cavity installation because the harmonic voltage is quite low and the
interaction of the cavity impedance with beam is minimized (but still significant).

In this case, in fact, the cavity interact with the modes Ny-1, 1, Ny-2, 2 and so on
depending on the number k.

In Fig. 3.17 the coherent angular frequencies and growth rates of the modes 2 and 3 as
a function of the beam current are plotted for the case k=2 and with the present
DA®NE operation parameters. As shown, the frequency shifts and the growth rates
are small enough to consider the perturbation almost negligible.

The synchronous phase spread for a current of 1.6 A with a gap of 22% is shown in
Fig. 3.18 for k=1, 2, 3. It may be seen that the phase deviation is not anymore linear
with the bunch position along the train, while the total spread is even smaller than the
value expected at the same current without harmonic cavity. This is not surprising,
since it may be demonstrated that, provided that k>1, there is a partial compensation
of the wakes generated by the accelerating mode impedances of the man and
harmonic cavities.
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Fig 3.18 The synchronous phase spread for a current of 1.6 A for k=1, 2, 3.

3.1.6 Conclusions
Using a passive 3" harmonic cavity in the lengthening regime can improve the

Touschek lifetime of the DA®NE beam by a factor equal to the [B0% if compared
with the present operation conditions
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This is obtained by increasing the RF acceptance while keeping the bunch length at
the limit of the hourglass effect. The microwave lengthening process is less
pronounced and the larger non-linearities of the harmonic voltage over the bunch
increase substantially the Landau damping.

Both these effects are expected to result in a more relaxed single and multibunch
dynamics.

On the other hand, the presence of a gap in the bunch filling pattern will produce a
large spread in parasitic losses and synchronous phases. As a consequence, the
Touschek lifetime gain is not uniform over the train, different bunches will collide at
different 1Ps and the synchronization of the bunch-by-bunch feedback systems may be
affected. The actual tolerability of such effects cannot be exactly predicted depending
on the operating conditions (such as the gap width).

The parking option (that consists in tuning the cavity away from the 3 harmonic
frequency and in-between two revolution harmonics) allows to recover approximately
the operating condition established before the harmonic cavity installation, and may
be considered a reliable back-up procedure. Moreover, in the parking option the
synchronous phase spread is compressed by a long-range wake compensation effect,
and a very moderate harmonic voltage is still present, which is expected to increase
the Landau damping in the longitudinal dynamics.

3.2 DA®NE harmonic cavity design

The design of the harmonic cavity has been aimed to obtain a reatively low R/Q
factor with a Q as high as possible for the beam dynamics considerations discussed in
the previous paragraphs. For this reason a spherical shape has been proposed as an
optimum compromise between a high Q resonator and alow R/Q factor [97].

For the damping of the higher order modes it has been decided to use the same
technique as that adopted at the KEK B-factory [98]. It foresees using specia rings of
dissipative ferrite material coupled with the HOM and completely decoupled with
respect to the field of the accelerating mode.

The final designed shape is shown in Fig. 3.19. The rounded cdll is the volume where
the fundamental mode resonates. On the cell top there is a port for the insertion of a
tuning plunger and three small RF probes have been inserted in the structure to
measure the beam-induced field allowing the low-level control and diagnostics. The
cell is connected through the tapered section to HOM damper consisting of the ferrite
rings bonded on a stainless sted flanges.
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Fig. 3.19: sketch of the DA®NE 3" harmonic cavity.

The cavity fundamental mode has been calculated both by MAFIA and by HFSS in
order to define the final dimensions of the cavity. The task of the simulations has been
to obtain simultaneously:

a) an R/Q of the fundamental mode of about 25 with a Q as high as possible;

b) a strong coupling of the cavity HOMs with the damper and a weak coupling
of the fundamental one;

C) controlled dimensions of the cavity because of the limited total length
available for allocating the structure in the ring.

For this purpose the radius rl and r2 of the rounded cell and the dimensions hl, h2, z1
and z2 (Fig. 3.20) have been properly tuned. Furthermore, in order to avoid direct
exposure of the ferite to the beam charge the ferrite load has been shielded by a
coaxial cylinder. The shield prevents direct heating of the ferrite that, in this case, can
interact with the beam only through the cavity HOMs. Moreover this solution avoids
the risk of degradation of the DA®NE broadband impedance associated with the
direct beam-ferrite interaction.

To reduce the cost it has been decided to build the cavity body in aluminum instead of
copper even if thisimplies areduction of the fundamental mode Q-factor by [20%.
Since the em properties of the specia ferrites used in the HOM dampers varies with
the frequency [99], in the simulations of the ferrites it has been considered the
following averaged characterization:

0-1.5 GHz - &=12 p,=2+10
15-3GHz - £=12 1,=0.5+5;

“8 That risk cannot be easily evaluated by means of simulations or analytical estimates [100].
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Fig. 3.20: cavity profile ssmulated by MAFIA and HFSS.

The resonant frequencies (f), the R/Q and the Q values of the cavity longitudinal
modes (M=monopole) as given by the MAFIA simulations of the 2D profile are
reported in Table 3.3 (the HFSS simul ations give substantially the same results).

In Table 3.4 the resonant frequencies and the transverse impedances for the dipole
modes (D) are reported while in Table 3.5 the frequencies (up to 2.5 GHz) and the Q
factors of the quadrupole (Q), sextupole (S) and octupole (O) modes.

Some of these modes are weakly coupled with the damper (high Q factors) but they
don’'t give longitudinal or transverse impedances to thefirst order (see par. 1.1.1).

In Figs. 3.21a and b the magnitude of the Electric field of the working modes M1 and
of the HOM M4 is plotted, as obtained by HFSS. In the first case the em. field
vanishes in the tapered transition and only a negligible amount of power can reach the
damper while in the second one the em. field propagates through the transition toward
the ferrite load.

E[V /]

= 1.0000e+00
3.0000e-01
2.0000e-01
7.0000e-01
B.0000e—01
53.0000e-01
4.0000e-01
3.0000e-01

1.00008—01
= 0.0000e+00

Fig. 3.21: Magnitude of the electric field of the working mode M1 (a)
and of the HOM M4 (b) obtained by HFSS.

94



Table 3.3: monopole cavity modes obtained by 2D MAFIA simulations.

MAFIA Simulations
f [GHZ] Q R/Q[Q]
M, 1.105 28000 26
M, 1.335 10 16
M, 1.600 30 6
M, 1.650 50 2
M5 1.899 50 4
Mg 2.094 110 7
M- 2.270 120 9
Mg 2.495 170 3
Mg 2.524 230 10

Table 3.4: dipole cavity modes obtained by 2D MAFIA simulations

MAFIA Simulations
f [GHZ] Q R/Q
[Q/m]
D, 1.089 438 66
D, 1.244 35 26
D3 1.445 158 22
D, 1.618 158 29
Ds 1.797 266 37
Ds 1.886 283 24

Table 3.5: quadrupolar (Q), sextupolar (S) and octupolar (O) cavity modes obtained by 2D

MAFIA simulations

f [GHZ] Q
Q. | 1597 19700
Q | 1.975 340
Q, | 2078 30
Q. | 2242 40
Qs | 2323 40
Qs | 2.398 90
Q, | 2.448 130
S, | 2042 36930
S, | 2469 12400
0, | 2471 36700
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Fig. 3.22: |S12| obtained by HFSS exciting the longitudinal (@) and dipole (b)
modes by two RF probes.

HFSS simulations exciting the cavity by two RF probes have been also performed.
The obtained R and Q values confirm the previous simulations results and in Figs.
3.22a and b the resulting |S;,| is shown as a function of frequency for the longitudinal
and dipole modes respectively.

The tuner inserted in the cavity allows to properly set the cavity frequency with beam
current or to “park” the cavity itself.

Since it perturbs the 2D profile of the structure, two relevant effects have been
examined:

a) first of all there is a degradation of the Q factor of the fundamental mode
caused by the strong field in the gap between the tuner itsef and the
cylinder in which it is alocated. According to numerical simulations, the
reduction of Q with respect to 2D results is [20% with the cavity properly
tuned, or [B0% with the tuner in the “parking option” position. In Fig. 3.23
the magnitude of the H field between the tuner and the outer cylinder
corresponding to the fundamental mode as obtained by MAFIA is plotted;

b) the second relevant effect is the appearance, in the case of “parked cavity”,
of longitudinal and transverse impedance due to the quadrupole mode (Q1).

96



In fact, while in the 2D symmetric geometries the quadrupole modes have
not transverse and longitudinal impedance, in this case, the presence of the
tuner strongly perturbs the symmetry of the cavity inducing a non zero
longitudinal and transverse impedance. In Fig. 3.24 the longitudinal Electric
field of this quadrupole mode with the tuner deeply inserted as obtained by
HFSS is plotted. When the tuner is inserted to shift the fundamental mode at
1.113 GHz ([Bfget+2.5fg), HFSS provides for this mode: f[11.559 [GHZ]

QL0000 RYQ.59 [Q] R/QD.1 [Q/m].

high intensity
magnetic field

I I
3.366-11 192e7

Fig. 3.23: Magnitude of the H field between the tuner and the outer cylinder
corresponding to the fundamental mode as obtained by MAFIA 3D simulation.
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S 450002100
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Fig. 3.24. Electric field of the quadrupole mode Q, obtained by HFSS
without the tuner (a) and with the tuner deeply inserted (b).
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3.3 DA®NE harmonic cavity RF measurement results

The picture of the DA®NE harmonic cavity is shown in Fig. 3.25.
The RF measurements have been, substantialy, of two types:

a)

b)

port-to-port transmission coefficient (|S;,|) between two probes to measure
the resonant frequencies and the Q-factors of the fundamental and higher
order modes. This measurement has aso alowed to check the range of
tunability of the fundamental mode itself by changing the tuner position;

wire measurements of the longitudinal and transverse impedances in order
to evaluate the longitudinal and vertical coupling impedance. As discussed
in par. 2.4.2, this method allows measuring the impedances with good
precision in the case of “lumped impedances’ even if it perturbs both the
field configuration and the resonant frequencies of the cavity modes. In this
case both the longitudinal and vertical impedances are not properly
“lumped” elements and, furthermore, the wire itself modifies the HOM
coupling with the damper ring, as we will discuss in the following. In any
case this kind of measurement can give some useful informations on the
impedance overview.

Fig. 3.25:picture of the DA®NE harmonic cavity.

