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Introduction

DA®NE is a double annular electron-positron collider in operation at the Laboratori
Nazionali di Frascati (LNF) of the INFN at the center-of-mass energy of 1.020 GeV,
corresponding to the ®-meson resonance that decays mainly in K mesons. The
study of neutral K mesons is pointed to the investigation of the small CP symmetry
violation present in nature which states that any reaction must not change if it
undergoes a simultaneous mirror reflection and change of all particles into their
antiparticles.

The accurate measurement of these rare phenomena require a very high luminos-
ity . A value of about 1032cm™2s~! is necessary in oder to improve by one order of
magnitude the accuracy of the actual best measurement. This is a very demanding

task for a collider at such low energies.

One of the intrinsic limit for the luminosity is the beam-beam interaction effect.
It essentially consists in the force experienced by a particle in one beam due to
the electromagnetic interaction with all the particles in the opposite one during
collisions. Being a highly nonlinear interaction it is very difficult to be predictive on

its effects and it is one of the most challenging problems to study on DA®NE .

The dissertation is organized as follows. The first Chapter contains a description
of the DA®NE project with particular attention to the main rings optics, interaction

region and luminosity measurement.

A basic description of the beam-beam interaction is discussed in Chapter 2.
The first part is dedicated to the derivation of the beam-beam force and to its
linearization which brings to the definition of the tune shift. In the second part an
Hamiltonian analysis is used in order to study the beam-beam resonances and tune

spread.

Chapter 3 describes the models that are used to simulate the beam-beam inter-

action with particular attention to the code I have used for DA®NE .
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Simulation results are presented in the next two Chapters. In Chapter 4 a
detailed analysis has been performed to search for the DA®NE working point with
one interaction point. The performances of the working point have been studied
carefully with the simulations in comparison with the experimental results in order to
investigate the influence of various beams parameters on the luminosity and lifetime.

Chapter 5 is dedicated to the search for a working point with two interaction points.

Experimental results are shown in Chapter 6 with particular attention on the

luminosity optimization and beam-beam effects.



Chapter 1

The DAPNE Collider

In this chapter the Frascati ®-factory DA®NE is described and the physics to be

done with is very briefly summarized.

1.1 Physics at DAPNE

Large high energy accelerators provide tools for investigation at the frontiers of our
knowledge in sub-nuclear physics by probing the ultimate constituents of matter
within always smaller space-time regions, and by generating new patterns of matter
at always increasing energies. A complementary approach to the understanding of
the fundamental properties of nature is the study at a very high degree of precision of
rare phenomena, which clarify critical items of the theories and open the possibility
of discriminating between different models of the physical reality. In order to follow
the latter line of research in sub-nuclear physics, accelerators capable of delivering
beams of extremely high intensity and accurate energy calibration are needed; in
this way a wide variety of data even on the rarest phenomena can be obtained.
DA®NE[1] (Double Annular For Nice Experiments) is of this kind of accelerators,
dedicated to the abundant production of ® particles, coming from the annihilation
of electrons and positrons at the energy of the ® resonance. The ® particle is of
course unstable with a very short lifetime, it decays in lower energy particles, among
which the K mesons. These particles have been discovered in 1947 and till then have
shown new features. The study of neutral K mesons behavior is pointed to the study
of the violation of the CP symmetry, which states that any reaction must not change
if it undergoes a simultaneous mirror reflection and change of all particles into their

anti-particles. The detailed measurement of the fundamental parameters of direct
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CP violation Re(e—;) and its inclusion into a conceptual framework is one of the most

challenging open problems in physics, and it represents the main research program
of KLOE [2] (K LOng Experiment) at DA®NE.

80

SRe(e'/g)

60

Re(e/e) [10™]

10 -

40 —

V. Fanti 99

Barr 93
Gibbons 93
-o- Alavi-Harati 99

—0—
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-o- Ciuchini 95
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(a) (b)

Figure 1.1: (a) Review of the present measurements and predictions; (b) Behavior of the
statistical error as a function of the instantaneous luminosity by assuming one year data taking.
The following typical values have been used: o4 = 3.3ub, B(¢ - KpKs) ~ 0.3, B(K; — 7r) ~
1073 and the revelation efficiency Eff=0.3;

Particularly KLOE aims to measure

Re(S) = é(R .y (1.1)

where R is the double ratio

B(K, —»ntn™) ,B(Ks — nn™)

R = .
B(K — 7%7%) / B(Kg — n07%)

(1.2)

The statistical error on Re(e—;) are dominated by the error on the smallest branching

ratios B(Kj, — 7m), the ones related to the CP violating processes:

€ N15B(KL—>7r7r)N15NlongN1 1

ORe(—) ~ = ~ ~ 1.3
e( 6) 6 B(K — nm) 6 Niong 6 /Niong (13)

where Ny, is the number of detected K — 77 and is given by
Niong = LoyB(¢p — K Kg)B(K, — nrm)Eff (1.4)
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In Figure 1.1 (b) is shown the behavior of the statistical error as a function of the
instantaneous luminosity by assuming one year of data taking. In Figure 1.1 (a) it is
also shown the accuracy that recently has been obtained by KTEV [8] and NA48 [9]
collaborations. It appears that a luminosity of about 103" (which corresponds to

10% pb~! for one year of data taking) is required in order to reach this sensitivity.

However, CP violation and K meson physics are not the only goals of the DA®NE
project: the abundant production of K mesons opens a wide range of experiments in
nuclear physics, with unique characteristics of energy resolution and kind of observ-
able reactions. A second experiment, FINUDA (FIsica NUcleare a DA®NE) [3],
will be installed on the second interaction point of the DA®NE main rings to per-
form studies on the spectroscopy and decay modes of hypernuclei, where a nucleon
has been replaced by a baryon made of strange quarks. In DA®NE \ hypernuclei
will be produced by stopping K mesons of known energy inside nuclear targets.

As FINUDA will roll-in later than KLOE, in the meanwhile the DEAR  [4] experi-
ment occupies the second IP. Due to its very high nominal stored currents DA®PNE
is also an interesting high flux source of synchrotron radiation in the UV and soft
X-ray wavelength region. There will be installed a small number of synchrotron

radiation beam-lines from dipoles and wigglers of DA®NE main ring.

1.2 DAO®NE Design Criteria and Project Overview

The construction and installation phase of the Frascati ®-factory DA®NE have
been completed in autumn 1997. As I briefly discussed in the latter Section 1.1, this

machine is optimized to explore in detail the physics of the reaction
6++6_—>(I)—>K5+KL (15)

The success of such an exploration demands a large number of events, which in turn
demands high average luminosity and reliability of operation. The word “factory”
is meant to emphasize these two requirements. The peak luminosity that DAPNE

aims to achieve is on the scale 1032 ¢cm™2

s~ more than one order magnitude higher
than in existing colliders at that energy. Thus, assuming an “experimental” year
of 107 s, this machine is expected to deliver an integrated luminosity of 10* pb~!
per year in the phase one working with thirty bunches. The approach of DA®NE
to high luminosity, multibunch flat beams with a very high current stored in two
separate rings, is common to the other two existing factories, KEK-B and PEP-II.

The electron and positron beams collide in one of two potential Interaction Points
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Figure 1.2: DA®NE Main Rings Layout.

(IP). The crossing at a horizontal angle reduces the effect of parasitic collisions and
it should allow to store up to 120 bunches per ring, corresponding to a colliding
frequency of 368.26 MHz. For DA®NE the horizontal crossing angle is 25 mrad

satisfying the physical constraint

fo,

<1
Oz

where # is the crossing angle, o, and o, are the longitudinal and radial beam size
respectively. The high rate of bunch collisions relaxes the single bunch luminosity
parameters. The single bunch luminosity design value is 4.3 - 103°cm™2s~! with
44 mA per bunch. The DA®NE main rings layout is shown in Figure 1.2 and the

main design parameters have been reported in Table 1.1.

Electrons and positrons are stored in two symmetric separate rings. This is
mainly due to the necessity of avoiding 240 IPs that there would be if the two beams
circulated in the same ring. Flexibility is technically obtained by independently
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Table 1.1: DA®NE design parameters

Energy[ GeV] 0.51
Maximum Luminosity[cm™?s™'] 5.3-10%
Single Bunch Luminosity[cm™2s™"] 4.4-10%
Trajectory length[m)] 97.69
Emittance,e, /e, [mm - mrad] 1/0.01
B-function 3/, m] 4.5/0.045
Transverse size o, /o, [mm] 2/0.02
Beam-beam tune shift £,&, 0.04/0.04
Crossing angle 0, [mrad| 25

RF frequency[MHz] 368.26
Number of bunches 120
Minimum bunch separation [cm] 81.4
Particles/bunch [10] 8.9

RF Voltage [MV] 0.250
Bunch length [cm] 2.5
Synchrotron radiation loss [ KeV/turn] | 9.3
Damping time 7, /7, [ms] 17.8/36.0
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Figure 1.3: Position of the magnetic elements and of the two IPs along one of the two rings,

from the bottom: IP, dipoles, quadrupoles, sextupoles and wigglers.

powering all quadrupoles and sextupoles.

Electrons and positrons intersect each other in two Interaction Regions (IR),
where the beams travel in the same vacuum chamber, passing off-axis in the low-/3
quadrupoles. It can be shown that the betatron amplitude grows with the distance
s from the minimum value in the low-3 insert along the drift spaces on either side

according to [5]
B(s) = BO)[1 + s°/5*(0)].

The smaller 5(0) is, the faster ((s) will grow with distance from the crossing point.
So the low- (3 insertions produce only a localized region of very low vertical 3-function
B, and they are needed to achieve high luminosity , as it is inversely proportional
to f(,. They are placed as near as possible to the detector. The point of minimum
beam cross section is placed exactly at the crossing point. At the end of each IR
the beams are separated by 12 cm and a splitter magnet drives the two beams in
the corresponding rings, with two independent vacuum chambers.

The periodical structure of the main ring consists of four arcs. The complexity of the
machine and its main elements can be observed in Figure 1.2 and in Figure 1.3. The
straight sections of the IRs are interleaved with by two sections used for injection, RF
cavity and feedback kickers. The arc cell has been called BWB (Bending-Wiggler-
Bending) and it is quasi-achromatic. The 1.8 T wiggler is 2 m long in the region of
maximum dispersion.

The challenging parameter is the very high current, to be reached when all the 120
buckets are filled. Multibunch instabilities will have to be cured as the number of

stored bunches will increase. Special RF cavities have been developed to allow stable
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high current-multibunch operation; they have low parasitic high order modes (HOM)
content. The RF cavities are one per ring and are normal conducting copper single
cells, with a system of HOM damping waveguides which couple out and dissipate
the HOM energy induced by the beam on external 50 €2 loads.

A longitudinal bunch-by-bunch feedback system has been implemented to damp
residual oscillations of the beam. It consists of a modular time domain system
employing digital techniques. A timing system provides synchronization of the RF
cavities of the main ring, the accumulator’s RF phase, the linac’s gun trigger, the
injection/extraction kickers in the accumulator ring and the main rings’ injection

kickers in order to fill the selected bucket with a precision of the order of picoseconds.

1.3 Main Ring Structure

The circumference of each ring is very short, about 100 m, in order to increase
the single bunch luminosity and reduce the damping time. This makes the lattice
extremely compact and has allowed the installation of the machine in the building
of the ADONE accelerator shut down in 1993.

The two 10 m long IRs are limited by the splitter magnets used to separate the
beams. In each ring two sections connect the IRs: an outer one called Long and an
inner one called Short. Each of these two sections is made of two arc cells with an
utility straight section in between. The Short straight section is dispersion free and
it is used for RF, feedback and diagnostics. The Long straight section is used for

injection and diagnostics.

1.3.1 The Arc Cell

Particular care has been taken in the design to make the damping times as short as
possible in order to counteract possible instabilities at such low energy. Low bending
radius in the dipoles and four high field wigglers in each ring produce large energy

loss. The wigglers double the energy radiated in the bending magnets.

One of the parameters required to increase the luminosity is high emittance. The
arc cell (BWB) with two bendings and a wiggler in between has been designed to
increase the emitted radiation and tune the emittance. The cell is a double bend
achromat with three quadrupoles (DFF) and a wiggler inside; a chromaticity cor-

recting sextupole is placed on each side of the wiggler. One of the dipoles has parallel
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Figure 1.4: Optical functions in IR1

end faces allowing a better separation of the optical functions at the sextupoles. By
varying the dispersion function in the wiggler the emittance can be tuned over a

large range.

1.3.2 The Interaction Regions

A peculiar feature of the lattice is the interaction region where the two beams
travel together in a common vacuum chamber. Due to the crossing angle in the
horizontal plane the beams pass through the low-3 quadrupoles off axis. A correction
scheme with the splitter magnets and corrector dipoles allows to change the crossing
angle so that the effect of parasitic crossings can be finely tuned. The beams are
separated at the IR ends by about 12 cm. To increase the separation and to lower
the chromaticity, mainly due to the low-# insertions, a focusing sequence FDF has
been chosen. The optical functions inside the IR are symmetric with respect to the
IP.