3.3.1 Tuned cavity

The resonant frequencies (f), the R/Qs and the Q values of the cavity longitudina (M)
and transverse (D) (V and H identify the vertical and the horizontal polarization
respectively) modes are reported in Tables 3.6 and 3.7.
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Table 3.6: longitudinal modes obtained by measurements and
compared with the simulations in the case of tuned cavity

MAFIA Simulations M easur ements
el Q| | fled | e |rRee
M, 1.105 | 23000 26 1.105 18500 214
M, 1.335 10 16 not measurable (n.m.) nm. nm.
M3 1.600 30 6 nm. nm. n.m.
M, 1.650 50 2 1.65 168 16.8
Ms 1.899 50 4 nm. nm. n.m.
Mg 2.094 110 7 2.100 224 nm.
M- 2.270 120 9 2289 60 n.m.
Mg 2.495 170 3 2.466 140 n.m.
Mg 2.524 230 10 2.507 278 n.m.

Table 3.7: transverse modes obtained by measurements and
compared with the simulations in the case of tuned cavity

Simulations M easur ements
flGHZ] | Q [gﬁ] fleHd | Q | RIQ[m]
D, 1.089 438 66 1.070 450 146
D, 1.244 35 26 not messurable (n.m.) nm. nm.
D3 1.445 158 22 1.400 139 29
D, 1.618 158 29 1.560 175 nm.
D5 1.797 266 37 1.725 163 nm.
D¢ 1.886 283 24 1.865 190 74

The modes have been measured in the case of tuned cavity and compared with the
simulations of the 2D MAFIA structure. The resonant frequencies (f) and the Q values
of the modes have been calculated by fitting the port-to-port transmission coefficient
(reported in Fig. 3.26) between two RF probes while the R/Qs have been obtained by
the wire measurement (reported in Figs. 3.27-3.28). As wdll predicted by simulations
the ferrite load substantially damps all the longitudinal and transverse modes with the
exception of the fundamental one (M1).

Some modes, calculated by simulations, are not measurable on the prototype because
of the low Q vaues of these modes and because of the presence of high polarity

modes with high Q-factors (quadrupoles, sextupoles, octupoles).
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Fig. 3.27: Longitudinal impedance obtained by the wire measurement method (tuned cavity).
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Fig. 3.28 Vertical (a) and horizontal (b) impedances obtained by the wire measurement
method in the case of tuned cavity.
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As observed before, the results obtained by the wire measurement have to be carefully
analyzed. In fact, the wire itsdlf, as it can be seen putting it in HFSS simulations,
perturbs both the resonant frequency of the modes and also their field configuration.
The coupling with the ferrite damper can be then strongly varied. For example the
field resulting from an HFSS simulation of the wire measurement is shown in Fig.
3.29. Without the wire (Fig. 3.29a) the monopole M4 propagates along the tapered
transition toward the ferrite load. With the wire (Fig. 3.29b) the em. fiedd can
propagate along the coaxia line formed by the beam pipe and the wire itself and the
ferrite is by-passed. Consequently, the mode is no more damped and a high impedance
valueis measured at [11.8 GHz as shown in Fig. 3.27.

Fig. 3.29. Electric field configuration of the mode M4 obtained by HFSS simulation:
(&) without the wire (b) with the wire.

Considering the bunch longer than 2.5 cm, the longitudina HOMs effective™
impedance is aways lower than 800 Ohm and the dipole modes lower than 25 KQ/m.
These contributions will not change significantly the present scenario of the DA®NE
Beam Dynamics from the point of view of higher order mode impedances and, on the
contrary, one expects beneficial contributions to the beam dynamics from the Landau
damping which will be strongly emphasized by the non-linearity of the harmonic
voltage.

The resonant frequency of the fundamental mode as a function of the tuner position is
shown in (Fig. 3.30).

3.3.2 Parked cavity
A full characterization of the cavity has been performed also when the tuner isin the

parking position. The measurement results in this case are shown in Figs. 3.31-3.34.
The frequencies, the Q-factors and the R/Q values for the longitudinal and transverse

49 The impedance multiplied by the exponential factor exp(-wa,/c)® (that gives the correct growth rates and
coherent frequency shifts in the case of macroparticle model with afinite bunch length (par. 1.3.1)).
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modes are reported in the Table 3.8 and 3.9. In this case, as predicted by simulations,
it has been found non-zero longitudinal and transverse impedance for the quadrupole
mode Q1.

Anyway, aso for the parked cavity case it is reasonable to conclude, looking at the
effective impedances, that the present scenario of DA®NE beam dynamics will not be
change significantly.
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Fig. 3.30 Measured resonant frequency of the fundamental mode
as afunction of the tuner position.

Table 3.7: longitudinal modes obtained by measurements in the case of parked cavity

M easur ements
f [GHZ] Q R/IQ[Q]

M, 1.113 12000 18
M 2 not r}:ﬁ)rable n.m. n.m.
M 3 nm. n.m. nm.
M, 1.640 90 14
M 5 n.m. nm. n.m.
M 6 n.m. nm. n.m.
M- 2300 70 om.
M 3 n.m. nm. n.m.
Mg 2.520 280 --

Q1 1.585 11300 0.3

Table 3.8: transverse modes obtained by measurements in the case of parked cavity
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M easur ements
f [GHZ] Q R/Q [Q/m]
D, 1.087 280 130
D2 nm. n.m. n.m.
D3 1.397 140 24
1420 215
D4 nm. nm. nm.
Dsg 1.728 1170 nm
D¢ 1.863 70 65
Q 1.585 11300 4
_10 ' Q, > ; )‘\
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Fig. 3.31 Transmission coefficient (|Si2]) between two RF probes in the case of parked cavity.
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Chapter 4

RF deflectorsfor CTF3

CTF3 (CLIC Test Facility) is the third facility of the CLIC (Compact Linear Collider)
project. The CLIC study focuses on high-gradient, high frequency (30 GHZz)
acceleration for multi-TeV linear colliders® [101-103]. 30 GHz is considered to be
close to the limit beyond which standard technology for the fabrication of normal-
conducting tw accelerators cannot longer be used.

Since conventional RF power sources based on modulators and klystrons are not
available at this specially high frequency, CLIC was based on the novel and promising
concept of Two-Beam Acceleration (TBA).

In the first paragraph of this chapter the basics CLIC-CTF3 concepts are illustrated.
The study of the beam dynamics in the CTF3 Combiner ring considering the effect of
the beam loading in the RF deflectorsis presented in the second paragraph.

The last two paragraphs are dedicated to illustrate the RF deflectors design procedure
and measurements.

4.1 The CLIC-CTF3 Projects

The basic idea of the TBA is to properly recombine the bunch train (Drive Beam)
generated by a conventional linear accelerator in order to create an high peak current
beam with a time spacing between bunches considerably reduced.

This bunch structure is realized by a novel technique of bunch combination which
converts a long bunch train with a large bunch spacing of 64 cm into a sequence of
short trains with a bunch spacing of only 2 cm, which is used for 30 GHz power
production.

The principle is shown in Fig. 4.1. The bunch manipulation is done in three rings,
using RF deflectors, giving a multiplication of the bunch repetition frequency by
factor two in thefirst one and four in each of the two others.

The beam is then decelerated and the extracted power is used to accelerate the beam in
themain linac at 30 GHz.

* The choice of the high working frequency aims to reach high accelerating field of the order of 160 MV/m. In
fact, as shown in (par. 2.2), rod * and this suggests the choice of high frequencies to reach high acc. field.
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Fig. 4.1: Drive Beam structure of CLIC.
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Fig. 4.2: conceptual layout of CTF3.

CTF3 is an important test and demonstration facility for many vital components of
CLIC [104]. Its main aim isto prove the feasibility of the RF power source design and
to produce 30 GHz power at the nominal CLIC parameters. The conceptual layout of
CTF3isshowninFig. 4.2.

One of the most important issues to be tested is the frequency multiplication by the
novel bunch interleaving technique. In CTF3 a long train of short bunches with a
distance of 20 cm between bunches is converted into a series of short bunch trains,
with the individual bunches spaced by 2 cm. This is done in two stages, first by a
factor of two in the delay loop, then by afactor of 5in a Combiner ring.

After the linac, a first stage of electron pulse compression and bunch frequency
multiplication of the drive beam is obtained using a 42 m circumference Delay Loop
with a transverse RF deflector at 1.5 GHz. The circumference of the loop corresponds
to the length of one batch of “even” or “odd” bunches. The process is illustrated in
Fig. 4.3. The RF deflector in the Delay loop deflects every second batch of 210
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bunches into the delay loop, and, after one turn, insert this batch between bunches of
the following batch. Therefore the bunch timing of subsequent batches is adjusted in
such a way that they have a phase difference of 180 with respect to the [11.5 GHz RF
of the deflector.

An 84 m circumference Combiner Ring is used for a second stage of pulse
compression and frequency multiplication by a factor five. This is achieved by means
of two RF deflectors working at [B GHz, which insert the injected bunches between
the already circulating ones, asillustrated in Fig. 4.4.

After the Combiner ring the drive beam pulse is 140 nslong and has a current of 35 A
with the 2.33 nC bunches spaced by 2 cm.

A single 30 GHz power extraction structure, optimized for maximum power
production, will be used in a high power test stand where CLIC prototype accelerating
structures and waveguide components can be tested at the nominal power and beyond.
The main CTF3 parameters at the injection into the Combiner ring are reported in
Table4.1.

Acceleration
3 GHz

Delay Loop
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180 phase switch in
Deflection sHB

1.5 G6Hz

odd buckets

RF deflectar
1.5 6Hz
140ns 140ms 10 em
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Fig. 4.3: sketch of the bunch frequency multiplication in the Delay Loop.
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Fig. 4.4: sketch of the bunch frequency multiplication in the Combiner ring.
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Table 4.1: The main CTF3 parameters at the injection into the Combiner ring

Energy (E) 180 [MeV]>*
Circumference length (L) 84m
Pulse duration (tcg) 1.4 [us]
Number of bunches per pulse (Np) 2100
Number of pulses recombined (Np) 5
Bunch charge (Qy) 2.33[nC]
Bunch length (o) 1.5-2.5 [mm]
Bunch separation before recombination (Tg,) 0.33[ng]
Bunch separation after recombination (Tg) 0.067 [ng]
Beam emittance (g)* 0.4 [mm mrad]

4.2 Study of the beam loading in the RF deflectors of the Combiner ring

As discussed in the previous paragraph, the bunch train compression in the Combiner
ring is obtained by means of two RF deflectors [105].

The efficiency required by the CTF3 parameters can be easily met by scaling already
existing tw or sw deflecting structures. On the contrary, the most demanding issues
are those related to the beam dynamics, including the beam loading effects on the
fundamental deflecting mode [ 106].

Strong beam loading effects can, in fact, degrade the beam quality in terms of
transverse beam dimension growth, or looses of current and, consequently, the
effectiveness of the power conversion to 30 GHz.

From this point of view it has been chosen to build tw RF deflectors since wake fields
can leave the structure faster due to lowering the filling time. In fact, typical filling
times for sw structures at these frequencies are of the order of 900 ns while of the
order of 50 ns for tw structures. The main RF deflector parameters are reported in
Table4.2 (%3).

To study the beam loading processes for a tw structure it is necessary to introduce a
reliable model of the single-passage wake and then to implement it in a tracking code
to analyze the multi-passage effects [107].

* Actually the energy is dliglty different (150 MeV). Here the value of the energy considered in the simulations
is reported.

*2 See note 70.

* The RF parameters such as the shunt impedance have been obtained scaling the parameters of the existing tw
RF separators.
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Table 4.2: Combiner ring RF deflectors parameters.

Frequency (f) 2.99855 [GHZz]
Number of active cells (N,) 10
Phase advance per cell (phe) 2173
Deflector length (L) 33[cm]
Group velocity (v4/C) -0.0244
Filling time (T¢) 46 [ng]
Shunt impedance per unit length (ry) 17.35[MQ/m]
rdQ 1300 Q/m
Input power (Pip) 1.5MW
Deflection (@) 5 [mrad]

4.2.1 Single and multi passage wake model

The design of the RF deflectors for the combiner ring has been done scaling existing
structures (known as RF separators or Lengdler structures) already optimised for ion
beam deflection [108,109]. These structures are disk loaded backward waveguides
working on the so-called hybrid mode EH ;.
Referring to the Fig. 4.5, the em. field in the central region, in the case of small pitch
approximation (A\>>D), negligible iris thickness (t/D<<1) and phase velocity equal to
c, isgiven by the equations [ 73]:

g = j%(kza2 +k?r?)cos(s)
. E

e, =i (ka® - Kkr?)sin(o) ) - ofr ) )

e, = %kr cos(d)

Zoh, = j—(k*a® —k?r? - 4)sin(s)

r

Mmoo | m

oo

Zh :—%kr sin(9)

4

2,0, = 1 Ecat s - aJaosfo)e <) =nr g)e <

where @' is the working frequency, k=w /c and Zo=(po/€0) 2.
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Fig. 4.5: sketch of a disk loaded waveguide

Using the expression of the Lorentz force acting on a particle of charge q that moves
through the structure on the plane 9=0, with a veocity equal to ¢, one smply
obtains™:

Fr = Re(E, ~Z,H,)=-a~ sin(g)
(4.2)

To evaluate the beam loading in the structure one has to consider both the interaction
between the travelling charges and the transverse electric fiedd E; (beam loading in
phase) and between the travelling charges and the longitudinal electric field E, (beam
loading 90° out-of -phase)*.

The first contribution is very similar to the beam loading of a linac accelerating
section and the deflection spread along the train can be estimated obtaining a quite
small valuein the CTF3 case.

The second contribution is of more concern because in the combiner ring the bunch
pattern is such that at a certain time the deflector will be crossed by bunch trains off
axis and with a phase separation of 2175 generating a mutual perturbation mainly
through the out-of -phase wake.

In order to calculate the wake field generated by the interaction between the travelling
charges and the longitudina eectric field one has to refer to the general problem of
modes excitation by an electric current J that flows through a waveguide [65].

* In the case of phase velocity different from c the equations of the field in the structure become more
complicated [ 73] and, consequently, the expression of the transverse force itself.

* Also in the case of phase velocity different from ¢ the longitudinal component of the electric field is 90° out-
of-phase with respect to the transverse one.
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Fig. 4.6: sketch of a charge g moving in awaveguide

Considering a set of independent modes, the general propageating field in the structure
can be written, in frequency domain as (*°):

Ei :ici n zN:C:( tn —e ZO)e e}z

n=0 n=0
H* = cth,e e = 3t eh, +h, z,)e A"
n=0 n=0

(4.3)

where the signs “z+” refer to the case of positive or negative phase veocities,
respectively, N is the number of excited modes and ¢," and [Bn are the amplitudes and
the propagation constants of the n' mode.

Assuming that a single particle passes through the structure of length L (Fig. 4.6) and
considering only the interaction between the longitudina component of the current
and the deflecting mode, the coefficients ¢,” is given by the equation (Appendix
A4.1):

¢/ (w,2)=

q ; ] _jsz' iB (0)Z'
= (w)!eﬂ(w,£(2)| o ]e el (@7 gz

trajectory

(4.9

where r(z') particle trajectory 1S the transverse position of the particle along the structure, qis
the charge and I is the power flow along the structure®

1
M (w) = E J.etl xbtl D;ods

transverse
section

(4.5)

% The subscripts t and z indicate the transverse and the longitudinal components of the field (e, e, and &, are
functions of the transverse coordinates and of the frequency).
*"|In the case of backward wave I is negative.
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The em. field of the excited mode can be calculated, in time domain, by a Fourier
integral:

+00

E; (t,zr.,9)= %_[ [c (@ 2)e, (wr,9)e ¥ “reludw= %R fc{ (&, &/ Zei’“‘dw}
0

+ 1+°° -jB (w)zAi 1 +°°+ B ZAj
H; (t,z,r,ﬁ):z_[ocf(w, 2)h, (w,r,8)e7# @) eldw="R 6fcl [h,, & elﬂdw}

(4.6)

In order to calculate the coefficient ¢,” and the corresponding em. field for all t and z
one has to use the equations (4.4)-(4.6).

Unfortunately, these expressions are very difficult to manage numerically because all
the quantities are frequency dependent and one has to compute a double integration
(the first in the z' variable and the second in w) in order to calculate the wake field
generated by a single passage of a particle.

To evaluate the beam loading of a multiparticle passage, some approximated formulae
can be introduced.

Approximation 1:  linearization of the dispersion curve in a limited range of
frequency

The typical dispersion curve of an RF deflector [73] is plotted in Fig. 4.7. The
frequency f is the frequency at which the phase velocity (vpn) is equal to ¢ and it
corresponds to the working frequency.

Tacking into account the expressions (4.4)-(4.6), it is easy to show that the major
contribution, in time domain, to the deflecting force acting on a particle 90° out-of-
phase from the leading one™®, comes from a small range of frequencies near f (*°).

It is possible, therefore, linearize the previous expressions near the point (B,f)
obtaining the following expressions for the coefficient ¢1*(w,z) (see Appendix A4.2):

0 elsewhere
4.7

where the fidd ea(w,r) is equal to e, of eq. (4.1) and [w-Aw2, w+Aw?2] is a
suitable interval near the center frequency f~ (%°).

% |t means that t =T/4+hT where T=1/f is the period of the wave in the deflector.

* |n fact for a particle 90° out-of -phase from the leading one the real part of the coefficient ¢,"(w) (for afixed z)
has a local maximum for f=f* (the exponential term oscillates for f£f") and also the deflecting force has a
maximum when the particle is synchronous with the wave.
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Fig. 4.7: sketch of atypical dispersion curve for atw RF deflector

The expression for the eectric field in the time domain becomes:

e e e

(4.8)

wherethefield ei(w) isequal to e of eg. (4.1) and sinc(x)=sin(x)/x.

The Lorentz force acting on atrailing particle that passes through the deflector after a
time t from the leading one and that moves on the plane 9=0 is given by the
formula™:

Frlt'2)=a(E, -ZoH,) =

__1 ¢ L — Aw L2 277\ hw |,
- 7T—4|—|1|a,:w* Esin(w't ).[eZl a),[(z)|leamg > smcKt - } 5 }dzD

particle g
trajectory

1 q2 . . h X . Aw . . z2-7Z|Aw |,
L b Eloe) ), e[ 20 e

particle g
trajectory

(4.9)

80 «gyjitable interval” in order to have a good approximations of the exact expression for the field (11) in terms,
for example of the deflecting force seen by atrailing particle.
® For the trailing particle t=t +z/c.
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Approximation 2:  linearization of the dispersion curve over an unlimited range of

frequency

In this case the wake is given by the equation (4.8) when Aw — oo obtaining®:

z

E;(t,z)= 2I‘? | R{gl (@' )ejw’[t_cj}eZl W, [(z—tvgxﬁgﬂii'é?e

trajectoy
translated
in Z-tvy

1 | w=a

* qz‘v ‘ - K g Kk * * Z
FT(t ,z)= ——gEsm(a)t )eZl W, Z=|t +— \V leading |
icl
ol 1|w=w* ¢ t?sur%‘g’ed
t t
ferda
qz‘v ‘ . % « . leading
0 - 9 ESIH(a)t )ezl w ,r(z—t VgXpayticle
- 4N | - trajectoy
Vg UHp=o' translated
e inz-tvg

Introducing the R/Q of the structure given by the formula (see par. 2.2):

2
5%
:2 c

R
Q Nlw k

one obtains for the field the expression:

E; = —%qw* gkr(z_tvg)R{MeM[tﬂ _

E/2

bl Jeg &

= —— a)*_
2q

where:

62t is enough to remember that:

im &5 2|52 = ofe-e-1s,)

Awld o
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Fig. 4.8: dispersion curve for the considered RF deflector

and for the transverse force the expression:

At 2) D%qza)’* gkr (z —t'v, )si n(w't')= %qza)* geﬁ (r (z—t*vg ))su n(w't’)

(4.14)

These expressions for the wake field and force correspond to what intuitively one
could expect for the field generated by a passage of a particle in the RF deflector (see
Appendix A4.3): an envelope of the field (or force) that follows the profile of the
leading particle trajectory (*°) and that rigidly translates along the structure with a
negative group velocity equal to vy and with a positive phase velocity equal to w/c.
Assuming an RF deflector with the parameters® L=33 cm, a= 2.2 cm and b= 5.7 cm,,
one obtains the dispersion curve plotted in Fig. 4.8 (%).

By the previous equations it is possible to evaluate, in the correct case and in the
approximated cases, the transverse field excited by a leading charge and probed by a
trailing particle injected with adelay t .