Four different IR lattices have been designed: three for the experiments and one
for commissioning without the detectors. The total IR first order transport matrix
is almost the same for all configurations, thus allowing to interchange the four IRs

with small adjustments of the optical functions in the arc.

The DAY-ONE IR has been used for machine commissioning before KLOE in-

stallation. It housed seven electromagnetic quadrupoles to help tuning the optical

10
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Figure 1.5: Beam trajectories in IR1

functions, with a quadrupole placed at the IP to reduce the chromaticity. A Beam

Position Monitor (BPM) at the IPs allowed to align the two beams for collision.

At the beginning of 1999 the KLOE IR, which is described in detail in next
Section 1.4 has been installed in IR1, while DEAR has been placed in TR2, which

has been obtained by removing the central quadrupole at the IP.

1.4 The KLOE IR

KLOE is a large detector equipped with a longitudinal field solenoid. In order to
leave the maximum free solid angle for the experiment the low-73 triplets, which are

embedded inside the detector, are realized with permanent magnet quadrupoles.

The three quadrupoles are confined inside a cone of 9° half-aperture; the free
space around the IP is +0.45 m and the solid angle available for the detector is 99%.
The optical functions and beam trajectories in the KLOE IR are shown in Figure 1.4
and 1.5. The KLOE detector consists of a cylindrical drift chamber surrounded by
a lead-scintillating fiber electromagnetic calorimeter and immersed in the 0.6 T
magnetic field of a 2.5 m radius superconducting solenoid. The integrated field of
the KLOE solenoid is as high as BL=2.4 Tm: this is then a strong perturbation
to the machine optics at the DA®NE energy which corresponds to a rigidity of
Bp = 1.7 Tm. The KLOE solenoid rotates the normal modes of oscillation in the

11
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transverse plane by an angle of 8z = 45° where the angle 0 is defined by

1
Or = 35, /Bz(s)ds (1.6)

This is the major contribution to the coupling between radial and vertical oscilla-
tions, usually expressed by the factor x = ¢,/ £, that is the ratio between the
vertical and the radial emittance. This effect must of course be compensated in
order to have the very flat beam required for high luminosity, that is in order to

have a coupling as small as x < 0.01.

To cancel the coupling at the [P and at the ends of the IR a matrix of each half-
IR block diagonal using four skew quadrupoles would be sufficient. This method
cannot be applied to DA®NE for the lack of space. To correct such a large cou-
pling the so called Rotating Frame Method (RFM) has been adopted [7] which
exploits compensating solenoids plus rotated quadrupoles; the rotation introduced
by the solenoidal field of KLOE is neutralized by two superconducting compensating
solenoids of equal but opposite integrated field and symmetrically placed on each
side of the detector.

The RFM allows to insert the low-3 quadrupole triplets between the main and the
compensating solenoids without affecting the coupling correction. This is based on
a property of the solenoid matrix that can be written as the product of two matrices
R(fg) and F, which commute. R(fg) is a rotation and F is a block diagonal matrix

equivalent to a quadrupole focusing in both planes with strength K = (0 /L)?.

The half IR matrix consisting of half detector solenoid plus one compensator can

be written as:

where F¢ is the matrix representing half compensator and Fp represents half de-
tector. A quadrupole inserted between the detector and the compensator does not
introduce coupling, provided that it is tilted by 0, that is by the same angle of the
solenoid rotation angle.
In fact, when a quadrupole represented by the matrix Q is tilted by the angle 0
its matrix becomes:
Qr = R(fr) Q R(—0R). (1.8)
Inserting Qg in the matrix My just between the detector and the compensating
solenoid in the Equation 1.7 the rotations cancel out and My becomes My =

FecQFp, that is it becomes block diagonal being the product of block diagonal

matrices.

12
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Figure 1.6: Horizontal and vertical 3-functions in the positron ring.

In the KLOE IR the low-3 quadrupoles are immersed in the detector solenoid.
An exact application of the REM would require that each quadrupole is continuously
rotated like an helix. In practice the quadrupoles are rotated by the angle corre-
sponding to their longitudinal midpoint. The resulting half TR, matrix has a small
residual coupling which is corrected by slightly adjusting four parameters: three

additional rotations of the low-3 quadrupoles and a correction of the compensating
field.

1.5 Optics Measurements

As T have mentioned in Section 1.2, in order to have a large lattice flexibility all
magnetic elements have independent power supplies. This allows to measure the
[B-functions at all quadrupoles. The S-functions measured along the ring are shown

in Figure 1.6 where they are compared with the lattice model.

Due to the high beam emittance the machine aperture is large: both for this
reason and because of the short length of the magnetic elements the effect of the
fringing fields is not negligible and corrections have been applied to the dipoles,
which account for a change of almost 0.5 in the vertical tune. The model also takes
into account the focusing effects in the wigglers. In the KLOE IR short slices of
solenoid interleaved by thin lens quadrupoles account for the overlap and for the
longitudinal variation of the fields. In addition, in order to better fit the measured

[-function some free parameters have been used as variables.

13
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An independent check of the model can be obtained by using the information of
the response matrix which is measured by recording the closed orbit displacements
produced by unit variations of the dipole correctors. A procedure to derive the
optical functions from the response matrix reducing the influence of calibration
errors and correctors is in progress. This check of the model is especially important
for the KLOE IR where a direct measurement of the optical functions cannot be

performed by varying the quadrupole currents as they consist of permanent magnets.

The closed orbit before correction was inside the ring aperture in both rings.
Since the two rings are very close to each other the stray fields from high field
elements produce orbit changes on the nearby ring. The horizontal closed orbit is
determined not only by magnetic misalignments but also by the compensation of
the trajectory in the wigglers and by the splitter setting as a function of the crossing

angle at the IP. Four methods to correct the closed orbit have been implemented:

e best corrector
e harmonic correction
e cigenvalues of measured response matrix

e bumps in the IRs

Orbit bumps in the IRs, with four or six correctors have been used to precisely
adjust angle and displacement in the horizontal and vertical plane at the IP. The
orbit measurement in the IRs is performed separately for each beam in the same
monitors. Bumps are also used to vertically separate the beams in one IR when

colliding the beams only in the other one.

During commissioning with the DAY-ONE IR a coupling of the order of k ~
0.002 has been obtained after closed orbit correction and with the sextupoles turned
on, that is a much smaller value the the design one x = 0.01. Coupling has been
estimated from the synchrotron light monitor and by the closest tune approach
distance. Another sensitive measurement of the relative variation of the coupling
is the beam lifetime which is essentially determined by the Touschek effect and
therefore it is inversely proportional to the beam density and, for small coupling,
nearly proportional to the square root of the coupling. The minimum coupling has
been found by measuring the beam lifetime as a function of the strength of a skew

quadrupole.

14
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Figure 1.7: Single Bunch luminosity measured by the DA®NE luminosity monitor.

The horizontal emittance measured by the synchrotron light monitor is in agree-

ment with the value calculated by the model.

The chromaticity has been measured and corrected using the same sextupole
strengths in both rings. The sextupole strengths have been tuned in order to improve
the energy acceptance of the ring and therefore the beam lifetime. Indeed the lifetime
depends on the physical and dynamic aperture for the betatron and synchrotron
oscillations where the physical aperture corresponds to the physical dimensions of
the vacuum chamber and the dynamic aperture is the innermost radius of the region
in the phase space where the single particle motion is stable. The design value of the
energy acceptance has been reached by powering only the eight sextupoles located

in the arcs arranged in four families.

1.6 The DA®NE Single Bremsstrahlung Luminosity

Monitor

In this section the luminosity measurement technique [6] and the main set-up adopted
in DA®NE will be described. The more direct way to measure the luminosity con-
sists in measuring the counting rate of a known cross-section electromagnetic process

generated at the collision point. At DA®NE it has been chosen to use the photon
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production in the single Bremsstrahlung (SB) to measure the luminosity. The SB
process is described by:
et+e —et+e +7 (1.9)

The photons are emitted in the direction of the beam particles within a cone of the
order of ~ 2/v where v is the beam’s particle energy in rest mass units and for
DA®NE is ~ 10%. The maximum possible energy of the photons is the single beam
energy. The single Bremsstrahlung has been selected because of its high counting
rate, that permits on-line luminosity measurements. The counting rate Ngp is the
number measured by the proportional counter, the luminosity is derived from Ngg
from: )
Nsp
USB(kminQdet)

where ogp is the cross section for the chosen SB process, (24 is the solid angle

L= (1.10)

defined by the the detector and k,,;, is the minimum photon energy detected by
the monitor. To find the value for this last quantity k,,; a calibration with gas-

Bremsstrahlung (GB) and only one beam in the machine is necessary.

Proportional Counter

The structure of the detector is a sample of the KLOE electromagnetic calorimeter.
It consists in a proportional counter made of alternated layers of lead and scintillat-
ing fibers with photomultiplier read-out. The charge signal from the photomultiplier
is proportional to the photon energy. Energy analysis and photon counting are pro-

vided by the data acquisition system.

Background subtractions

The main background affecting the measurement comes from photons produced by
Bremsstrahlung on the residual gas. Two background subtraction methods can
be used: the single counting channel pedestal subtraction (SCPS) and the missing
bunch background subtraction (MSSB).

In the former (SCPS) method the contribution of photons produced by Bremsstrahlung
on the residual gas is subtracted by measuring this gas Bremsstrahlung rate when
beams are longitudinally separated. In DA®NE it is used what has been called the
RF Phase Jump [34] technique where the electron beam is injected 360 or 720 RF
degrees far from collision and then brought in collision with a fast phase variation to

zero degrees in =~ 800 ns. Then the rate is measured with the beams in collision, and

16
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the difference between the two is the SB counting rate that, when divided by the
SB integrated cross section, gives the luminosity value. Using the SBBS scheme it
is necessary to periodically separate the beams for updating the background value.
The second method (MSSB) consists in injecting two positron bunches: a colliding
one and a smaller one, in an out of collision bucket. Assuming that the residual
gas pressure is the same for the two bunches and assuming that the background is
due to the GB contribution only, it is possible to derive an expression relating the

counting rates and the currents.

This method can be generalized to a multibunch operation if the collider is
filled in such a way that all the bunches but one (or a few) are in collision. Both
the background subtraction schemes assume that thickness and position of the GB
source do not change between the in and out collision situations. In fact, any
phenomenon that modifies the position or the angle at TP of the beam facing the
counter will generate a modification in the GB target with a consequent variation

in the background counting rate.

In Figure 1.7 is reported the luminosity read-out window during a single bunch
luminosity measurement in the DAY-ONFE commissioning phase. The picture shows
the counting rate as a function of time. The dip in the counting rate corresponds
to the beam separation obtained with the RF phase change. In the bottom right of

the figure are the two beams currents, red for positrons and blue for electrons.
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Chapter 2

The Beam-Beam Interaction

In this chapter I present a description of what is the beam-beam effect in eTe™

storage rings, its main features and related problems.

2.1 Introduction

When the beams cross each other in the intersection region of a storage ring two
distinct effects occur, either a particle of one beam sees the other beam as a collection
of point charges or it can interact with a single particle of the opposite oncoming
beam. It is these particle interactions which the experimental physicist studies. The
average number of such events depends both on the cross section o that characterizes
the considered physical process and on beam’s luminosity £. When an electron of,

say, beam 1 passes through a bunch of beam 2 the probability of an event is:

NQO'
A

where A is the transverse area of the bunch, and Nyo is the target area occupied by

(2.1)

the N, particles of beam 2*.
The expected number of events of each crossing is consequently:
NQO'

AN, =N, - — 2.2
ev 1 A ( )

In the classical approximation o is the electron’s transverse area 7r2; the probability of an
event is just given by the ratio between the area covered by the electrons (Na7r?) and the total

area A.

19



Chapter 2 : The Beam-Beam Interaction

and for the rate of events: N
Noy = fN; - % (2.3)

where N is the number of particles in the bunch of beam 1 and f is the bunches
revolution frequency. The machine physicists call luminosity £ the parameter that
multiplied by the cross section o gives N,, (see Equation 2.3) so that it is:

SN N,
A

For a Gaussian beam distribution the equivalent transverse area is:

L=

(2.4)

A =d4rogo,

where o, and o, are the rms vertical and horizontal beam sizes at the collision
point. A general expression for the luminosity has been derived in Appendix B.
The luminosity is the main parameter that connects the machines with particle
experiments. The events given by Equation 2.3 are very rare being Nor? < o, 0,
(typical values are: Ny =~ 10", 0, ~ 10* m, o, ~ 10°° m).

A particle of one beam will be influenced by the electromagnetic field of the other
beam at each crossing. This is called the beam-beam interaction. From Equation 2.4
it may seem that it is possible to enhance the luminosity as much as wanted, just
increasing the number of the beam particles. Actually, this is not true. Experi-
mentally it has been found a limit for the luminosity beyond which the beams are

unstable.