Considering the leading particle trajectory of the type:

| . 1A,
r(z) leading =y +f. Z+—-7
- particle in in 2 L
trajectory

% Thefield E, is proportional to the displacement r of the particle from the axis of the structure.
% This parameters are scaled from that of [108,109] in order to have f [BGHz. In the case of small pitch
approximation (A>>D) and negligible iris thickness (t/D<<1) the values of D and t do not affect the calculation

of the dispersion curve [73].
% The analytical calculation gives for this structure v4=0,058c.
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where r;, and r’;, are the initial injection position and angle and Ar’ is the deflection
angle inside the deflector, the obtained transverse force®® probed by a particle that
enters in the structure after a time t; =T/4 and t, =T/4+25T (*"), are plotted in Fig.
4.10 in the case of trgjectory 1 (Fig. 4.9). The correct result obtained by the numerical
integration of eq. (4.6) (solid line) is compared with those obtained in the linear
approximation of the dispersion curve in the pass-band interval of the EH;; mode
[ey,0)] (dashed line) and with those obtained by the linear approximation of the
dispersion curve in an unlimited range of frequencies (dash-dotted line). In Figs. 4.11
and 4.12 the same quantities for the trgjectory 2 and 3 of Fig. 4.9 are plotted.
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Fig. 4.9: trgjectories of the leading particle:
tragjectory 1 (r;;=0.5 mm, r'j;=0 and Ar'=0)
trgectory 2 (ri,=0 mm, r';=5 mrad and Ar'=5 mrad)
trgectory 3 (r;=0.825 mm, r'i»=-5 mrad and Ar'=5 mrad).
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Fig. 4.10: transverse force probed by atrailing particle
(trajectory 1 of the leading particle).

% The force is calculated on the axis of the structure. More precisely, as shown in the eq. (4.9) and (4.14), inthe
approximated cases the transverse force does not depend on the displacement of the trailing particle.
Nevertheless, considering the exact field distribution and the correct calculation (4.4-6), there is a force
dependence due to the transverse position of the trailing particle.

%" For this structure the analytical calculation gives afilling time t=L/v4(B0T.
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Fig. 4.11: transverse force probed by atrailing particle
(trajectory 2 of the leading particle).
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Fig. 4.12: transverse force probed by atrailing particle
(trajectory 3 of the leading particle).

Introducing the transverse wake probed by a trailing particle that enters in the
structure after atimet, =T/4+nT defined as:

1

o F. (t,,2)dz

WEIn =

O ey

(4.15)

one obtains the results plotted in Figs. 4.13, 4.14 and 4.15 for the three different
trajectories, respectively.
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Fig. 4.13: transverse wake probed by atrailing particle that enters in the structure after atime
t, =T/4+nT (trajectory 1 of the leading particle)
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Fig. 4.14: transverse wake probed by atrailing particle that entersin the structure after atime
t, =T/4+nT (trajectory 2 of the leading particle)
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Fig. 4.15: transverse wake probed by atrailing particle that entersin the structure after atime
t, =T/4+nT (trgjectory 3 of the leading particle)
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In the case of an infinite train of bunches spaced in time by T and with the same
trajectories inside the deflector, the density current is given by:

30)=as, (& 30{t- 2417 Jale)aly)

(4.16)
that in the frequency domain becomes:

()= as,((olylre ™ 3o e

(4.17)
where w =217T.
In order to evaluate the coefficient ¢;*(w,z) one has to remember that the CTF3 RF
deflectors work at [B GHz and that the dispersion curve for the mode EH11 for these
structures has a pass-band of the order of few hundred of MHz (see Fig. 4.8).
Furthermore, the trains of bunches have a spectrum with a distance (1/T) between the
0 in eq. (4.17) that is bigger or equal to [B GHz (see Table 4.1). For this reasons the
coefficients ¢1"(w,2), in the case of a train of bunches, can be simply obtained
substituting the term €“”° in eq. (4.4) with the spectrum (4.17), obtaining for
parabolic trajectories™:

+ = q&)*Ek - [ v lg 'ZJ '=
o (02)= ghrE ol )1, vr 2y e e
z'=L
- W Ek J(w—w*){rmﬁ—r . 22+1A—rz3}
8n1|w=w 7'=z
(4.18)
Theéelectric field is, in this case, given by:
+ ). 1 qWEK . Jw*(t-gj
£+ 2% g (o)
(4.19)
where:
. z=L .
C(Z) = |:rinzl+%rlin Z'2+%ATr 2'3} ~ = I’in(L - z)+%r'm (L2 - Zz)+%ATr(L3 - 23)
(4.20)

and the transverse force seen by a trailing particle of charge g that moves through the
deflector after atimet +hT isgiven by:

F(t.2)= —Sﬂ_lzizsin(w*t* )e(2)

1| w=w'

(4.21)

% | n practice the spectrum (4.17) samples the eq. (4.4) at the working frequency w .
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The easiest way to calculate the wake field in the multi-bunch regime in the case of
linearized dispersion curve over an infinite range of freguencies, is to make a
numerical calculation with rigid profile fields that propagate in the structure as pointed
out previoudly.

The obtained results are plotted in Figs. 4.16, 4.17 and 4,18 for a trailing particle that
enters in the structure out of phases with respect to the particles of the infinite train.
Also in this case the correct solution (dashed line) is compared with the solution
obtained by the linearized approximation over an unlimited range of frequencies (solid

line) (*%).
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Fig. 4.16: transverse force seen by a 90° out of phase particle
in the case of multibunch regime (trajectory 1 of the train of bunches).
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Fig. 4.17: transverse force seen by a 90° out of phase particle
in the case of multibunch regime (trajectory 2 of the train of bunches).

% |n the case of multibunch regime there are not differencies between the correct solution and the case of
linearaized dispersion curvein alimited range of frequencies.
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Fig. 4.18: transverse force seen by a 90° out of phase particle
in the case of multibunch regime (trajectory 3 of the train of bunches).

4.2.2 Tracking code results

The three different models for the wake field produce stationary multibunch forces
along the deflector that are ailmost identical even if, in the single passage, the force
probed by the particle is different in the three cases. The explanation is that the
multibunch steady solution is the response to a “monochromatic” excitation and the
details of the dispersion curve out of resonance are not relevant in this case.

Moreover, the integrated force (wake), also in the single passage, is very similar in the
three cases.

For these reasons, the model of the single passage wake fields that has been adopted to
study the multibunch regime with a tracking program, is the simplest one
(Approximation 2).

The tracking code scheme is sketched in Fig. 4.19. Each bunch, represented as a
macroparticle, enters in the 1% deflector with some horizontal initial conditions
(XinX'in), interacts with the main RF deflecting field and with the wake left by the
bunches ahead, contributes to the wake and exits the deflector with some new
horizontal conditions (Xou, X out)- The bunch, then, is transported to the other deflector
by the transport matrix M, ("), interacts with the RF field and wakes of this second
device and so on.

1t can be shown [110] that, in a ring, the output position and angle at a certain section of the ring can be
expressed as afunction of the input position and angle of the section in the form:

X, | _(cos@+asing Bsing X

Xy _( -ysing cosg-asing) X,
the matrix M is are called transport matrix and the quantity a, 3, y, @ (related to the magnets configuration of the
ring) are called optical function (a, [3, y) and phase advance between the two points (@), respectively.
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Fig. 4.19: tracking code scheme.

At the end of the merging process (five trains and five turns) each macroparticle ends
up with certain horizontal conditions (Xou, X out) COrresponding to a certain value of
the Courant-Snyder invariant’ |, associated with the motion of the bunch center of
mass.

The tracking allows studying, therefore, the distribution of the final values of the
Courant-Snyder invariants for the all bunches, and its dependence on the deflector
wakes, injection errors, ring optical function and phase advance.

Perfect injection of the 5 trains

This is the case of bunch trains injected with the initial conditions that perfectly match
the main deflecting field of the deflectors so that, if there is no wake, al the bunches
would end up on the combiner ring design orbit. These conditions correspond to the
point xj,= 0.825 mm and x’;,=-5 mrad of the phase space at the injection plane.

The 1% train makes the first revolution alone, and there are no bunches interacting
with its out-of-phase wake. During the second revolution, there is the contemporary
presence of the 1% and 2™ trains which cross the deflectors with some horizontal
displacement. The two trains are interleaved with a separation of 2175 RF and their
bunches interact through the out-of-phase wake. This generates a first perturbation
that deviates the bunches from their ideal trgectories. Similar processes take place
during the next interleaving phases and, when the 5 trains are finally merged in a
single one, the bunches aquire a certain spread in the horizontal phase space.

A plot of the position and angle of the bunches with respect to the nominal orbit taken
at the 1% deflector output at the end of the merging process is shown in Fig. 4.20. The
corresponding plots of the bunch in the phase space and of the Courant-Snyder

™ Considering a fixed longitudinal position in a storage ring, a certain macroparticle at the position (x,x’) of the
transverse phase space oscillates, turn by turn, around the same ellipse (this is propeirly true if one neglect the
synchrotron radiation damping that is, however, negligible if one consider few turns in the ring). The equation
of the ellipse is given by [110]:

px2 + 20K+ By = |

and the quantity | is called the Courant-Snyder Invariant. The area of the ellipseis Tttimes|.
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invariant are shown in Figs. 4.21-4.22. In the tracking code the transport matrices M,
and M, are given by the nominal combiner ring optics [104].

The Figs. 4.20-4.22 represent the so-called “ systematic effect” of the wake field since
the perturbations in the final bunches transverse positions are not driven by initia
injection erors. The average and maximum values of the Courant-Snyder invariants
are respectively |oo,B10° mm mrad | gma4.2010% mm mrad.

The spread of the macroparticle Courant-Snyder invariant values caused by the
systematic effect is a small fraction of the CTF3 bunch design emittance™
(e[0.4 mm mrad @180 MeV).
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Fig. 4.20: positions and angles of the bunches with respect to the nominal orbit taken at the
1% deflector output at the end of the merging process.
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Fig. 4.21: bunchesin the transverse phase space after
the recombination process: “sistematic effect”.

2 The emittance of asingle bunch is defined as the area occupied in the phase space x,x’ by a certain fraction of
the bunch particles divided by 1t[111]. This means that each point in the plot of Fig. 4.21 should be considered
as adistribution function with an area equal to 1t
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Errorsin theinjection of the trains

Referring to the case of an equal injection error for al the bunches of the 5 incoming
trains”, the build-up mechanism for the final invariant spread is just the same as that
described previously even if, in this case, the initia errors can drive the process to

larger final errors.

The bunch trains footprints in the horizontal phase space at the output of the 1%
deflector for an injection offset of 1 mm and for an injection error of 0.633 mrad in
angle (both corresponding to an initial value of the Courant-Snyder invariant 1;,=0.716

mm mrad’®) are reported in Fig. 4.23.

bunch number

Fig. 4.22: Courant-Snyder invariant of the bunches after the recombination process.
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Fig. 4.23: bunch train in the horizontal phase space for an injection offset of 1 mm (a) and for

an injection error of 0.633 mrad in angle (b)

" Thisis the case, for instance, if one assumes that the error can fluctuate only from pulse to pulse due to some

jitter in the beam transport.

" Theinvariant is calculated with respect to the perfect injection case x=0.825 mrad x’=5 mrad, i.e., the position

(0,0) isthe position of perfect injection.
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Performing different simulations with different initial conditions it may be seen that,
in general, the maximum value |y, the average value |5, and the standard deviation
0\, of the Courant Snyder invariants of the final distributions are not constant for a
given initial value I;, of the invariant, but, due to the nature of the wake, depend also
on the position and angle of theincoming trains.

Considering all the possible injection errors (Fig. 4.24) for a given |, and calculating
the maximum and average values for the corresponding final distributions, one obtains
the result shown in Fig. 4.25 where for any possible error the average invariant with
the relative error bars is reported.

For any given initial value l;,, there are some errors that give the largest l,max Value
(Iomax), @nd the largest |44, Value (1oa,).

The plots of |pomax @nd Ipeay (this last including the +rms error-bar) for I;, ranging from
0 to 2 mm mrad are shown in Fig. 4.26.

It may be seen that, for the optics parameters considered and with the exception of the
lin(D case, it is always |0 <lin, Which means that, on the average, the deflectors wake
gives a sort of "cooling" of the Courant-Snyder invariant of the bunch center of mass.
On the other hand, from the same figure one has | pomad1in<2.6, and the magnification
factor is reduced to about 1.5 for all bunches staying within one standard deviation
above the average (=70% of the bunches).

The previous results have been obtained considering the nominal betatron phase
advance between the deflector 1 and 2. Different phase advances ¢ give different
amplification factors and the minimization of the ratios I/l;, is one of the criteria for
the choice of thisring optical parameter.

As an example the ratios | gmadlin @and loa/lin are reported in Fig. 4.27 in the case of an
injection error caused by a pure displacement of 1 mm, for various values of the
betatron phase advance.

The nominal phase advance corresponds to 262°, which is close to the minimum.
Modifications of the phase advance in the range of £10° does not significantly change
the scenario. Anyway, some tunes outside the range shown in Fig. 4.27 may give
magnification factors larger than 10.
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Fig. 4.24: possible injection errorsin the horizontal input phase space.
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Smulations results including a finite bunch length

The design bunch length for CTF3 is between 1.5 and 2.5 mm and it is a very
important parameter to be controlled in order to have a good efficiency in the power
generation. In fact, in frequency domain, the spectrum of the bunches is given by the
eg. (1.93) and an excessive increase of the bunch length may give a loss of power at
the 30 GHz due to the exponentia factor exp(-w?o,/2¢?). Furthermore, as illustrated
in the following, an increase of the bunch length can give loss of current due to the
fact that the tails of the bunch may grow in terms of Courant Snyder invariant because
of the finite wave length of the RF deflectors field and wakes.

On the contrary, an increase of the bunch length, reducing the charge density, may
give, at high bunch current, a reduction of the collective effect in terms of coherent
synchrotron radiation and interaction with the short range wake field [ 104].

The value of 0,=3 mm seems to be a maximum acceptable value for the bunch length.
The effects of the beam loading in the RF deflectors considering a finite bunch length
can be simulated dividing the bunches into dlices (Fig. 4.28). Each dlice can be
considered as a macroparticle and the complete simulation can be performed.
Assuming a perfect injection of the trains and the absence of the wake field in the
deflectors, one obtains the transverse bunch dlice output positions after the
recombination plotted in Figs. 4.29aand b.

In this case, also, there is a certain increase of the bunch emittance™ calculated with
respect to the central dice of the bunch. Nevertheless it is a negligible effect if
compared with the bunch design emittance (Table 4.3).
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Fig. 4.28: discretization of the bunch in a finite number of dlices.
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® The r.m.s emittance of athe bunch with respect to central slice can be defined as[111]:
-\ |GAd?

=2
where the quantities Ad; are the distances in the horizonthal phase space between the slices and the central one,
g isthe charge of the dlicei and Qr isthe total charge of the slices.
The r.m.s. emittance is an indication of the spread of the slices around the central one in the phase space (it is
equal to zero at the input of the deflector) and can be direcly compared with the emittance of the beam or with
the Courant Snyder invariant.
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Fig. 4.29: transverse bunch dlice output positions (a) after the recombination (perfect
injection of the trains and absence of the wake field); (b) slices in the phase space

Table 4.3: r.m.s. emittance of the bunches referred to the central slice
after the recombination process and without wake in the deflectors

TRAIN | nce
NUMBER [ mrad]
Train 1 0.043
Train 2 0.173
Train 3 0.027
Tran 4 0.143
Train5 0.015

The effect of the beam loading is shown in Figs. 4.30a and b.

In this case a nominal phase advance has been assumed and the output position and
angle of the dlices for the whole trains has been found. In Fig. 4.30b the output
invariant of the central slices of bunches are reported as a function of the bunch
number. Comparing this figure with the Fig. 4.22 one can observe that for the central
dlice of the bunches the output invariants are comparable with those obtained without
considering the bunch length.

The r.m.s.emittances with respect to the central dlice are reported in Fig. 4.31. In this
case, aso, the increase of the emittance is negligible if compared with the bunch
design emittances.

The output invariants of the central slices and the r.m.s emittances have been
calculated in the case of different injection errors.

The results are plotted in Figs. 4.32a and b. The beam |loading effects do not change,
for the central slices of bunches the scenario discussed in the case of 0,=0. Ther.m.s
emittance growth due to the finite bunch length is, in the worst case, equa to the
design emittance and can be considered a controllable effect.
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4.3 RF Deflector Design

The design of the RF deflectors has been done scaling to the CTF3 working frequency
(2.99855 GHz) the dimensions of CERN RF separators with a reduced number of cells
[112].

These are disk-loaded backward waveguides working in the 23 EHy;, hybrid mode
aready optimized for beam deflection. 2173 mode means that, at the working
frequency, the phase advance per cell is 2173.

Thefinal 10 cells structureis sketched in Fig. 4.33a.

As described in the following the design of the single cell has been aimed to find the
correct cell dimensions in order to have the correct phase advance at the working
frequency fre. In parallel, the design of the coupler cells has been aimed to minimize
the reflection coefficient at the input port in order to obtain the maximum transmitted
power and the minimum reflection coefficient.

4.3.1 Singlecell design

With the dectromagnetic code MAFIA the scaled single cell 2D profile has been
simulated and the local sensitivity of the 2173 mode frequency with respect to the
variation of each cell dimension has been computed (Table 4.4).

The 21W3 EHy;; mode can degenerate in 2 frequencies of orthogonal polarity. The
vertical one has been shifted far enough from the operating mode (horizontal polarity)
in order to avoid its excitation by the RF generator or by the beam itself. This has been
achieved by means of 2 longitudinal rods crossing off-axis the cells as shown in Fig.
4.33b.

Fig. 4.33: sketch of thefinal 10 cells RF deflector structure.
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Table 4.4: local sensitivity of the deflecting mode frequency vs. cell dimensions
Dimension Sensitivity
of/0a=-13.2 MHz/mm
0f/ob =-49.7 MHz/mm
of/ot = 2.9 MHz/mm
0f/od =1.2 MHz/mm

o0 w >

Table 4.5: final dimensions of the cell and RF deflectors parameters

a= 21.43 mm
b =56.01 mm

d=33.33mm
t=9.53 mm

f=2.9986 [GHZ]
(MAFIA)

Final cel dimensions

2.9983 [GHZ]
RF deflector parameters (HFSS)

(HFSS and MAFIA)
vg=-0.0237*c
(MAFIA)

R/Q=1460 [Q/m]
(HFSS)

The frequency shift of both polarities, caused by the break of the azimuthal symmetry
due to the rods, has been calculated with the code HFSS. The obtained shifts have
been of (650 MHz for the vertical polarity and of [BO KHz for the operating horizontal
mode.

Finaly, the frequency of the 2173 mode has been calculated with HFSS considering
the 3D cdl profile with rods. Since the code uses a regular polygon to model a circle
or an arc, depending on the starting vector for faceting, the polygon can be entirely
inside or outside the arc to be modeled. This error can be in principle reduced
increasing the number of faces but, unfortunately, this gives numerical and
convergence problems. In order to control this systematic error, in the final single cdll
simulations the radius of curvature have been properly corrected in order to have the
corresponding polygon areas equal to those of the ideal circles™. The final dimensions
of the single cell are reported in Table 4.5 with the 2173 mode frequencies obtained by
HFSS (3D cdl with rods) and by MAFIA (2D cell without rods).

6 Simulating some known resonating structures and comparing the results with analytical calculations it can be
shown that the error in the frequency calculation is reduced by a factor of 10.

131



In this case a precision of (600 KHz in the frequency of the 2173 mode is satisfactory.
In fact, as shown in Appendix A4.4 an error in the resonant frequency of the mode
corresponds to an error in the phase velocity of thefield given by the equation:

AV _ ¢ Aw
c ‘vg‘ w
(4.22)
And the effective maximum transverse kick normalized to the nominal one is given

by:
L
!Fmdz o |Law
Jp—d 2|
. Onom
(4.23)

In Fig. 4.34 the transverse kick normalized to the nominal oneis plotted as a function
of the frequency error. One can immediately observe that an error of 1 MHz gives a
reduction of the transverse kick of [0.4%.

The R/Q has been calculated following the formula (4.12) where E/2 is the amplitude
of the fundamental harmonic of the deflecting field.

The dispersion curve of the deflecting mode obtained by MAFIA is plotted in Fig.

4.35 and the absolute value of the electric and magnetic fields in the 3D structure
simulated by HFSS are plotted in Fig. 4.36.
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Fig. 4.34: transverse kick normalized to the nominal one as a function of
the cell resonant frequency error.
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Fig. 4.35: dispersion curve of the deflecting mode obtained by MAFIA.