This limit is translated into a limit on the betatron frequency shift (so called
linear tune shift) that one beam produces on the other one. As it will be discussed in
Section 2.3 only particles with very small betatron oscillations amplitudes experience
a linear tune shift. For betatron oscillations larger than one ¢ the field becomes very
nonlinear turning over to the well known 1/r-law at large distances from the beam
center. It is for this reason that a definite quantitative description of the actual

beam-beam effect has not been possible yet.

The luminosity value is mainly related to the shape of the beam core determined
by the beam-beam interaction. Nevertheless, the beam-beam interaction does not
limit only the luminosity but it can also be dangerous for the beam lifetime. In fact
the beam-beam interaction increases the population of the tails of the distribution;
the lifetime becomes unacceptable when the beam is spread out in such a way that

it is rapidly lost.

There are two treatments generally used to describe the beam-beam interactions:
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e weak-strong model: interaction of a single particle at the collision point with

a strong rigid Gaussian bunch;

e strong-strong model: two opposite bunches interacting at each turn in the
collision point; to simplify the model it can be assumed that they are both

Gaussian.

In both these models all effects which are consequences of the interaction between
individual particles (i.e. Coulomb interaction of two individual particles) are ex-
cluded. In the weak-strong model the strong beam plays the role of an external
perturbation for the weak beam dynamics. In the next section the beam-beam

interaction is described in detail, starting from the weak-strong model.

2.2 Beam-Beam Forces

The distribution of each beam without interaction can be expressed by a charge den-
sity distribution p(z,y, z) given by a three-dimensional Gaussian The beam-beam
interaction changes both the parameters and the shape of the transverse density

distribution.

As discussed in Section 2.1, the weak-strong model studies a single particle in-
teracting with the electromagnetic field generated by the opposite Gaussian bunch,
assuming that this is fixed at the interaction point and rigid, that is not perturbed
by the opposite beam. In the strong-strong interaction instead, it is taken into ac-
count that both interacting bunches change the Gaussian distribution.

Two observations can be pointed out:

1. The weak-strong model is not accurate when it is applied to a strong-strong real

case;

2. The strong-strong treatment is very difficult -I could say impossible if some

simplifying assumptions are not made.
These two approaches can be compared with two other classical problems:

e weak-strong case — two bodies problem;

e strong-strong case — three -or more- bodies problem.

21



Chapter 2 : The Beam-Beam Interaction

It is easy to imagine that the strong-strong treatment is complicated and difficult to
understand. Much can be understood by considering the weak-strong interaction, at
the limit of a single particle against a strong beam. The net kick given to a particle
displaced by distances x and y can be expressed as integrals of the electro-magnetic
forces over the particle’s trajectory through the opposite bunch. The forces can be
calculated using Gauss and Ampere laws for a Gaussian charge density distribution.
I want to describe here the expression of this integrated transverse angular deflection

received by a particle crossing a charged beam, with a Gaussian density distribution.

As a first approximation the variations of o, and o, with z at the crossing point
are assumed to be very weak, that is the beam-beam interaction is assumed to be

an impulsive force.

The electromagnetic tensor of a single electron traveling at velocity f = v/c can
be obtained by a Lorentz transformation of the electrostatic field of an electron at
rest. In this transformation magnetic components are generated and the transverse
electric field orthogonal to its direction is amplified by the Lorentz factor v = (1 —
v?/c?)71/% and the total longitudinal magnetic action of the oncoming particle will
be negligible.

Explicitly a particle moving along the longitudinal coordinate z with velocity 7 =
fez (2 is the versor along z) crosses the electromagnetic fields of the opposing beam

with components

E=(E,, E,E,) B = (B,, By, B,)
in the laboratory frame. The electric and magnetic fields corresponding to a Gaus-
sian charge distribution of the strong counter-rotating bunch is obtained starting

from the electrostatic field E of the strong bunch at rest:

E, =E, B, =2LE =5E,
E,=E, B,=2p =8p,
E,=E B.=0

The transverse components of the force are calculated using the Lorentz equation

F, =¢(E, + fcB,) = e(1+ ?)E, =~ 2¢E,
F, =e(E, + BcB,) = e(1+ B*)E, ~ 2¢E,

and being § ~ 1 they become

F, =2eFE,
F, = 2ek),

22



2.2 : Beam-Beam Forces

and the two transverse kicks are calculated integrating the corresponding component

of the Lorentz force over time:

Ap, .
Ay = 2P € / (E, + BeB,)dt / 2B, dt (2.5)
Diot mO’YC mO’YC —00
A o)
Ay =Py € / (E, + BB, )dt / 2, dt (2.6)
Ptot mop7yc mO’YC —00

where mg is the electron rest mass, c is the light velocity, p, and p, are the two

transverse components of the total particle momentum p;;.

E, and E), are the derivates of the electric potential Vpp:

E, =— E,=— 2.7
where Vg is given by the solution of the Poisson’s equation
V2VBB = ﬁ (28)
€o
p gives the distribution charge of the opposite bunch:
Ne x? y?
= —(=— +=)|. 2.9
p(z,y) G—— exp] (20% + 205)] (2.9)

It can be demonstrated that the potential that satisfies Poisson’s equation (see
Equation 2.8) with p given by Equation 2.9 can be written as [13]:

2

00 6$p 2022—|—q + (—UQL_H])]
Vee(T,y) / (2.10)
T do i+ q) 207 + )
Assuming that o, > o,, setting
o 207 +q
202 +¢q
and defining
T
r=oy/0y; 0=-—— and b=-—mm
n 2(03 — o) 202~ 03)
is obtained the famous formula derived by Bassetti and Erskine [14]:
N b :
E,—iE, = —i ¢ [w(a +ib) — w(ar + i—)e[*(““b)u(”“ ]} —i fop
2604/2(02 — 02) r
(2.11)
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Figure 2.1: Beam-Beam integrated force seen by a horizontally displaced particle for a fixed
vertical position (from Equation 2.14), with DA®NE parameters, in particular: energy per beam
E = 0.51 Gev and beam sizes o0, = 2.11 mm and o, = 21.1 pm. F, has been plotted in two
different scales, in (a) is shown the behavior to zero for large displacements; in (b) it is evidenced
the peak of the force at about 1.5 o, ~ 3 mm.

where N is the number of particles in a beam bunch, w(z) is the complex error

function defined as:
w(z) = 1 +— /
and

C=at+ib/t , (r<t<l)

and I have called

b . .
foo = w(a+ ib) — w(ar + i—)e[’(““b)u(“’"“g)ﬂ
r

The two transverse fields from the previous expression 2.11 result

N
B, = c Imfy (2.12)
megy/2(02 — 02)
N
B, = c Refu (2.13)
Teg\/2(02 — o2)

Formula 2.11 is generally used for beam-beam simulations, as it will be discussed in
Chapter 3.
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Figure 2.2: Beam-Beam integrated force seen by a vertically displaced particle for a fixed
horizontal position (from Equation 2.15) with DA®NE parameters, in particular: energy per beam
E = 0.51 Gev and beam sizes o, = 2.11 mm and o, = 21.1 ym. F, has been plotted in
two different scales, in (a) is shown the slow behavior to zero for large displacements; in (b) it is
evidenced the peak of the force at about 1.5 o, ~ 0.3 mm.

The two components of Equations 2.12 and 2.13 can be written as

E, = \/ﬂ/ aexpla®(t® — 1) + b*(1 — ;)]dt (2.14)
E, = \/ﬁ/ 2 eupla®(t — 1) + b*(1 - tlz)]dt. (2.15)

Finally, using the previous expressions 2.14 and Equations 2.5 the beam-beam kicks

can be written:

4Nr 1

Ar' = ——— / a expla®(t* — 1) + b*(1 — =)]dt (2.16)
vy/2(02 — 02) 2
4N7“e L'h 1

Ay = exp [a®(t? — 1) + b*(1 — t—Z)]dt. (2.17)

7,/2 (02 —02)

The beam-beam forces have been represented graphically in Figures 2.1 and 2.2
for z > 0 and y > 0, with the DA®NE beam parameters: N = 9 - 10" particles
per bunch, o, = 2.11 mm and o, = 0.0211 mm. It is clear from the two plots that
the nature of these two beam-beam transverse kicks is highly nonlinear. Moreover,

the force is almost linear for small displacements, it is zero at the bunch center, it
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increases with the distance from this bunch center and peaks close to 1.50 of the
bunch.

In fact, as it appears in Figure 2.1, Az’ has a maximum radial value at 3 mm
just corresponding to 1.50,. Similarly, from Figure 2.2, the maximum vertical value
of the integrated force Ay’ is at 0.03 mm corresponding to 1.50,. For large displace-
ments the integrated force goes like 1/r with the distance. A typical particle in a

storage ring experiences all parts of these two curves due to its betatron oscillations.

To conclude, it can be pointed out a difference in the vertical and radial force
behavior: in the vertical plane when a particle is at many o, far from the bunch
center is still influenced by the beam-beam force (Figure 2.2 (b)), while in the radial
plane the beam-beam force goes much more rapidly to zero as the particle is off
a few o, from the bunch center (Figure 2.1 (b). This is intuitive as the beam is
flat, so for vertical distances of many o, the particle still “sees” the other bunch
horizontally. On the other hand, as the particle passes off the oncoming bunch a

few o, radially, the vertical field component will be negligible.

2.3 Linearization of the Bassetti-Erskine formulae

The beam-beam force experienced by a particle near the bunch center can be lin-
earized. Let us start writing explicitly Equations 2.16 and 2.17 respectively in the
two cases y=0 and x=0.

Let us consider the horizontal plane first. In Appendix A is shown that Equation 2.16

in y=0 becomes:

4Nr, x z” x oy

Fp —e 7 Fp(—— —— - 2| (218
vm[ ( 2(a;—az>) ( )| @12)

where Fp is the Dawson function defined by:

Ar' = —

2 [T e
Fp(z)=e / e’ dt
0
For small x a linear approximation can be made:

Fp(z) =z + O(a?)

so that:
4N e x 2N e
Az’ = — (1 =~ ) (2.19)
2v(o2 ‘75) Oy v 0u( 0p + 0y)
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2.3 : Linearization of the Bassetti-Erskine formulae

For the vertical plane, in Appendix A is shown that Equation 2.17 in x=0 be-

comes:

o ANee” VoY Ny
= Yo\ /2(1 —12) 2 [ f(ay 2(1—r2)) f(ax 2(1—7"2))] (2.20)

where erf(x) is the error function defined by:

erf(z) = % /Ox e~V dt

For small x the following linear approximation holds:
2
erf(x) ~ ﬁx + O(2?)

and inserting this approximation inside the Equation 2.20 one gets:

2N )y (2.21)

AY = _(*yay(ax +0y)

It appears from the two relations 2.19 and 2.21 that in the linear approximation

the beam-beam interaction can be described by the transfer matrix:

10 0 0
-1 0 0
fx (2.22)
0O 0 1 0
1
0 0 —7 1
where the focal lengths f, and f, are defined by:
1 2r.N
SR S - (2.23)
Jy Voy(0s + 0y)
1 2reN
— =K, = e (2.24)
fm f)/o-x(o':v + Uy)
It is common to define two parameters
Te NG
= ——2 = 3K, /4 2.25
¢ 21 yo,(oy + 0y) Ba K /Am (2.25)
re  NB, .
fy=r—F—2L— = B, K, /An (2.26)

Bl g’YUy(Uy +04)

where 7 and [ are the unperturbed values of the horizontal and vertical j3-
functions at the interaction point. The changes in the tune due to the beam-beam

interaction are conventionally called the linear tune shifts &, and &,.
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Figure 2.3: Beam-Beam Tune shift (AQea) dependence on ¢ and Q as described by the
Equation 2.31.

2.4 Linear Tune Shift Parameter and Effective Tune
Shift

Let’s consider the vertical plane. For symmetry reasons the beam-beam kick will be
split into two halves, and the transfer matrix from one interaction point to the next

one is given by:

10 cos2m@Q B sin27Q) 1 0
(—% 1) (—ﬁ—l*Sin%rQ cos 2w Q) ) (_% 1) (2.27)

which must coincide with the one-turn matrix:

c0s 27(Q + AQyeal) BNEW sin 27 (Q 4+ AQrear) (2.28)
—W sin 27T(Q + AQ)real) cos QW(Q + AQreal) .

where 27 AQ),¢q is the phase shift caused by the beam-beam perturbation, AQ,cu
is the effective beam-beam tune shift felt by the beam. AY*W is the perturbed
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Figure 2.4: Contours of constant real tune shift AQyreal in the plane of the two scaling variables
(Qy, &y ). The measured values for ADONE and LEP are shown, for DA®NE it is not a measured

value.