[
Fig. 4.36: absolute values of the eectric and magnetic fields in the
3D structure ssimulated by HFSS.

4.3.2 Coupler ssimulations

In order to evaluate the coupler efficiency the whole structure has to be simulated.
Since the structure is symmetric with respect to the horizontal plane the volume to
simulate can be reduced considering one half of the structure and a perfect magnetic
plane (Fig. 4.37a).

To reduce, further, the volume to simulate it is possible to do the following
considerations. The structure shown in Fig 4.37b can be considered as a symmetric
structure with respect to the longitudinal plane. The excitation at the input port can be
considered, therefore, as the superposition of the two excitations shown in Fig. 4.38.
In the “odd” case the longitudinal symmetric plane is a short circuit while in the
“even” caseit is an open circuit.
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The total S;; can be calculated, therefore, as a sum of the S;; obtained in the two
simulations.

The obtained absolute value of the reflection coefficient (|Sy;]) at the device input port
is plotted versus frequency in Fig. 4.39b while the HFSS simulated structure is shown
in Fig, 4.39awith the magnetic field components in the “even” case.

As shown in Fig. 4.39b it is evident that, at the working frequency 2.99855 GHz, just
few percent of the input power is reflected.

Input
couplers

Simmetry plane
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B \r\

Fig. 4.37: symmetriesin the RF deflector
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Fig. 4.38: equivalent circuit of the RF deflector excitation.
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4.4 RF Deflector Measurements

The deflectors have been made of OFHC high quality copper using hard soldering
(brazing) technigue well mastered in production processes of accelerating structures in
S band. Soldering has been done in steps, in hydrogen atmosphere. The single célls of
the deflectors have been produced in the form of cups (Fig. 4.33b).

Before the production of the final deflectors, an aluminum full-scale prototype has
been fabricated in order to verify the validity of the performed calculations.

The measurements (single cell resonant frequency, dispersion curve) have confirmed
the simulation results for the two different polarities.

The deflector components have been, then, fabricated with the aid of numerical lathe
and milling machines. Intermediate measurements made on prototypes copper cells
and final structure have been performed in order to control the dimensions of the cells
and the changes introduced by the soldering procedure.

A dedicated test set was constructed to check the frequency of each cell before
soldering. Each cdll (Fig. 4.40) has been short circuited with two plates (Fig. 4.41) and
the frequencies of the first two monopoles and dipoles have been measured and
compared with those obtain by HFSS simulations. The frequency deviations due to the
presence of measuring antennas, to the air’’ and to the cell temperature with respect to
the nomina one (30°C) have been taken into account with a progressive decoupling of
the antennas and performing the measurements at different temperatures. The
comparison of the calculated and measured frequencies in a sample of 8 cells is
reported in Table 4.6.

" The e,4,=1,0008 and introduces a shift in the resonant frequency of the cells of the order of some hundreds of
KHz.
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Table 4.6: Comparison of calculated and measured frequencies of cells ready for soldering.

Monopole 1 Monopole 2 Dipolel Dipole 2

HFSS simul. 2105.7[MHz] | 2176.8[MHz] | 3010.9MHz] | 3226.0 [MHZ]
Cell number Mesured frequency deviation [KHZ]

1 -295 -674 96 -846

2 -395 -599 -179 -846

3 -325 -549 -79 -771

4 -435 -675 -189 -926

5 -375 -535 -264 -840

6 -335 -594 -44 -826

7 -335 -554 -104 -825

8 -295 -534 -104 -826
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In order to measure the dispersion curve of the structure, 8 cells +2 half-cells have
been assembled as shown in Fig. 4.42. The |S;5| plot is shown in Fig 4.43 for both
polarities and the sampled dispersion curveis plotted in Fig. 4.44.

To evaluate the effect of soldering procedure, a series of 4 pilot copper cells have been
measured before and after soldering showing that the change in the resonant frequency
due to the soldering procedure is completely negligible.

The phase advance per cell and the reflection coefficient at the input port of the
deflector (Fig. 4.47) have been, finally, measured with the technique illustrated in the
par. 2.4.5. The first results are plotted in Figs. 4.45 and clearly shown that from cell to
cell there is a phase advance in the range of +5° that completely satisfy the tolerance
requirements. The SWR measured at the input port and plotted in Fig. 4.46, whereit is
clearly shown that, at the working frequency, the reflected power is of the order of few
percent.

Fig. 4.42: cd Ils bly in order to measure the dispersion curve of the structure
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Fig. 4.43: |Sx| of a8 deflector cells+2 half cells assembly
(a-horizontal polarity; b-vertical polarity).
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Appendicesto Chapter 4

Appendix A4.1: Calculation of the coefficient c,” of eg. (4.3)

Considering an electric density current J(w) at a certain waveguide section z1-z> (Fig.
1.A4.1), it is possible to calculate the coefficients ¢, of the eq. (4.3) by the simple
formula[65]:

J(@m — €572 ) Eﬂ(a))eiﬂn (@zgy/

zjgtn X btn Il;Odsz
S

(LA4.1)

where the sign “-” refers to the case of forward waves while the sign “+” to the
backward ones’®,

The density current, in the time domain, of a particle of charge g that moves through
the waveguide (Fig. 4.6) at the speed of light, is given by:

30)=as, 6t Ja(cloly)

Cc
(2.A4.1)

where s is the distance along the particle trgectory, S is the unit vector tangent to the
trgjectory and (x',y') is the reference system on the plane normal to . In the
frequency domain the equation (2.A4.1) becomes:

I(w) = as, (s)e “a(x)a(y)
(3.A4.1)

Considering the beam loading 90° out-of-phase in RF deflectors, one has to consider,
in the scalar product E[J of eg. (1.A4.1), only the longitudinal component of the
electric field and density current. For a particle moving in the structure J [UZ and the
coefficient cn'(w,z1,22) for abackward wave™ can be written in the form:

O R

A
je"’”z gif(@)? g7
particle

z trajectory

(4.A4.0)

"8 For forward waves the group velocity (ve=dw/dB) and the phase velocity (Vpn=w/pB) have the same sign while
for the backward ones have opposite signs.
" The RF deflectors for CTF3 are backward structures.
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where r(Z')|paticle traectory 1S the transverse position of the particle along the structure
(function of the longitudinal position z') and ', is given by:

1
I_Iln (C(.)) = Ejgtn >(htn |1;Odsl
s,

(5.A4.1)
It is easy to verify, from the analytical formulae[73], that™:
M, (@)= [en xhi, 2,08, = 1", (@)
S
(6.A4.1)

where My is the power flow along the structure®.
If the deflector length is L and the particle enters at z=0 one obtains the following
expression:

ct(2)=— Iem[w,z(z'»

i (0)2 4
an (a)) Je e dz

particle
trajectory

(7.A4.1)
and, therefore the eg. (4.4).
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phase velocity)

Fig. 1.A4.1: sketch of awaveguide excited by an eectric current

v
v

® Thisisvalid, in general, for al propagating fields in which the longitudinal dependence (z) and the transverse
one (r,3) are separated in the form e(r,9,2)=e(r,3)-e,(z) [65].
8 | n the case of backward wave I, is negative.
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Appendix A2:  Approximated expression for the field in the case of
dispersion curve linearization in a limited range of
frequency

Considering the equation (4.4) one can develop to the first order in w the exponentia
term obtaining:

z . Z . z
—w—=—a)—+(a) —w)_
c c o]
Blw)z 0 B )z‘+% » (w-w')z
(LA42)
Substituting in the equation (4.4) one obtains (*%):
L j| 9 e )z
Ieﬂ(a)*Xpa_rticle ej[dw("zd c]( ) dz O C()Dl:a)* —A—a)'a)* +A_(4):|
. trajectory 2 2
q
4 @230 7] (% Yorwle
a1, (w D.[eﬂ(w*)‘t’?i}&iﬁye (dwwzdj 47
0 elsewhere
(2.A4.2)

The second approximation in the interval [w -Aw/2, w +Aw/2] comes out from the fact

that the group velocity vg for this kind of structures is few percent of the velocity of
light.

The field is simply given by the expression (4.6) where one has to develop to the first
order the exponential term -j[3(w)z obtaining:

Ent)0
451, \w

R{f'f A ez{w* 1) ﬁejgi

trajectory / Q

a8

(w—w* )z‘ —jﬂ(w* )z—j— (w—w )z

ad e lomat el“dw dz} =

q

) 4711 lia)* ]
L % o (2-2)-jBled )2% -9 z-7'
R{.e:(of eafor e, Joro e J]
z 0

trajectory

(3.A4.2)

8w le=p(w).
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Considering the integral in dw limited between w -Aw/2 and w +Aw/2 one obtain:

(z-2) _
ozt
vV, 2

w +8%
2 jm(t—% x(z—z')j jw’(t—%}
I e oo dw=e
Aw
w 2%
2

(4.A4.2)
where sinc(x)=sin(x)/x.

Appendix A4.3: Intuitive approach for the wake field calculation in a tw
RF deflector

Considering the resonant field configuration of eq. (4.1) with a local excitation
proportional to the leading charge displacement, the energy per unit length stored in
the section corresponding to the abscissa z after the charge passage is given by:

(1L.A4.3)

8, 1(2) is the q displacement with

where -%2V/(z) is the voltage seen by the charge q (
respect to the axis and E/2 is the field amplitude.
Remembering the definition (4.12) of the R/Q and that:

(2.A4.3)
one simply obtains that the amplitude of the excited field at the abscissa z is given by:

(3.A4.3)

Since vg<<vph it is reasonable to suppose that the E field generated by the particle
passage has the rigid amplitude profile given by (3.A4.3), a phase velocity equal to ¢

and a negative group velocity vg obtaining the equation (4.13).

8 The factor %2 comes out from the beam loading theorem.
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Appendix A4.4. Phase velocity and kick deviation as a function of a cell
frequency error

Since vpr=w/P it follows that:

=W

e

Av -
1w =iAw wA'BA Did_w
c c \B) & cf? Aw ‘v ‘ )

1/v

(1.A4.9)
The integrated transverse force along the structure for a particle with a velocity equal
to cisgiven by:

L _L B _ L 2_ _
! F.dz= £ F_, cos{at ﬁz+A¢)dz;F50£co{ _ ,BJZ+A¢}dz—

. sn ‘{1 1}L+A¢}—sm(A¢)
cC Vv
= FEIOL

@ ¢ 0 1_i L
¢ C v,
(2.A4.9)

the initial phase A¢ of the travelling wave can be chosen in order to maximize the
integrated transverse force:

sin{«{l—lJL+A¢}—sin(A¢)
C Vy
dd F,L

1 1)L
=0 Mgy =@ = | =
dag = B “{c v }2

ph

(3.A4.4)
and the maximum integrated force becomes
I . 1 1L L Aw
F.d =FLsind o) =—— |= | OFLsin
EE ’ Z<max oS A{C Vphjz ” C|:2‘Vg‘:l
———
(4.A4.4)

L
Since [ F.,,,dz = F L it follows directly the eq. (4.23).
0
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Chapter 5

Resonant bunch length-position monitor for ultra short bunches

The measure of the bunch length and transverse position of the beam inside the
vacuum chamber is a very important issue in both circular and linear accelerators.

It allows tuning the machine parameters in order to obtain the better performances in
terms, for example, of luminosity or beam power extraction asin the CTF3 case.

A large number of bunch length monitors exists both in the time domain and in the
frequency domain. In particular, the devices that use the microwave spectroscopy
[113-115] are based on the analysis of the beam characteristics in the frequency
domain. By this analysis it is possible to obtain the bunch parameters in the time
domain such as a bunch length or a position inside the vacuum chamber.

Different techniques have been proposed to couple the field radiated by the bunch in a
transmission line leading the signal to the detection system.

In this chapter the design of a bunch length-position monitor is discussed and the
microwave measurement results made on a prototype are illustrated.

In the first paragraph the theoretical analysis of the device is presented. In the second
paragraph the simulations results obtained by HFSS and MAFIA are reported and in
the last paragraph the theoretical results are compared with the measurements made on
aprototype.

5.1 Analytical approach

Bunch Iength monitor

The monitor consists of a small coaxia cavity coupled to the beam pipe trough four
dots (Fig. 5.1 and Table 5.1). If the length of the cavity is properly chosen, the beam
power spectrum lines excite the resonant TEM modes in the cavity. Probing the field
by a smal antenna it is possible to measure the amplitude of two beam power
spectrum lines [116-118].

More precisdly, as illustrated in the par. 1.3.3, the Fourier components of an infinite
train of gaussian non-oscillating bunch are given by the equation (1.83).
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The prototype has
rounded corner

Beam pipe axis

A

Fig. 5.1: sketch of the microwave monitor.

Table 5.1: monitor dimensions

d 30 mm
b 10 mm
L 52 mm
w 2 mm
I 5mm
h 1 mm

Knowing the ratio between the n'™ harmonics component of the beam and the average
powers extracted by a probe coupled with the field in the cavity at two different
harmonics:

~ 2
Peio (w12) =P, (“’1,2)/‘ I 1,2‘
(5.1
the bunch length can be determined with the formula:

o, =c 1 In Pe PEz
a)lz —a)§ EEZ PEl

where Pg, » are the average powers extracted by the probe at the frequencies w, ».
Theratios (5.1) can be obtained in three different ways:

(5.2)

a) by an analytical treatment of the e.m. problem;
b) by the results of an em. simulation code;
C) by a calibration of the monitor with bench RF measurements.
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The first approach alows determining the main key parameters that gives the
extracted power as a function of the monitor dimensions.

The second approach allows validating the theoretical results choosing more in detall
the probe dimensions in order to obtain a certain coupling factor between the field in
the cavity and the antenna.

The third way can be considered, finaly, as the final step that alows determining the
calibration coefficients for the constructed devices.

Analytically, the amplitude of the resonant em. field in the cavity as a function of the
beam current can be obtained by the modified Bethe's theory [119,120].

This theory has been already applied for the study of smilar problems [121] and it is
well described in literature.

The basic ideais to find the equivalent electric and magnetic dipole momenta of the 4
holes as a function of the beam current and hole dimensions. This dipoles momenta
with intensities proportional to the electric and magnetic field of the primary field
radiated by the beam with a correction factor that takes into account the excited field
in the cavity itself, allows finding the amplitude of the resonant field in the cavity and,
therefore, theratios (5.1).

Following the calculations reported in [116] the ratio between the average powers
dissipated in the cavity P; , (**) and the beam current spectrum lines are given by:

b = P _ 2a2Qin(d/b) Hew,L[aa, ~b27t In(d/b)|*}
— ~ 2 342 2
M 1 1°02Q, In(d / b) 4140,
pew?L4a, —b?rt In(d /b))
P, _ 2a,,Q, /(7T2L2£a)2b4)

~ |2 2
G [4Qm | @+Q+da,)]
L? pews 7.b?In(d/b)

—2

(5.3)

where wy , and Q, , are the resonant angular frequencies and the quality factors of the
two TEM modes, ag, ay are the eectric and magnetic polarizabilities (see Appendix
A5.1) and the other quantities are defined in Fig. 5.1.

The Q-factors of the resonant TEM modes and ag, ay can be determined knowing the
monitor dimensions and the material conductivity.

As an example, with the dimensions of Table 5.1, the P, ; values and the ratio P,/P, are
reported in Table 5.3 (first column).

The values of P, and P, as a function of the bunch length are reported in Fig. 5.2
assuming a 100 mA average beam current and a full coupling between the Fourier
components of the beam and the resonant modes.

8 The power dissipated in the cavity is proportional through the B coupling coefficient of the antenna to the
power dissipated in the external load Pe (see eg. (2.18)).
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Fig. 5.2: values of P; and P, as a function of the bunch length assuming
a 100 mA average beam current and a full coupling between the Fourier
components of the beam and the resonant modes.

Beam position monitor

The monitor can be also used to determine the transverse position of the beam. In this
case the amplitudes of the two first dipolar modes TE;q; excited by the off-axis
passage allow calculating the transverse displacement of the bunches,

The TE modes have to be properly tuned in order to resonate at one of the frequencies
of the beam power spectrum lines.

In this case, the average power extracted by two probes coupled with the two dipolar
modes (*) can be expressed as a function of the beam current and transverse
displacement and can be written in the general form:

P = P (wre. 1T (wre | cos(e)
PE) = P, (wre 1) () sin(e)’
(5.4)

where the |~(er) is the beam power spectrum line at the resonant frequency of the

TE;11 modes, r is the transverse displacement of the beam and ¢ is the angle between
one of the two dipolar mode and the beam displacement.

% The two polarities ore 90° tilted.
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Knowing by theory, simulations or measurements the calibration coefficient P{%)

TEO,m
and the beam power spectrum line, the eq. (5.4) allows to determine the values of r

and |cos(q)| by a measure of the powers PE)

TEO,7 *
The analytical treatment based on the Bethe's theory follows steps similar to those
donein the TEM modes calculation [122].
The normalized power dissipated in the cavity (Prg) can be expressed by the formula:

G
Pre :a)TEQ_rZ

TE

(5.5)

where Qqe is the quality factor of the TE;;; mode and the function G depends only by
the cavity geometry (as reported in [122]).

As the genera theory of dipolar modes states (par.1.1.3), the extracted power is
proportional to the r’>. Considering the dimensions of Table 5.1, the value of
P 1e=Pre/r? is 169 [W/m?A?]. The Pre valueis plotted in Fig. 5.3 as a function of the
transverse displacement r.

x 10

2.
P [W/A?]

— theory
—— HFSS

G\’ I I Il I I
0 02 04 06 08 1 1.2 14 16 1.8
axis displacement [mm]

Fig. 5.3: values of Pre asafunction of the transverse
displacement r assuming @=0: theory and simulations (HFSS).
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5.2 Simulations results

Bunch length monitor

To compare the analytical results with the ssmulations it has been considered an
impedance mode for the beam-cavity interaction. Knowing the R/Q of the resonant
modes TEM 1 , theratios (5.1) are ssmply given by:

_ P, 1R
P73
i

26 Ql,Z

12

(5.6)

The R/Qs, the Q factors and the resonant frequencies of the resonant modes can be
determined simulating the structure with the eigenmode solver of HFSS and MAFIA
and are reported in Table 5.2 considering the dimensions of Table 5.1.

Table 5.2: R/Qs, resonant frequencies and the Q factors
obtained by HFSS and MAFIA

HFSS MAFIA
RIQ| 11760 8.67e7 Q
TEM1| Q 6300 6300
f | 2.883[GHZ] | 2.883[GHz]
RIQ| 694660 471-6Q
TEM2| Q 8790 8950
f | 5.762[GHz | 5.762[GHZ]

The HFSS simulated structure with the E field lines of the TEM; mode is shown in
Fig. 5.4a. Because of the symmetries just one eighth of the structure has been
simulated with the proper boundary conditions.

The longitudinal electric field obtained by HFSS and calculated at the center of the
beam pipeisreported in Fig. 5.4b.

Considering the dimensions of the prototype, the obtained average normalized
dissipated power P;, and the normalized ratio P,/P, are reported in Table 5.3 (second
column) and compared with the analytical and measurement results.
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Fig. 5.4: (@) HFSS simulated structureW|th the E filed lines; (b) longitudinal eectric
fields obtained by HFSS and calculated at the center of the beam pipe.

Beam position monitor

As done for the TEM modes an impedance model for the beam cavity interaction can
be adopted also in this case.

According to the theory, for small displacements from the beam pipe axis the power
dissipated in the cavity can be expressed as:

p=p [[f=1Req
bl =18 g

I:)ITE

(5.7)
the R’ 1£/Qre can be determined simulating the structure by HFSS or MAFIA

In this case it is necessary to simulate one quarter of the structure because of the
cos(¢) dependence of the field with the proper boundary conditions

The HFSS simulated structure with the E field lines is shown in. Fig. 5.5a while the
longitudinal electric field for different axis displacementsis reported in Fig. 5.5b.
The plot of Prg as a function of r is reported in Fig. 5.3 and compared with the

analytical result. The resonant frequency given by HFSS is 3.744 GHz while the Q
factor equal to [B000 .
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Fig. 5.5: (@) HFSS ssimulated structure with the E field lines; (b) longitudinal electric
fields obtained by HFSS and calculated for different axis displacements

5.3 Prototype measurements

Considering a small probe coupled to the cavity modes, the normalized total average
dissipated powers in the load+cavity are related to the average dissipated powers in
the load connected to the probe by the simple formula (see par. 2.1.2):

— (1+ ﬂl,Z,TE) P].,(E')I'E

Fiome — 2
/81,2,TE ‘

‘Il,Z,TE

(5.8)

where (31, 1e IS the coupling coefficients between the probe and the cavity modes
TEM,, and TE;y; respectively, B5). isthe dissipated power in the external load in the

three cases and ‘TLZ,TE‘ is the absolute value of the beam Fourier component

corresponding to the three resonant mode frequencies.
Following this general consideration it is possible to correctly compare the
measurement with the theoretical results.
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Fig. 5.6: bunch length-position monitor aluminum prototype.