O-function at the TP. The product matrices in 2.27 is:

cos 2w — %ﬂ* sin 27w Q) G*sin 2wQ) (2.29)
—K cos2m(@ — (ﬁL - ﬁ*TK sin27Q)  cos2m(Q) — %ﬁ* sin27Q | '

The trace of matrix 2.29 must be equal to that of matrix 2.28; it follows, using also
Equations 2.25 and 2.26 that

cos(2mQ + 2T AQ eqr) = €08 27Q) — 2wE sin 27w Q). (2.30)

I would like to stress here the difference between the real beam-beam tune shift
experienced by the interacting beams AQ),..,; and its linear approximation £. Equa-

tion 2.30 that has been rewritten here for completeness:

1
AQrear = 5 arccos(cos 2@ — 2w sin 2wQ)) — 27 Q)| (2.31)

ol
has been plotted for constant values of ¢ in Figure 2.3 and for constant values of
AQ;eq in Figure 2.4.
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Chapter 2 : The Beam-Beam Interaction

lin

wm ), that is in case of betatron tune Q

AQyeq in the linear approximation (AQ

not too close to zero or to 1/2, coincides with £. In fact, it is always true that:
€08 2T (Q + AQreqr) = €08 2T Q) 08 AQeq; — SIN 2T AQeq) SIn 27C). (2.32)

For such tunes not too close to zero or to 1/2 Equation 2.32 can be approximated

by the following one:
cos 27 (Q + AQ"™ ) ~ cos 2@ — AQ!™ , sin 27Q (2.33)

real rea

From Equations 2.30 and 2.33 it is found the relation:
AQln — ¢ (2.34)

real —

The linear-lens model is a good approximation for small amplitude particles. It
results that the single particle motion is completely described by two parameters:

the betatron tune () and the strength parameter &.

As it can be observed from Figure 2.4, as the betatron tune advance () between
two interaction points satisfies the relation () < &, the linear tune shift £ gets much
higher, and with & also the luminosity. In this case of betatron tune very near to
zero the real tune shift AQ,., will be much different from the linear tune shift £

and the linear approximation of Equation 2.34 is not valid anymore.

Two representative examples have been reported in the figure 2.4: ADONE and
LEP. Let us discuss them more explicitly.

e ADONE [16] worked on the vertical tune ), = .05 with six interaction points
per turn. This means in one period the tune advance was ), = 0.00833 and
¢ = 0.08. From these two values the real tune shift is found to be AQ e =
0.0292 and Equation 2.34 is strongly violated, and:

£
AQreal

e LEP [17] is now working with a tune advance between two interaction points
of @, = .05 with a £ = 0.075. In this case AQcq = 0.0509, so that

g =
AQreal
e DA®NE is working with a vertical tune of (), = .21. It could be argued that
with a linear tune shift & = 0.03 the linear approximation is very good, that
is AQreas = & = 0.03:

=2.74

1.5

§

=1
AQreal
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2.5 : Hamiltonian Treatment of the Beam-Beam Interaction

For the same value of AQ,.q very different values of £ can be obtained, depending
on the choice of the working point . This is one of the reasons why ADONE and
LEP could get high luminosities. From Figure 2.4 it appears that the tune advance
between two IP must be near to the integer in order to work with high £ . T just
would like to point out that in ADONE and LEP the low value of tune per crossing

is due to the fact that there are six and four IP respectively.

Consequently, from Figure 2.4 it appears that £ gets higher as the number of
interaction points increases, as if one could get a higher luminosity increasing the
number of interaction points (IP). Of course, this is true if the optics allows to tune
the machine near the integer tunes and the working point does not fall within an
integer resonance stop-band. In addition, at the increase of the interaction points
depending on the phase advance between them new resonances may be generated or
destroyed [19] (see for example Figure 4.12). In conclusion it is hard to say a priori

what behavior is expected increasing the number of [Ps at the same working point.

2.5 Hamiltonian Treatment of the Beam-Beam In-

teraction

The nonlinear variation of the beam-beam force with r causes a tune shift dependent
on the particle betatron oscillations amplitude and a tune spread in the beams and
it drives nonlinear resonances. The usual method for treating these effects is the
Hamiltonian perturbation theory. In order to compute the excitation of nonlinear
resonances and tune shift driven by the beam-beam collisions, the nonlinear effects

of the new Hamiltonian [22] are studied perturbatively:
H(xapxayapyas) = HO +VBB(xay7 8) (235)

where Hj is the unperturbed Hamiltonian described in the next Section 2.6 and Vppg

is the beam-beam potential considered as a small perturbation given in Section 2.8.

As discussed in Section 2.2 the beam-beam potential is highly nonlinear and it
is not possible to find constants of the motion. So a perturbation method must
be used in order to analyze the induced resonances and the amplitude dependent
phase advance, that is the beam-beam tune spread. In the following it has been
enumerated what must be done in order to perform this beam-beam resonances

analysis:
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Chapter 2 : The Beam-Beam Interaction

1. H has to be written in terms of the action-angle variables of the unperturbed
Ho;

2. a Fourier transformation of H has to be performed;

3. the dependencies of tunes on action from the average value of the perturbation

have to be calculated;

4. the resonance conditions and resonance properties have to be determined from

the slowly varying terms of H.

2.6 The unperturbed Hamiltonian

The Hamiltonian for the transverse motion of a single particle with no beam-beam in-
teraction is [20]:
x

Ho(,p2y Y, 1y, 5) = —eAs(s) — (1 + @)(p2 +p+p)' (2.36)
In this equation s is the usual coordinate along the reference orbit, p is the bending
radius, A, is the s-component of the vector potential describing the magnet lattice,
p = (E%/c? — m?c?)Y/? is the total momentum, and p, and p, are the momenta
conjugate to x and y. The ideal solution is to find constants of the motion. With a
linear lattice, that is in presence of dipoles and quadrupoles, a generating function

is used to canonically transform the Hamiltonian using action-angle coordinates
(z,ps) = (Y2, Js)  and (v, py) = (ty, Jy).

Let us consider the simple case of a one-dimensional system (y=0) in which the
beam-beam potential is equal to zero. Hamilton’s equation 0H/0p, = 2’ yields the
relation p, = z’ and confirms the conjugate coordinate of the position z as z'. A
generating function is used to canonically transform the Hamiltonian into a new
Hamiltonian using action-angle coordinates (.J, 5) The new Hamiltonian has the
advantage of being independent of the longitudinal coordinate s if one introduces

a periodic coordinate 1/;:1;, which is related to the phase advance of the particle’s

motion e
s ds
vale) = (0 + [ %
by the following expression
r QXS
r — Yz — xe — Px —
o=t = Qb =t —
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2.6 : The unperturbed Hamiltonian

The generating function used in the canonical transformation is given by [20]

2

Go(T, ¢o;5) = _2335

[tan Fy, + o) (2.37)

where
F:v E¢x_Qx9+¢x

This generating function produces the coordinate transformations

- \/mcos(z/fx + ¢q) ) (2.38)
i+ 60+ ot + 6] |
and the new Hamiltonian is
dG; _ QxJ
H =H ! g x X. 2.39
1 (1‘7 € S) + dS R ( )

The parameter R is a scaling of the longitudinal parameter s?>. The equation of

motions are given by

_8H1_%_2ﬂ' _8H1

& 0J, R _UQ" Ix

= =0 2.40
90 (2.40)
where the dot indicates a derivative with respect to s and C is the circumference of
the accelerator (it is 27 R = C'). From the two equations of the motion 2.40 it follows
that the action J, is a constant of motion, that is with no beam-beam interaction

the amplitude of a particle at a given location remains constant.

From the Ehrenfest adiabatic theorem [21] it results that for a slow variation of
an oscillator’s parameters the canonical variables of the motion evolve in such a way

that the action integral on one oscillation period is constant, that is:
1 1
Jy = — fpwdx = (=—area) = constant — area = 2mJy
2m 2m

J is an invariant related to the area enclosed by the ellipse in (z,z') phase space
which rotates periodically is s . If a particle has initial conditions which begin on

some ellipse given by a given action value then the particle stays on this ellipse.

2By rescaling the Hamiltonian using 6, the parameter R can be eliminated. Recalling that
d/df = Rd/ds the Hamiltonian can be written as

H2(J-’AU7¢.’AU7 S) . R = QXJX-
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Chapter 2 : The Beam-Beam Interaction

An equivalent derivation of the equations of motion holds for both transverse
degrees of freedom. The unperturbed part of the Hamiltonian H, described by
Equation 2.36 is thus

2mC) 2m
Ho(Jo, U,y thy) = gOJﬁ é?”“

where and (), and @), are the betatron tunes of the particle.

J, (2.41)

This system is equivalent to a system of two uncoupled harmonic oscillators.

The equations of motion are

©_ 9Hp _ 27Quo. P OHy _
{%_3_"3_3 I (2.42)
__ QHy __ 27Qyo. P OHy :
wy—aJ;_ CO’ Jy—_&p;_o
From the two equations of phase motion 2.42 the betatron tunes come out to be:
C 8H0 C aHO
Q. = 5737 and Qy = 5797 (2.43)
T y

2.7 The Beam-Beam Potential in Action-Angle Vari-

ables

Let us write the beam-beam potential Vzp in action-angle coordinates for a beam
colliding at one interaction point, with the approximation o,/ B, < 1. The as-
sumptions described by the last approximation is that the bunch length is short
compared to the vertical betatron functions at the interaction point so that the
transverse particle distribution in the x-y plane does not change significantly during
the interaction and the impulse can be considered to be a localized delta function

perturbation. If a Fourier decomposition is also performed, Vg is given by [22]

Nr, % k2 o2
Ves=-"75> 2 Tull Jy)ep| pT] :

m,np,r=—oo

™ . . s
A" T (kprTe/2)exp [2 (pl/)m + rip, — 2m(n — sz)E)] (2.44)
where £, is the wave number:
1 2'/TQ:U0 1 27TQy0
_ - _ - i 2.4

and the amplitude detuning function of the resonant Hamiltonian T, (see Section 2.9
for a brief description of its physical meaning) is found by averaging the beam-

beam potential over all angles:

o 1 / 46— / 46, =0
n)z ’ 0 Y
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2.8 : Beam-Beam Tune shift

dq

/°° 2B, Jycos 02 2[3,.J, cos O
0 \/(2030+Q)(2050+Q)

(2020 +q) (207 +q)

x exp| — ( )|(2.46)
The integral 7, is zero when either p or r is odd. The symmetry of the potential
expression dictates that only even-ordered resonances will be driven in head-on

collisions.

Just like any nonlinear resonance driving term, caused by sextupole magnets or
octupole magnets for example, these driving terms excite resonances whenever the

betatron tunes Qy, Qy and the synchrotron tune Q) satisfy the resonance condition:

PQx £1Qy £ mQs =n

where the order of the resonance is given by summing the constants |p| + |r| + |m/|.
The integer n is the harmonic of the revolution frequency which drives the resonance.

So in this case |p| + || must be equal to an even integer and m can be any integer.

Odd-ordered resonances require the symmetry of the potential to be broken, and
are present for example when the beams are separated transversely, when there is

dispersion or a crossing angle at the collision point.

2.8 Beam-Beam Tune shift

The average value of the perturbation is given by the term with p =r=m =n = 0.
All the other terms are oscillatory. When its phase varies rapidly, the effect of a
term on the motion averages to zero quickly.
s di) d(Hy + VBg) 2 Nr, 0T,
T + VBB m Te 00
<0 s 0 L BB S 2D - 2.47
ds dJ,, ¢ Qaun Cvy dJ,, (2.47)

that is, the derivative of Hy gives 27 /C' times the nominal tune, and the average of

the derivative value of the perturbation gives the average phase advance times 1/C.
A phase varies slowly if the tunes have special values leading to resonances.

As it results from Equations 2.42 that

dy, 27 dy) p

Y T
_ 2, Py __ 2T 2.4
ds> CQ‘T’ <ds> C’Qy (2:48)

it follows from Equations 2.47 and 2.48 that the beam-beam tune shift is obtained

from the derivative of the detuning term:

. N?"e 8T00 .
C 21y 0J, ]

. N?"e aTOO
21y 0J,

AR, (2.49)

AQy
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The beam-beam interaction redefines the working point for particles with unper-
turbed tunes into a working area in tune space. Amplitude dependent tune shifts
lead to a spread in particle tunes for a distribution of particles. For good beam
lifetime and stable operating conditions, it is desirable to keep the entire area in
which particles are spread in tune away from destructive resonance lines in tune
space. Section 2.10 gives in detail the expression for both the radial and vertical
tune shifts obtained starting from relations 2.49, relations that have been plotted in

Figure 2.5 in the so called beam-beam tune footprint.

2.9 The Resonant Hamiltonian

In this section is studied in detail an isolated nonlinear resonance in two degrees
of freedom supposing that the other resonances are far and only the isolated one
determines the particle dynamics, that is, a 4-dimensional phase space with a time-

dependent Hamiltonian.

A term in the Hamiltonian has resonant build-up when its phase varies slowly.

The resonant condition is

d
Is {p@/}x + ripy, — 2m(n — sz)%] ~ 0 (2.50)
or
P(Qro + AQx) +1(Qyo + AQy) + mQs =n p,r even numbers  (2.51)

where (Qx+AQx), (Quo+AQy) are the actual tunes, while Qyg, Qyo the unperturbed
betatron ones and Qs the nominal synchrotron one. The resonance order equals to
p| + |r] + [m].

The resulting resonant Hamiltonian is used to describe a particle’s motion when

its tune is close to a resonance of order |p| + |r| 4+ |m|. The Hamiltonian of a single
isolated resonance Hppp,(Jy, Jy, Yy, 1y) is [22]

Nr, 2Nr,
Too— ——
Cy Cy

where Fj.p, for the case 3 >> () ~ oy is:

Hprm - HO_ Fprm(J:va Jya 7A—) COos (pz/)x+r1/)y_27r(n_sz)g) (252)

~

rct
2 ﬂ;

The first term in the Hamiltonian of Equation 2.52 describes the linear motion of

1 ror,

Form(Juy Jyy 7) = Ty (Jay Iy )expl — 5(2 3
y

)1 T

]- (2.53)

a particle with unperturbed betatron frequencies Qy, Q, and synchrotron frequency
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2.9 : The Resonant Hamiltonian

Qs and it is given by expression 2.41. The last two terms are due to the beam-
beam interaction. The term Ty, is the amplitude detuning function which describes
the variation of tune with amplitude due to the beam-beam interaction. The term
F,

prm 15 @ beam-beam resonant excitation term and is known as the resonant width

function.

A standard well-known canonical transformation can be used to go from action-
angle coordinates of the unperturbed Hamiltonian to the action-angle coordinates

of a resonance Hamiltonian:

(1/)907 Jx) — (¢CIJ7 K:v) and (pra Jy) — (¢ya Ky)

where

¢w - pT/):L‘ + Twy - 27T(n - sz)%; ¢y = %

Je = pK,; Jy =1rK; + K,
and the generating function for the transformation is:

s
F2(¢x,y7 Ky, 9) = (pd)x + Td)y - 27T(n - sz)E)Kx + @Z)yKy
The new Hamiltonian H},, (K, K, ¢», ¢,) becomes

prm

2m 2m ~
H,, = F(pQX +1Qy — (n — mQy)K, + T UKy + F(K,, Ky) cos ¢y

where

F(K,, Ky) = Fprm(pK,, 1K, + K)).

Since the Hamiltonian M, is independent of the independent variable s it is a

constant of the motion. In addition however it is independent of ¢,. Therefore, the

new action K, is also an invariant. Thus, being
K,=J,—rK; =J,—rJ,/p = constant
the following expression is obtained
Jy — %Jx = constant (2.54)
Two distinct cases follow from Equation 2.54:

e Bounded motion in the case of a difference resonance:
sign(p) = —sign(r) — Ip|Jy + |r|Jx = constant

stability is guaranteed, the energy associated with the transverse motion can
be transferred between the horizontal and vertical motions as long as the
above sum remains constant; a growth in a particle’s horizontal amplitude, for

example, will lead to a decrease in a particle’s vertical amplitude.
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e Unbounded motion in the case of a sum resonance:
sign(p) = sign(r) — IplJy — |r|Jx = constant

there is no restriction on the energy associated with transverse motion, the
horizontal and vertical actions can grow without bound and stability is not

guaranteed.

It is usually said that sum resonances are dangerous resonances and that difference
resonances are safe. It must be considered however that even in the case of bounded
motion in amplitude space, a particle still has the potential of being lost due to a

large amplitude growth in one dimension.

There are linear oscillations about the center of the resonance for small values

of K, and the full width of the resonance separatrix is

2Fprm(JxRa JyRa 7A—)

2 92 Too 2 82T 82T
P2t st 20ra s,

AK, =4

(2.55)

In fact, it is found from [20] that in the case of an isolated resonance in two degrees

of freedom with the Hamiltonian:
H = Hy+ o(Jy, J,) + (g, J,) cos(py + 11, — 27 (n — sz)%) (2.56)

the maximum island width is:

f(JI,Ra Jny)

8%a(Jy,Jy) 2a(Jy,Jy) 02a(Jy,Jy)
[+ oz T 275550, [P

AJ, =+ (2.57)

where J,r, Jyr are defined as the amplitudes when the resonance condition is satis-
fied.

Only single isolated resonances have been discussed here. The interaction be-
tween resonances could be important, particularly for lifetime effects. Stochastic
motion occurs when resonances overlap. I just mention that the Chirikov crite-

rion [18] estimates the onset of stochastic instability.

2.10 Beam-Beam Tune Footprint

This section reports the expression for the beam-beam tune shift AQ, that has
been derived [22] starting from Equation 2.49[23]. With the same procedure AQy
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numerically for positrons with oscillation amplitudes ranging from 0.1¢ to 100 with steps of 0.10.

Figure 2.5: Beam-Beam tune footprint for one head-on collision. The footprint was calculated
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Figure 2.6: Beam-Beam tune footprint for one head-on collision in the flat beam approximation.
The footprint was calculated numerically for positrons with oscillation amplitudes ranging from
0.10 to 100 with steps of 1o, in the case of &, = £, = 0.04 and initial working point (.15, .21) for
oy L 0y, as it is for DA®NE , and 4, < o0,.

The tune shifts of Equation 2.59 and 2.58 have been calculated numerically with
oscillation amplitudes ranging from 0 to 100 and the resulting plot is shown in
Figure 2.5 for the case of r = 0.01 and & = &, = 1.

In the DA®NE machine it is r = o,/ 0, = 0.01, so the flat beam approxima-
tion is a very good one. For this reason can be used the tune footprint reported
in Figure 2.6 which has been obtained with a numerical calculation of the two ap-
proximated equations evaluated for flat beams [24] in the region of 0, < o0, and
Ay <L oy

Qx = Qxo + &% /027r Fi(Ay cos e /V/2) cos i dify (2.60)
2 2 2 | A2
Q= 0+ &1(2)0(E) +n (B en( - 2R ey
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Figure 2.7: Typical working diagram or Qy, Qy plot showing some resonances near the operating
region of DA®NE .

These tune shifts are obtained from the derivative of the perturbation -the beam-
beam potential- with respect to the action, where now the potential is the integral

of the the flat beam approximated electric field.

As it results from the two Figures 2.5 and 2.6 the shift in tune decreases non-
linearly with particle amplitude and very large amplitudes particles have almost no
change in tune due to the beam-beam interaction. The beam has a range of tunes
from (AQ., AQy) = (&, &,) at small amplitudes to (0,0) at very large amplitudes.
For this reason &, and &, are often called the beam-beam tune spreads. The tune
spreads are one consequence of the nonlinearity of the beam-beam interaction.
Figure 2.7 shows some resonances in the Q, Q, plane. The beam-beam tune foot-
print has to be far from dangerous resonances. If any resonance line crosses the

footprint then that will be a resonance induced by the beam-beam interaction.

The amplitude dependent tune shift which results from the beam-beam interac-
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tion is predicted to have a stabilizing effect on a particle in resonance. If a situation
in which a small amplitude particle is driven onto resonance and experiences ampli-
tude growth is considered, the tune shift from the resonance as amplitude growth
characterizes a detuning effect. The particle’s amplitude will decrease as the parti-
cle is shifted in tune off a resonance. The detuning effect can bring the destructive
effects of the resonance under control. This is an important aspect of the beam-

beam force.

The Hamiltonian treatment helps to put the footprint between dangerous reso-

nances in order to minimize collider performance degradation.

It also is very useful to understand experimental results and to undertake ap-

propriate actions.
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Beam-Beam Simulations

Beam-beam simulations are particularly important in order to optimize luminosity
and obtain a high performance of the machine. In this chapter there will be at first
described the models that have been developed for beam-beam simulations, then

will be presented the code I have used for the simulations.

3.1 Beam-Beam Simulations

Today’s accelerator physicists do not seem to rely on beam-beam simulations in
the same way as they do for other tools, like single-particle tracking. It is said
sometimes that beam-beam simulations explain observed phenomena a posteriori
rather than predict them. Of course the problem is the complexity of the beam-
beam interaction. A rigorous simulation would require the solution of the equations
of motions simultaneously for many billions of coupled particles for millions of turns.
It is clearly impossible to reach the task with the present computers. Anyway,
much is known qualitatively and quantitatively about the beam-beam interaction
and many codes have been developed with different approximations. Simulations
are of course an important part of beam-beam research. They are used to make

performance estimates of colliders.

Test particles representative of those in the beams are tracked for a large num-
ber of turns with each turn consisting of transport between interaction points and
collisions at the interaction points. Simulations of the arcs almost always include
betatron and synchrotron oscillations, radiation damping and quantum excitations.
Depending on the physics under study simulations have included other different

phenomena, like lattice nonlinearities, wake fields, etc.
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The difference between simulations is the treatment of the collisions. There are
mainly two kinds of approaches: the so-called weak-strong model and strong-strong
model. The main differences between these two approaches have been discussed from

the physical point of view in Chapter 2. Let us see the implications for simulations.

3.1.1 Weak-Strong model

This is single particle, incoherent physics. Simulations are weak-strong when test
particles in the weak beam are tracked and the distribution of the opposing strong
beam is unaffected by the test particles. The strong beam is usually assumed Gaus-
sian as it is described in Section 2.2, where it is shown that the electromagnetic
kicks (Az', Ay') received by a positron from a thin-slice electron bunch are given
by Equations 2.16 and 2.17. Actually, the value of the complex error function w(z)
defined in Equation 2.11 is calculated and stored for a grid of points. To calculate
the actual beam-beam force of a particle in a certain position a Taylor expansion
of w(z) around this point is then sufficient. In tracking codes it is important to
compute this function as fast as possible, being this the most CPU time consuming
part of all beam-beam simulations (assuming a transverse Gaussian shape for the
bunches).

The following assumptions are usually made in this weak-strong model:

(i) self-interactions of particles are neglected, being the particles relativistic;

(ii) there aren’t lattice elements at the IP;

(iii) neither longitudinal nor transverse collective oscillations.

The beam-beam kick should be represented by a thick lens whose strength varies
during the collision due to the s dependence of the transverse size of the opposing
bunch. Usually the strong beam is passive and is represented by a Gaussian lens
(thin or thick) that is not altered by the other beam [27]. The weak beam is dynam-
ical, and its behavior can be observed as a function of time as it collides repeatedly
against the strong beam. For the thin-lens case there is a single kick at the center of
the bunch. For the thick-lens case, on the other hand, there is an infinite number of
possible algorithms to decide the weights and locations of the kicks consistent with
the basic constraints of symmetry distribution and of an accumulated effect of the

kicks equal to the one in the original distribution.

I have used the beam-beam code LIFETRAC [26] for beam-beam analysis. This

code is described in the following Section 3.2.
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3.1.2 Strong-Strong model

In this section the aim is to give only a brief idea of some features related to the
strong-strong modeling. So far I have described incoherent, weak-strong collisions.
The particles in the second beam are independent of each other, and the fields and
distribution of the first beam are unaffected by the second beam. But actually at the
collision point the fields are strong and the beams modify each other’s distribution
and fields. So far I have been considering the incoherent motion of a single particle
under the influence of the collisions. But usually, to get high luminosity the most
usual mode of operation of a storage ring is that both beams are strong. It is not
necessary that they are equal even though they usually are. This case of two equal

bunches interacting with each other is called strong-strong case.

A first important effect that characterizes this strong-strong case which can not
be observed in weak-strong simulations is the so-called flip-flop. It is observed that
with the increased intensity of both beams one beam gains dominance over the other,
blowing it up while reducing its own size. The collapsed beam becomes stronger and
the blown-up beam becomes weaker. It is possible to reverse the roles of the two
beams with an external asymmetrical influence. The flip-flop effect appears near the
beam-beam limit at a given energy. Two beams tracked in strong-strong simulations
modify each other’s distributions. In simplified codes [28] [29] the test particles
represent the beam and their coordinates are used to determine the distribution,
and from that the electromagnetic fields at the interaction point and the beam-beam
impulse. The means and rms widths from test particle coordinates are calculated
and used in Equations 2.16 and 2.17 which give the beam-beam impulse for a given

beam distribution -for example it can be assumed to be Gaussian.

Besides the flip-flop effects, strong-strong simulations using more sophisticated
techniques [25] can see other effects not reproducible with weak-strong simulations,
for example the coherent oscillations and the coherent beam-beam resonances where

the two beams acquire very different beam sizes.

3.2 Description of LIFETRAC

LIFETRAC [26] is a weak-strong beam-beam code. It uses a special tracking tech-
nique for determination of lifetime, but it also predicts luminosity values. Although
it is a simplification, the beam-beam problem can be divided into the two differ-

ent regimes of core particles and halo particles. The core particles are those in the

45



Chapter 3 : Beam-Beam Simulations

high density part of the beam, and the distribution of these particles determines
the luminosity. The halo particles are a different story. They do not determine the
luminosity, but they affect the beam lifetime and the experimental backgrounds.
These are as important as the luminosity, because the machine must operate with
good lifetime and low backgrounds. Typically the tails are more populated than it
is expected with a Gaussian distribution. I will briefly describe here the technique

used to model these halo particles.