Bunch length monitor

Wire measurements have been made on the aluminum prototype shown on Fig. 5.6.
The prototype dimensions are those of Table 5.1 referred to Fig. 5.1. A small antenna
coupled to the E field has been inserted to probe the signal on the cavity.
As illustrated in par. 2.43, in the wire measurement the beam current is substituted
with the current flowing on awire (in this case of radius r=1.5 mm).
The measurements setup is shown Fig. 5.7a and schematically represented in Fig 5.7b
(the equivalent circuit is equal to those discussed in the par. 2.4.3).
In order to avoids reflections at the input ports 1 and 2 two tapered sections of length
L5=20 cm have been inserted in order to match the 50 Q impedance of the Network
Analyzer with the impedance of the coaxial waveguide made by the inner wire and the
beam pipe (Z, (114 Q). The measured transmission coefficients |S;;| and [Ss;| are
shown in Fig. 5.8.
Since the |S,| is amost equal to 1 the networks A and B (tapered section) redlized a
perfect matching and is, therefore, possible to use the formula (2.38) for the transfer
impedance calculation. The total average dissipated powers in the external load are
simply given by:
2
Fep :lz |%lm%|1,2

2" Spnez

(5.9)

The results obtained by measurements must be considered as calibration coefficients
that allow calculating the normalized average dissipated power in the load, and,
therefore, the o, when the bunch length monitor is inserted in the accelerator (eqg.

(5.2)).
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Fig. 5.7: (a) measurements setup; (b) schematic representation of the measurement and
equivalent circuit.
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Fig. 5.8: (a) measured transmission coefficients Sz; in the range 2-6 GHz; (b) measured
transmission coefficients Sz; and Sp; near the TEM resonances.

Thetotal average dissipated powers in the cavity+external load are given by:

_1, [Sueli, 04 8,.)
2 °S

21mes1,2 :31, 2

E1,2

(5.10)

In order to compare the measurement results with the theoretical calculations the
powers given by eg. (5.10) have to been properly normalized to the theoretical Q
factors. In fact, since in the prototype there are additional 1osses due to RF contact in
the final assembly, the Q factors (also unloaded) are very low compare to the
theoretical one (Qu1=1400, Qu2=1600).
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Following the formula (5.6) one has to do the following normalization:

(5.12)
The P';, powers and the ratios P'1/P, obtained after this further normalization are
plotted in Table 5.3 with the theoretical and numerical results.
As pointed out previously, in the wire measurements the beam current is substituted
with the current flowing on a wire. This procedure induces some “intrinsic” errorsin
the evaluation of the calibration coefficients (5.1) as discussed in the par. 2.4. These
erors can be, in principle, controlled (or evaluated) performing different
measurements with a reduced wire radius. Unfortunately, doing this, the length of the
tapers has to be increased in order to guarantee the correct matching. Measuring,
anyway, the resonant frequency and Q factors by the |Sg3| a the antenna port with and
without the wire inside the beam pipe, one notes that the perturbation induced by the
wire, in this two quantities, is completely negligible.
The possible measurements uncertainty can be, instead, summarized as follows:

a) since the matching of the impedances with the tapered section is not perfect,

the reflected wave at the port 2 introduces a perturbation in the cavity field and,
consequently, an error in the evaluation of the transfer function between the
beam current and the cavity field.
Considering the measured scattering parameters and the calculations developed
in the par. 2.4.3, it is possible to estimate the introduced uncertainty in the
evaluation of the transfer function and, therefore, in the P;, calculations. This
is of the order of [# 0.2% for P; and [ 1% for P-.

b) The wire inside the beam pipe can be dlightly of axis. Also this induced error
can be evaluated performing different measurements in different prototype
positions and as evaluated to give a negligible effect.

The differences between the theory, the smulations and the measurements can be
explained considering that:

a) the theory has some “intrinsic” limitations in the evaluation of the
coefficient ag, ay, due to the finite depth of the dlots [120] and due to the
approximation I<<A;

b) in the smulations the mesh near the axis of the beam pipe has to be heavily
increased in order to correctly evaluate the R/Q because the E field on the
beam pipe axis has an amplitude much smaller than in the cavity. This can
give some numerical noises even if the solution converges in few adaptive
passes.

155



C) the prototype has some non-negligible differences with respect to the
structure considered in the theory and simulations: two screws that are used
as tuners of the TEM modes, the antenna and the rounded corners (Fig. 5.1).
Moreover, due to the non-perfect RF contacts there are more losses than can
give a certain perturbation of the field in the cavity.

Table 5.3: Comparison between the normalized dissipated powers.

THEORY | HFSS MAFIA MEAS
P, 201e3 | 0.74e-2 0.55e-2 1.58e-2
P, 0.73e-2 | 0.6lel | 042e1 0.8%-1
Pi/P; 1.38e-1 | 0.60e-1 | 0.65e-1 0.88e-1

Beam position monitor

To excite the dipolar modes the wire inside the beam pipe has to be properly displaced
from the axis of the beam pipe. To do this, athin nylon wire has been connected to the
central wire in order to displace it from the beam pipe axis in a controlled way [122]
and exciting one of the two polarities (¢=0 in the general formula (5.4)). The
measurements set-up, except this, is the same as that discussed in the previous section.
The |Sz| is reported in Fig. 5.9 as a function of frequency for few mm wire
displacement. The values of the two peaks corresponding to the TEM modes do not
depend on the axis displacement. On the contrary the value of the peak corresponding
to the TE;1; mode is very sensitive with respect the displacement itself and the |Sz|
grows linearly with the axis displacement (Fig. 5.10).

Also in this case the formula (5.9) allows to determine the calibration coefficients of
eg. (5.4) and, since the considered axis displacements are much less than the beam
pipe radius, the characteristic impedance Z. can be considered constant and equal to
M14 Q. The corresponding P grows, therefore, quadratically with the axis

displacement.

To correctly compare the measurement and theoretical results and the theoretical one
has to make the normalizations (5.10)-(5.11). In the range 0-1 mm the three results
give a quadratic behavior of the average dissipated power of the form:

F)TE = EITE rz‘r‘z
(5.12)

The obtained Prg as a function of r is reported in Fig. 5.11 and compared with the
theoretical and simulations results.

Similar comments to the previous section can be done for the measurement errors and
theory approximations.
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Appendicesto Chapter 5

Appendix A5.1: Expression of the Q factor and polarizabilities

The quality factor of the TEM modesis simply given by:

_ 2
=53 (dj 1.1
—In| = |+=+—=
L (b)) b d
(1.A5.2)
where the quantities are defined in Fig. 5.1 and the skin depth d is given by:
5= |2
wuUo
(2.A5.2)
The electric and magnetic polarizabilities are given by:
S
a, = —%w2|{1—o.5663|ﬂ+o.1398(‘|’—"j }e S
T w w)? |
a, =—w?|1+ 0.3577——0.0356(—j e w
16 I I
(3.A5.1)
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Conclusions

The aim of this work has been to illustrate the study of three different microwave
devices for the control and the manipulation of particle beam in accelerators.

The study has included both the analysis of the beam dynamics effects induced by the
devices and the em. design of the devices themselves. The first purpose has been
achieved by using analytical theories or numerical tracking codes, while the design of
the components has been done using em. simulation codes (MAFIA and HFSS) or
e.m. theories (asin the case of the bunch length-position monitor).

Each device has been, then, completely characterized with microwave measurements
and the experimental results have been compared with the theoretical ones.

Control of bunch length with a high harmonic cavity in DA®NE

The study and the design of a high harmonic RF system for the accelerator DA®NE
has been mainly motivated by the demand of lifetime improvement and by the
increasing of the natural Landau damping mechanism. The beam dynamics in the
accelerator DA®NE with a harmonic system has been analysed both using analytical
theories and simulation codes. In particular the problem of the gap in the bunch filling
pattern has been carefully analysed and the final bunch distribution and Touschek
lifetime have been calculated.

The use of a passive harmonic cavity in the lengthening regime can improve the beam
lifetime of the DA®NE beam by a factor equal to [(B0% if compared with the present
operation condition. Nevertheless, the presence of a gap in the bunch filling pattern
produces a spread in the Touschek lifetime and bunch distribution.

The analysis of the cavity parked option has shown the possibility to recover
approximately the operating conditions before the harmonic cavity installation.

The design procedure has been described and the obtained results have been compared
with measurements. The HOM damping realized with ferrite rings shows that all the
higher order modes in the cavity are well damped.

RF Deflectors for CTF3

The beam dynamics in the Combiner Ring of CTF3 has been studied by modelling the
wake fields in the RF deflectors. Different approximated formulae have been
considered and discussed. A multi-particle multi-bunch tracking code has been written
in order to study the multi-passage multi-bunch transverse beam dynamics.

The code has been developed considering both the case of bunches without finite
bunch length than the case of afinite length.

The obtained results have shown that the emittance growth due to the wake fields in
the deflectors is a small fraction of the bunch design emittance if the trains are
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injected perfectly on axis. Some injection erors and ring phase advances can,
however, increase the transverse emittance of afactor more than 10.

The design of the devices, redlised by HFSS and MAFIA, has been discussed. The
fina RF deflectors measurements have been shown and compared with the theoretical
results showing a very good agreement. The recombination with the contructed RF
deflectors have been aso successfully tested in the CTF3 Preliminary Phase [123] at
low current.

Resonant bunch length-position monitor for ultra short bunches

The study of a bunch length-position monitor has been done using both the Bethe's
theory and the simulations codes HFSS and MAFIA.

The monitor consists of a small coaxia cavity coupled to the beam pipe through four
dots. Probing the resonant fields by a small antenna, it is possible to determine the
bunch length and the position of bunches inside the beam pipe.

The wire measurements made on a prototype in the longitudinal and transverse cases
have been discussed and compared with the theoretical results.

The obtained theoretical and experimental results confirm the potential application of
this device as a bunch-length position monitor. The very low coupling impedance of
the device and the possibility of a calibration by simply wire measurements make the
device hopefully usable in the accel erators machines.
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