Let’s start specifying the notations used in the code. The linear betatron motion

around the ring is described with the variables:

x(s) = Agoy cos ¢,
1'(s) = —(A02/B:) (sin ¢y + €y COS Oy
y(s) = Ayoy cos g,
y'(s) = —(Ayoy/By) (sin ¢y + vy cos dy)

where A, and ¢, are respectively the normalized amplitude and angle variables in

(3.1)

the horizontal  betatron motion. z’ is the non-canonical variable related to the
canonical momentum by x' ~ p,/py. All the parameters o, 3, a are related to an
unperturbed beam. The beam distribution in the radial plane (x,p,) at the initial
point is given by

1 1, =z
P(z,p2)dadp, = ———eap[—5((—)” + (22)?)|dzdp, (3.2)

2mo,0p, 2 0, Op.

However is convenient to study the distribution in the space of amplitudes as they
are slow variables. If a change of the coordinates system from (x,p,) to (Ag, ¢;) is

done as it is defined in the relations 3.1, one gets

o(z, pz)

W dA,do, (3.3)

dxdp, = ‘

where the Jacobian is:

_A:v " 1 - T T
det TS0 fa [0z 080 = 4,7 = A,e, (3.4)
Ax;—z (cos ¢y — azsing,) — 2—§ (sin ¢ + g €08 6z b

[\

So Equation 3.2 becomes

A, 22
P(A,)dA,dp, = Q—e*%dAwdqﬁw (3.5)
T

Equation 3.5 integrated over 2m becomes a probability density function on normal-

ized amplitude:

2
T

P(A,)dA, = Aye~F dA, (3.6)
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This probability density function is normalized to 1 being

/ T A FdA, = 1 (3.7)
0

and it has a maximum for A, =

The amplitude is a non-canonical variable, but it is related to the canonical variable

e e B

For the canonical transformation of coordinates from (z, p,) to (J;, ¢,) the Jacobian

action by:

is 88(2?;1:}2) = 1 and the probability density function in the action variable, after
integration on ¢, is:
1
P(J)dJ, = —e 7=/P=qd.], (3.9)
Eg

which is of course normalized to 1.

The actions -or amplitudes- are the appropriate variables to study because they
change very slowly, due to nonlinear forces and quantum excitation. The idea is to
take advantage of the slowly varying statistical nature of the changes in amplitudes.
Thus, a particle in the tails does not jump from the core suddenly but it reaches the
tails slowly after lots of beam-beam kicks, quantum excitations and dampings. So a
particle in the tails loses memory of its history in the core. Instead of tracking billions
of particle-turns in the core to get information about tail particles, LIFETRAC uses
a technique briefly described below that permits to save a lot of CPU time to estimate

the beam lifetime.

A single particle starts with zero amplitude and is tracked for a chosen number
of steps where each step lasts for example 1000 damping times. During this time
informations on the tracked particle are obtained. The algorithm proceeds with the

following steps.

Step 1

In the normalized amplitude space a boundary is drawn that splits the plane in two.
In this step is first necessary to obtain the initial distribution at small amplitudes
and to draw the first boundary that is taken to be equal to one of the level lines
(equal distribution density). The amplitude plane is divided in cells and when the
particle is tracked the average number of times the particle falls in a cell is recorded.

The cells with the same number make a level line. Each time the tracked particle
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crosses the boundary (so called outflight) the particle’s coordinates and momenta

are recorded. This collected statistics will be used in the next step.

Step 2

In this step the internal region becomes a hidden region and the particles start from
one of the recorded points during step 1. Each time it falls in the hidden region it
is restarted from one of the outflight points selected randomly. In this step also the

next boundary is calculated.

The algorithm proceeds in an iterative way: the old external region becomes

hidden and the particle starts from the new external one.

It could be observed that this algorithm violates the course of events with time.
But this rearrangement of events in time has no influence on the characteristics of
motion due to the fact that it is a process with no memory, as the particle’s behavior
is independent from its history. What is important is to obtain the correct density
and flows in the phase space and this is correct, as the probability of falling into a

phase space cell when the particle leaves the hidden region is reproduced.

The final plots are made of level lines. The boundaries are level lines, but not
all level lines are boundaries. The contour lines are spaced logarithmically, that is

—-1/2

the density between two adjacent lines in the (A;, A,) plane decreases as e and

the distance between the boundaries is usually chosen as 2.

The following ingredients are used to calculate the beam lifetime. The equivalent
time that is the time necessary to get the same statistics with a conventional tracking

technique (called brute force technique) in a given step (m+1) is given by

Teqim+1) =T, (m) N (m)

where T,,(m) is the equivalent time calculated at the previous step, Ng(m + 1) is
the number of restarts at the (m+1)th step and N¢(m) is the number of crossings
(outflights) at the mth step. The reduction of CPU time is the ratio between the

number of restarts and that of crossings.
A died particle in a given step is an outflight particle.

Lifetime in a given step is the ratio between the equivalent time and the died

particles in this step.

Noise is simulated by kicks whose values are given randomly by a Gaussian
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distribution. The damping times are given in units of turns, they result from

(3.10)

Nd:v = Ndy — 2E0/U0
Ndz - Nd:v/2

where Ej is the rest energy and Uj is the radiated energy of a single electron per
turn. For DA®NE it is Ny, = 110540, N4, = 109650 and N4, = 54620. Being Ng,

the greatest one, it has been chosen as the natural time scale of the system.

As I said in the beginning of this chapter, in the weak-strong simulation codes a
single particle interacts every turn with a fixed unperturbed strong Gaussian bunch.
The luminosity is calculated in LIFETRAC according to its definition, it is the
convolution between the unperturbed Gaussian distribution of the strong beam and

the perturbed one of the weak beam multiplied by the revolution frequency:

L= frev /PSTRONGPWEAKdIdde (3.11)

where f,., is the particle’s revolution frequency, psrrone is the density of the three-
dimensional Gaussian representing the strong beam and py g is the weak beam’s
distribution. Actually the simulation gives the value of py pax/Nwrax that corre-
sponds to a single particle distribution calculated averaging the particle’s position

each turn after many turns. Finally it is said that the luminosity is given by

L= (freeNwrak) - /PSTRONG(PWEAK/NWEAK)dHTdde

where Ny pak is given for an apriori fixed value of £ and the value of the integral is
given by the code output.

I just notice that Ny gar in the end is set to be equal to Nsrrong and right here
is the limit of the luminosity expected value found in the weak-strong beam: with
this assumption we are not in the weak-strong case anymore and in this case the

simulations should be done using the strong-strong model.
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Chapter 4

Numerical Studies of Collisions with
one IP in DAPNE

Numerical simulations [31] have been carried out in order to find a suitable work-
ing point for beam-beam collisions with a single interaction point (IP) during the
DA®NE commissioning. Simulations have also been done to investigate the influ-
ence of the horizontal and vertical beam-beam separations at the second IP on the
luminosity and lifetime. The possible degradation of machine performance due to

vertical crossing angle and to sextupolar nonlinearities has been estimated.

Applying the model T have tried to explain some observations made during the
machine luminosity runs. In particular the numerical luminosity scan carried out
around the chosen working point with the experimental data has been compared, and
attempt has been done to understand the bunch current saturation during injection
into the nearest bucket while performing the so called phase jump procedure [34]
and a sudden horizontal bunch widening of both electron and positron bunches at

low currents have been analyzed.

Finally, modifications of the machine lattice necessary to provide successful

DA®NE operation with two interaction points are proposed.

4.1 Introduction

Numerical simulations [30] have shown that the optimal working point for DA®NE
is (Qx = 5.09; Q, = 5.07), where Qy and Q, are the horizontal and vertical tunes,

respectively. According to these simulations, at this working point the nominal
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luminosity of £ = 4-10% ¢cm ?s! in single bunch collisions can be reached with

both the horizontal and vertical tune shift parameters &, and &, equal to 0.04.

However, during the commissioning stage it was decided to adopt a working point
which is situated farther from integer numbers than (5.09; 5.07). In particular, as
it will be explained in the following, the working point (5.15;5.21) has been chosen.
Such a choice has been dictated by some reasons which were taken into account

during the machine start-up, some of which are reported in the following.

1. The closed orbit distortions are more sensitive to machine errors for tunes
closer to integers. For example, the orbit distortion Azco due to an error kick

00 is proportional to:

W

sin mQ),

Al‘CO X (41)

2. The machine straight sections and provisional DAY-ONE interaction regions
(IR), which have been used only during the first stage of the commissioning,
were not baked out. For this reason the pressure in the IR was substantially
higher than its project value of 10~? Torr, with the immediate consequence for
the electrons of high positive tune shifts due to ion trapping in the residual gas.
These tune shifts are proportional to the beam current I, to the neutralization
factor n proportional to the gas pressure and inversely proportional to the

transverse beam sizes o, and oy:

In
Ux,y( Op + Uy)'

AQy,y x (4.2)

Since the vertical beam size in DA®NE is about one hundred times smaller
than the horizontal one, the vertical tune shift AQ, is much higher than the
horizontal one. This means that for the nominal working point (5.09; 5.07)
the vertical tune is shifted towards the horizontal one, i.e. towards the main

coupling resonance
Qm = Qy

and the betatron coupling is driven to values much above the design one ( k =
0.01).
This does not happen for working points which satisfy the relation: @, < Q.

3. A practical rule holds that the closer a working point is to integers or to

resonances excited by sextupoles like:
QX = 2Qy 3QX =1

52



4.1 : Introduction

the smaller the dynamic aperture will be.

An indirect indicator of the dynamic aperture variations due to changes of
the working point for on-energy particles is the dependence of the tunes on
the particle oscillation amplitudes. What is generally expected is that the
dynamic aperture is reduced when there is a stronger dependence of tunes on
amplitudes.

To the first order of perturbation the tune shifts depend linearly on the action

variables J, and J,, introduced in Section 3.2:
AQX = 2011JX + Cngy AQy = 2012JX + C22Jy (43)

where the coefficients ¢y, ¢12, ¢21, €29 depend on the actual working point, but
also on the sextupole strengths and on the phase advances between the sex-
tupoles.

The working point (5.09; 5.07) is rather close to integers and to the sextupole
resonance

AQx = 2AQ,

So for this point stronger dependencies of the tune shifts on amplitudes and
a smaller dynamic aperture than the point (5.15; 5.21) which is shifted far
from integers and from sextupole resonance lines are expected . In fact, it is
found analytically that the coefficients for the working point (5.09; 5.07) are
higher than those for the point (5.15; 5.21) where only sextupoles necessary
to correct chromaticity were switched on (50 A and 60 A alternated for the

four families):

o for (509, 507) it is Ci1 = 914, Cig = C91 = —39, Cog = 758
o for (515, 521) it is Ci1 = 294, Cig = C91 = 36, Co9 = 117

4. The second order chromaticity is responsible for the parabolic tune variation
as a function of momentum deviation and it is very sensitive to the tune choice
[32]:

cos® 2 Q)

QL (4.4)

Sin 27 Qg
According to the latter relation the chromaticity behavior for tunes closer to
integers gets highly nonlinear and therefore the chromaticity correction be-
comes more difficult. Moreover, the betatron tunes of off-momentum particles
decrease as the absolute value of momentum deviation grows. This implies

that when the tunes are close to integers, the particles having a momentum
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Ay, DAENE_15.2] XT030, Ay, DAENE 15 21 XT0%0,
70. 70.

Figure 4.1: Equilibrium density in the space of normalized betatron amplitudes for DA®NE
working point (5.15; 5.21) with &, = &, =0.03 (a) and &, = &, =0.04 (b).

deviation above a certain value fall into the integer resonance stop-band and
are lost. In particular, the short lifetime observed during machine tuning at
the working point (5.09; 5.07) may, probably, be attributed to this effect.

4.2 Search for the DA®NE Working Point

For the above considerations it has been looked for a working point situated far from
integers and from sextupole resonances that could also provide a reasonable beam-
beam performance, that means a good luminosity and an acceptable lifetime. Due
to the lattice constraints the free betatron tune space is limited for the horizontal
tunes in the range of Qx = 5.10 + 5.20 and for the vertical ones: Q, = 5.20 = 5.30.
The numerical code BBC [33] is a weak-strong beam-beam interactions simulator
and it has been used to perform a rough luminosity scan, i.e. in steps of 102 in
both directions, in the useful tune space. Fifty particles interacting with a Gaussian
strong bunch divided in five longitudinal slices have been tracked over ten radiation

damping times, corresponding to about one million revolutions.

The results of the simulations with &, = &, = 0.04 have been summarized in
Table 4.1. The first number in each cell represents the ratio between the calculated

luminosity and the nominal one, defined as the value of luminosity for a given
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Table 4.1: DA®NE luminosity tune scan with &, = &, = 0.04.

Qx | 010 | 011 | 0.12 | 013 | 014 | 0.15 | 0.16 | 0.17 | 0.18 | 0.19
Qy
0.7224 | 0.5568 | 0.4197 | 0.4173 | 0.5872 | 0.7076 | 0.4984 | 0.3047 | 0.1145 | 0.122
0.20 | 3.132 | 2.857 | 4.324 | 2.964 | 7.271 | 3.496 | 4.592 | 3.361 | 3.161 | 4.152
23.52 | 16.46 | 17.05 | 35.12 | 30.10 | 14.81 | 20.19 | 34.68 | 41.45 | 67.49
0.6925 | 0.5216 | 0.2660 | 0.3475 | 0.6843 | 0.6384 | 0.5512 | 0.5060 | 0.5209 | 0.2954
0.21 | 2.940 | 3.383 | 4.333 | 3.396 | 7.145 | 3.162 | 4.622 | 3.308 | 3.231 | 3.626
13.85 | 18.67 | 24.07 | 30.80 | 39.60 | 23.56 | 10.87 | 18.74 | 17.82 | 35.48
0.4821 | 0.4980 | 0.3988 | 0.3932 | 0.6204 | 0.5024 | 0.3656 | 0.5717 | 0.6132 | 0.6007
0.22 | 3.494 | 3.350 | 4.617 | 3.846 | 2.707 | 3.824 | 4.570 | 3.159 | 3.696 | 3.498
36.92 | 15.89 | 21.17 | 38.36 | 17.03 | 23.02 | 29.53 | 13.77 | 20.73 | 12.63
0.3541 | 0.3136 | 0.2538 | 0.4299 | 0.3677 | 0.3380 | 0.3160 | 0.4401 | 0.4102 | 0.3812
0.23 | 3.539 | 3.009 | 5.019 | 3.612 | 4.392 | 3.690 | 4.516 | 3.348 | 3.480 | 3.682
12.07 | 12.51 | 18.70 | 25.24 | 20.27 | 17.14 | 17.63 | 19.47 | 16.85 | 21.57
0.1702 | 0.1291 | 0.1333 | 0.1791 | 0.1782 | 0.1350 | 0.1846 | 0.1831 | 0.1536 | 0.1449
0.24 | 3.662 | 3.476 | 4.933 | 3.449 | 4.920 | 3.074 | 4.724 | 3.324 | 3.080 | 3.636
25.75 | 23.18 | 23.59 | 20.74 | 23.40 | 28.88 | 24.81 | 20.71 | 26.85 | 27.27
0.1179 | 0.0847 | 0.3658 | 0.1698 | 0.1204 | 0.0752 | 0.1671 | 0.5331 | 0.356 | 0.1636
0.25 | 3.089 | 3.669 | 5.295 | 3.091 | 4.547 | 3.242 | 4.870 | 3.326 | 3.442 | 3.520
46.60 | 48.95 | 51.18 | 40.72 | 42.79 | 41.89 | 40.71 | 38.51 | 43.27 | 38.32
0.5394 | 0.5465 | 0.6680 | 0.5413 | 0.5964 | 0.5485 | 0.5339 | 0.5990 | 0.3840 | 0.2516
0.26 | 3.718 | 3.579 | 4.327 | 3.550 | 3.726 | 3.990 | 4.601 | 3.226 | 2.905 | 3.584
16.75 | 26.99 | 14.35 | 12.41 | 17.64 | 18.72 | 20.57 | 12.68 | 24.33 | 24.43
0.5582 | 0.7437 | 0.468 | 0.5311 | 0.5667 | 0.6647 | 0.6086 | 0.4321 | 0.3551 | 0.1970
0.27 | 3.669 | 5.141 | 4.676 | 3.713 | 5.170 | 3.564 | 4.431 | 4.159 | 3.449 | 3.804
20.24 | 25.86 | 17.47 | 20.37 | 26.59 | 23.21 | 19.25 | 25.11 | 23.15 | 24.12
0.5196 | 0.3982 | 0.3580 | 0.4011 | 0.7884 | 0.7063 | 0.4572 | 0.4043 | 0.2124 | 0.1338
0.28 | 3.693 | 3.218 | 4.975 | 3.183 | 7.431 | 3.350 | 4.653 | 3.624 | 3.616 | 3.740
29.37 | 24.01 | 23.88 | 24.93 | 35.63 | 25.48 | 11.59 | 11.54 | 14.77 | 19.71
0.5165 | 0.3691 | 0.4959 | 0.5069 | 0.7724 | 0.5606 | 0.2777 | 0.2149 | 0.1046 | 0.0762
0.29 | 3.970 | 3.507 | 4.400 | 3.365 | 7.508 | 3.336 | 4.430 | 3.092 | 3.106 | 4.025
20.48 | 27.46 | 38.50 | 31.40 | 34.46 | 12.81 | 15.38 | 18.13 | 28.80 | 38.45
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Table 4.2: DA®NE luminosity tune scan with &, = &, = 0.02.

Qx | 010 | 011 | 012 | 013 | 0.14 | 0.15 | 0.16 | 0.17 | 0.18 | 0.19
Qy
0.9092 | 0.9105 | 0.8771 | 0.7383 | 0.6120 | 0.9893 | 0.8064 | 0.9733 | 0.6498 | 0.181
0.20 | 3.264 | 2.887 | 3.421 | 2.602 | 3.422 | 3.163 | 3.603 | 3.466 | 2.827 | 3.448
29.19 | 5.755 | 5.405 | 7.064 | 17.47 | 4.731 | 5.680 | 9.042 | 15.98 | 27.17
0.7144 | 0.9256 | 0.8724 | 0.4306 | 0.6175 | 1.006 | 0.8359 | 0.8357 | 0.8367 | 0.7833
0.21 | 2.950 | 2.786 | 3.178 | 2.958 | 4.808 | 3.536 | 3.345 | 3.196 | 2.980 | 3.326
10.94 | 6.827 | 9.429 | 15.06 | 22.76 | 2.938 | 3.689 | 4.116 | 7.535 | 10.78
0.7177 | 0.8623 | 0.815 | 0.6424 | 0.8687 | 0.8916 | 0.8270 | 0.7059 | 0.8479 | 0.8064
0.22 | 2.709 | 3.501 | 3.171 | 3.130 | 3.314 | 3.339 | 3.750 | 3.429 | 3.269 | 3.229
10.85 | 12.89 | 5.735 | 13.81 | 10.48 | 5.674 | 5.066 | 16.60 | 9.512 | 4.671
0.8418 | 0.6872 | 0.5902 | 0.7120 | 0.8116 | 0.8214 | 0.6128 | 0.7340 | 0.8609 | 0.8143
0.23 | 3.552 | 2.661 | 3.542 | 3.494 | 3.586 | 2.861 | 3.541 | 3.172 | 2.942 | 3.004
8.965 | 12.69 | 8.429 | 17.12 | 4.880 | 10.25 | 5.320 | 10.01 | 5.042 | 4.038
0.3407 | 0.3262 | 0.2429 | 0.342 | 0.3474 | 0.3395 | 0.2665 | 0.3196 | 0.363 | 0.3114
0.24 | 3.256 | 2.728 | 3.582 | 2.998 | 3.241 | 3.224 | 3.572 | 3.559 | 2.875 | 3.117
8.555 | 12.05 | 14.03 | 13.40 | 11.79 | 12.02 | 16.43 | 13.99 | 11.49 | 10.26
0.4910 | 0.2173 | 0.9101 | 0.3509 | 0.4197 | 0.2324 | 0.2056 | 0.3446 | 0.3983 | 0.3205
0.25 | 2.921 | 2.923 | 3.891 | 3.362 | 3.364 | 3.787 | 3.212 | 2.906 | 3.315 | 2.946
20.86 | 20.64 | 26.00 | 19.87 | 21.45 | 21.01 | 20.93 | 20.93 | 20.70 | 20.69
0.8449 | 0.5409 | 0.8024 | 0.9318 | 0.7542 | 0.7768 | 0.7655 | 0.8148 | 0.8969 | 0.8538
0.26 | 3.209 | 2.858 | 3.597 | 2.899 | 3.187 | 2.888 | 3.578 | 3.708 | 2.909 | 3.293
6.512 | 12.64 | 8.895 | 8.053 | 6.675 | 10.26 | 7.184 | 8.982 | 4.085 | 4.996
0.6213 | 0.8628 | 0.9089 | 0.7034 | 0.7016 | 0.9291 | 0.8668 | 0.8274 | 0.8994 | 0.7837
0.27 | 3.029 | 3.673 | 3.223 | 2.940 | 3.298 | 3.269 | 3.828 | 2.680 | 22.519 | 3.163
8.697 | 17.23 | 3.227 | 11.93 | 9.139 | 12.96 | 5.438 | 9.614 | 14.79 | 8.938
0.5687 | 0.9638 | 0.890 | 0.536 | 0.7106 | 0.9577 | 0.8580 | 0.9698 | 0.7899 | 0.5401
0.28 | 3.056 | 2.954 | 3.754 | 2.761 | 3.314 | 3.380 | 3.511 | 3.085 | 2.719 | 3.107
17.86 | 5.888 | 5.992 | 11.30 | 17.61 | 5.754 | 3.195 | 2.992 | 6.169 | 7.556
0.8465 | 0.9315 | 0.7271 | 0.7413 | 0.7401 | 0.9872 | 0.8929 | 0.8603 | 0.5453 | 0.1950
0.29 | 3.018 | 3.385 | 3.329 | 3.005 | 3.305 | 2.969 | 3.520 | 3.421 | 2.722 | 2.844
14.24 | 1053 | 12.72 | 17.20 | 13.15 | 2.966 | 2.711 | 3.995 | 8.910 | 16.23
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Figure 4.2: Luminosity scan around the working point (5.15; 5.21) with a tune step of 0.01:
(a) (5.14; 5.22); (b) (5.15; 5.22); (c) (5.16; 5.22); (d) (5.14; 5.21); (e) (5.15; 5.21); (f) (5.16; 5.21);
(g) (5.14; 5.20); (h) (5.15; 5.20); (i) (5.16; 5.20).

&y and for the design values of the beam parameters. The second and the third
number in each cell of the table are respectively the maximum horizontal and vertical
amplitudes normalized to the rms beams sizes at zero current reached by the test
particles. These numbers give a preliminary idea of the bunch distribution tail
growth as a function of the working point . As it appears in Table 4.1 there is
no working point in the explored tune area that withstands a strong beam-beam
interaction, ( {, = &, = 0.04), without beam blow-up. And for all these points a
luminosity below its nominal value is predicted. Besides, long vertical tails created
during the first ten damping times have been observed for almost all the investigated

working points, and this sets a strong limit on the beam lifetime.
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Reducing the value of the space charge parameter £ it is possible to avoid the
beam blow up and to enhance the lifetime, but this implies the reduction of lumi-
nosity. Table 4.2 shows the results of the numerical simulation for &, = &, = 0.02.
The working point (5.15; 5.21) is the best among the investigated ones; in fact the
simulation at this working point predicts a luminosity larger than the design one
scaled by the reduction in &, and the tails distribution is confined horizontally in

4 0, and vertically in 3 o,.

In order to estimate the maximum luminosity and lifetime that can be reached
at the chosen best working point simulations with the LIFETRAC code varying &
from 0.04 to 0.02 have been carried out. Figure 4.1 shows the density contour plots
for the cases &, = &, = 0.03 and &, = &, = 0.04: the contours are the lines of equal
density of the equilibrium distribution in the space of normalized betatron ampli-
tudes (see Section 3.2) and the density between two adjacent lines in the (A,, A,)

/2 The displayed plots area is just the dynamic aperture of

plane decreases as e~
DA®NE for a coupling of x = 0.01, that is: 10 - o, X 70 - 0,9 [36].

One may compare these plots with Figure 4.9 (a) where the almost unperturbed
Gaussian distribution is drawn. Generally, long tails in the distributions can limit
the beam lifetime and increase the detector background. In these cases from the
plots it is possible to understand how the nonlinear resonances disturb the equi-
librium beam distribution. From now on I consider the value &, = §, = 0.03
of the space charge parameter as the maximum possible one for a non blown up
beam at the working point (5.15; 5.21). The corresponding calculated horizontal
and vertical normalized beam sizes are o,/0,0 = 1.08 and o0,/0,0 = 1.04. The
predicted luminosity for this working point and for these tune shifts values is equal
to 2.2-10% em2s7!. As it results from Figure 4.1 (a) the beam distribution tails
are well within the machine dynamic aperture. On the contrary, as it can be seen
in Figures 4.1 (a) and (b) comparing the contour levels in the beam core at low
amplitudes, in the case of &, = £, = 0.04 the beams sizes are significantly blown
up. The corresponding calculated horizontal and vertical normalized beam sizes are
0s/050 = 1.20 and o,/0,0 = 1.46. In this case of higher space charge parameter
the beam tails get larger, but they are still contained within the dynamic aperture.
Nevertheless, bunches with longer tails are more strongly affected by machine non-
linearities and in the end, they limit the lifetime.

Despite the blown sizes the luminosity is higher in the §, = £, = 0.04 case rather
than in the & = & = 0.03 one, it it in fact 3.0 - 10*° ¢cm ?s~*. However I

must remark that in the weak-strong simulations the strong beam is supposed to be
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Gaussian and rigid, with nominal beam sizes. So, as the value of £ gets higher the
evaluation of the luminosity is less reliable, as the weak beam current in the end is
set equal to that of the strong one. For high values of ¢ a strong-strong simulation
should be done. It is in this model, in fact, that the evolution of both interacting

beams are taken into account.

4.2.1 Luminosity scan around the working point (5.15; 5.21)

In order to estimate the dimensions of a ’safe’ area near the working point (5.15;
5.21) I have performed a numerical scan with the LIFETRAC code near this working
point in steps of the order of 102

The results of this tune scan are reported in Figure 4.2 where the beam distribu-
tions are plotted in the amplitudes plane. As it appears from Figure 4.2 the working
point is very sensitive to small tune variations. With a decrease of the radial tune
from Qy = 5.15 to Qx = 5.14 the beam lifetime gets worse. When there is also
a reduction of the vertical tune from Q, = 5.22 to Q, = 5.20 there is a fast tail
growth, see Figures 4.2 (a),(d) and (g).

Some comparisons between the code’s predictions and the experimental data can be
done.

In the first stage of DA®NE commissioning before KLOE installation the maximum
single bunch luminosity has been £ = 1.5 - 10%° ¢cm~2s7! reached at the working
point (5.150; 5.210). This luminosity is somewhat smaller than the maximum value
of £L =22-10% cm 257! predicted numerically for the same working point with
& = & = 0.03 and design bunch current scaled with £ I_ = I, = 33 mA because
the collisions have been done at the lower current I = I, = 25 mA and with a
lower beam-beam tune shift ¢, = &, = 0.025. This may suggest that a further
improvement of the machine performance should be possible.

The direct comparison of the numerical results presented in Figure 4.2 with the
experimental tune scan around the working point (5.150; 5.210) showed a good

qualitative agreement. Let me explain better this comparison.

e Q. =5.15 — Q. = 5.16: increasing the radial tune the core horizontal beam
size increased and the beam lifetime slightly improved. This is in agreement
with the numerical simulations, in fact the points with Qy = 5.16 (see Fig-
ures 4.2 (¢),(f) and (i)) show an horizontally blown-up core with shorter ver-
tical distribution tails, especially for (5.16; 5.20) (Figure 4.2 (i)).
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Figure 4.3: Equilibrium density contour plots for the working point (5.150; 5.210) with hori-

zontal separations at the second IP of 2 o, (a),4 o, (b) and 6 o, (c) respectively.
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Figure 4.4: Equilibrium density contour plots for the working point (5.150; 5.210) with vertical
separations at the second IP of 100 o, (a), 200 o, (b) and without the second IP (c) respectively.

e Q =5.14 and Qy = 5.22 — Q, = 5.21 — Qy = 5.20: reducing the vertical
tune with the radial tune fixed at Q; = 5.14 a degradation of the lifetime is ex-
perimentally observed. Numerically a tail growth for these points is predicted,

as it is clear from Figures 4.2 (a),(d) and (g).

4.2.2 Beam-beam separations at the second IP

During commissioning, with collisions at a single IP horizontal and vertical localized
orbit bumps have been applied to separate the electron and the positron beams at
the second IP, in order to reduce the effects of parasitic interaction due to this sec-

ond IP. Numerical simulations have been carried out to investigate how the DA®PNE

60



4.2 : Search for the DA®NE Working Point

luminosity and lifetime depend on the beam-beam separations and in order to esti-
mate the separation required to avoid beam-beam performance degradation.

The simulations have been performed for the working point (5.150; 5.210) taking
into account the phase advance difference between the two IPs in the horizontal
plane. For the simulations AQ, = 2.453 for the short-half and AQ, = 2.97 for the
long-half of DA®NE have been considered. The vertical phase advances have been
assumed equal between the IPs.

Figure 4.3 shows the bunch distributions with radial beam separations at the second
IP, respectively: 2 o, (a),4 0, (b) and 6 o, (c), where the nominal rms horizontal
beam size at the IP is o0, = 2.12 mm. It results from Figure 4.3(c) that with
a beam separation of 6 o,(~ 12.7 mm) the influence of the parasitic interaction
at the second IP is practically canceled out. The luminosity keeps a value around
L =22-10"° em™?s~" with & = &, = 0.03 and the distribution tails are not
strongly affected by the parasitic collisions. A decrease of the horizontal separa-
tion from 6 o, (Fig. 4.3(c)) to 4 o, (~ 8.5 mm) (Fig. 4.3(b)) does not lead to a
luminosity decrease but only to slightly longer tails. Reducing this beam separation
from 4 o, to 2 o, (Fig. 4.3(a)), (~ 4.2 mm) there is a luminosity drop to the value
L =1.5-10% ecm™?s™'. Moreover it is clear from Figure 4.3(a) that the long tails
reach the borders of the DA®NE dynamic aperture. The beam-beam induced tails
together with the machine nonlinearities -not taken into account here- can drasti-

cally limit the lifetime.

The beams arriving at the second IP can also be separated in the vertical plane.
The vertical separation has to be larger than about twice the horizontal rms size,
and since the DA®NE bunch is very flat ( 0,/ 0, = 107%) this implies that the
vertical separation has to be bigger than ~ 2 o, = 200 o,.

In Figure 4.4(a) there is the beam distribution with a vertical beam separation of
100 o, ~ 2 mm, in (b) of 200 0, ~ 4 mm and in (c) with no second IP at all.
Decreasing the bunch separation, that is going from the situation represented in
the second case (b) of Figure 4.4 to the first case (a), the distribution enlarges
horizontally so that it almost occupies all the horizontal dynamic aperture. The

251 and it

luminosity, in this last case (a) comes out to be £ = 1.6 - 103 cm
reaches £ = 1.9 10%° cm 2s™! by increasing the vertical separation -case of Fig-
ure 4.4(b) that is not far from the value found with no second IP at all (Figure 4.4(c)
L£=22-10% cm™2s71).

Comparing Figures 4.3 and 4.4 it seems that the vertical beam separations are more

effective, that is to get higher luminosity and shorter tails vertical bumps must be
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Figure 4.5: Equilibrium density contour plots for the working point (5.150; 5.210) with vertical
crossing angle of 100 urad (a), 200 urad (b), 300 prad (c) and 400 prad (d).

applied.

4.2.3 Vertical crossing angle

As in DA®NE the electron and positron beams are stored in two different rings
they have different closed orbits. Even if the beams are carefully monitored and
overlapped at the IP there is a not negligible probability of a vertical crossing angle
between them at the IP, since at the low-( position any orbit change or drift is
translated to an angle. It has been estimated that the possible vertical angle is of
the order of ~ 100 <+ 200 prad, that is within the resolution measurement.

It has been numerically estimated whether such an angle can produce a bad lifetime
or a degradation of the luminosity for the chosen working point . Figure 4.5 compares
the amplitude distribution for different crossing angles: 100 urad (a),200 prad (b),
300 prad (c) and 400 prad (d). It results that up to 400 purad the distribution tails
are practically not affected by the vertical crossing angle. A moderate beam core
blow up at the increase of the vertical crossing angle is predicted instead. Figure 4.6
represents the luminosity value predicted by the code as a function of the crossing
angle. It can be deduced that the estimated vertical crossing angle does not limit

the machine lifetime nor reduce the luminosity .

4.2.4 Machine nonlinearities

Lattice nonlinearities can significantly change the beam-beam performance with
respect to that expected from simulations which do not take them into account.

Besides, the combined effect of the nonlinearities and of the beam-beam collisions
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Figure 4.6: Luminosity as a function of the vertical crossing angle.

can differ from what is obtained when the two factors are considered separately.

The beam-beam interaction drives the particles to higher amplitudes where the
nonlinearities get stronger, so that the distribution tails are changed. This can
reduce the beam lifetime. However, strong nonlinearities can also affect the beam
core leading to a decrease of the luminosity.

The machine sextupoles are the strongest source of nonlinearities in DA®NE . It has
been estimated numerically with the LIFETRAC code the situation when only the
sextupoles for the chromaticity correction are switched on. The coefficients of the
cubic nonlinearity introduced by the sextupoles have been calculated analytically,

assuming the model -functions and phase advances between the sextupoles.

Figure 4.7(b) shows the resulting beam distribution for the working point (5.150; 5.210).
As it appears from this figure comparing to the case of the beam-beam interaction
without nonlinearities (a), the beam core remains unchanged but the tails have
strongly grown in case (b) reaching the dynamic aperture boundaries and limiting
the lifetime. Neither the actual DAPNE nonlinearities nor the dynamic aperture
have been measured yet, so the above result is not a final answer about the machine

lifetime. It is just a demonstration that one should tune carefully the sextupoles to
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Figure 4.7: Equilibrium density in the space of normalized betatron amplitudes for the working

point (5.150; 5.210): without lattice nonlinearities (a); with sextupole nonlinearities (b).

avoid lifetime problems.

4.2.5 Injection with parasitic crossings (PC)

During injection it has been observed that in the collision mode the intensity of
the beam which was being injected saturated much below the nominal level. This
has been explained by the fact that the injected bunch has both longitudinal and
transverse oscillations for a period of time comparable with a radiation damping
time. Such a bunch looses its intensity when it interacts with an opposite stored
bunch.

A RF Phase Jump procedure has been adopted to fix this problem. Initially,
the two bunches are injected into two RF buckets in such a way that they would
not collide, in order to avoid beam-beam interactions during the accumulation of
the current. Then, when the nominal intensity is reached, the stored bunches are
brought into collisions by changing rapidly the phase of one of the RF cavities. In
this way the orbit length in one of the main rings changes to compensate the initial
longitudinal separation of the bunches.

The procedure has proven to be efficient when initially the bunches are separated by

two RF buckets. However, when the longitudinal separation is reduced to a single

64



4.2 : Search for the DA®NE Working Point

Ay, DARNE.15.2] RC_NOIP

70.

B

Figure 4.8: Tail growth due to parasitic collisions of bunches separated by one RF bucket: (a)
DEAR-IR optics without sextupoles nonlinearities; (b) DEAR-IR optics with sextupoles nonlin-

earities; (c) DAY-ONE optics with sextupoles nonlinearities.

bucket the injection is still limited.

This can be explained in terms of parasitic crossings of the two bunches at a distance
equal to a half bucket length from the main interaction point. In order to confirm
this guess I have simulated this parasitic interaction with the LIFETRAC code. In
particular, the situation when the opposite bunches do not collide at the main IP and
the electromagnetic beam-beam interaction occurs only at a single parasitic crossing
about 40 cm away from the main IP has been considered. The simulations have been
carried out for both the DAY-ONE interaction region (IR) optics including the
central quadrupole and the DEAR-IR optics with the quadrupole removed. In the
first case of the DAY-ONFE optics the interacting bunches are separated horizontally
by 5.6 o, at the parasitic crossing point and the corresponding vertical S-function is
By = 4.11 m. In the second case of the DEAR-IR optics the horizontal separation
is 4.7 0, and B, = 3.69 m. Figure 4.8(a) shows the equilibrium bunch distribution
for the DEAR-IR optics not including lattice nonlinearities. In this case the tails
grow beyond the parasitic crossing horizontal position that is ~ 5 o,. However, the

tails are well within the assumed dynamic aperture of 10 - 0,9 X 70 - oy.

But, when the sextupole nonlinearities are taken into account, as it appears from
Figure 4.8(b), the tails reach the dynamic aperture boundary and the lifetime gets
as short as ~ 3 min. This means that the parasitic crossings acting together with
the lattice nonlinearities may complicate the injection into the bucket next to the

one where the opposite bunch is stored.

During commissioning the DAY-ONE optics was used. Since the horizontal

separation for that optics is bigger than that for the DEAR-IR one the resulting
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Figure 4.9: Tail growth due to parasitic collisions of bunches separated by 1.5 buckets one
to the other and with the sextupolar machine nonlinearities taken into account: (a) DAY-ONE
optics; (b) DEAR-IR optics.

distribution tails are shorter, as it appears in Figure 4.8(c) and the calculated life-
time is long enough, (&~ 20 hours when only beam-beam is taken into account). It
should be noticed however that the actual dynamic aperture and the machine non-
linearities are not measured yet and the sextupole correction has not been applied.
This implies that the real situation can be significantly worse than that considered
in the simulations, i.e. the dynamic aperture is smaller and the stronger actual
nonlinearities may drastically reduce the machine lifetime with respect to the sim-
ulated one. In our opinion, the common effect of the parasitic crossings and the
nonlinearities could explain injection saturation during the luminosity runs. At this
point the question of how large the separation between the opposite bunches should
be in order to avoid the parasitic crossing problem must be answered, or, in other
words, how many bunches can be stored in each beam in order to apply the phase

jump procedure without luminosity degradation due to injection saturation.

As the numerical simulations have shown, increasing the separation between
the bunches to the distance of 1.5 buckets the problem of the parasitic crossings
is practically eliminated. Figure 4.9 (a) shows the the bunch equilibrium density
for the DAY-ONE optics, it is clear from the figure that the distribution remains
practically Gaussian. Figure 4.9 (b) shows instead the density with the DEAR-IR

optics and in this case there is a growth of weakly populated tails which do not limit
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Figure 4.10: Examples of the horizontal bunch widening: (a) single IP interaction at (5.16;
5.20); (b) interaction at (5.150; 5.210) with the vertical separation of 4 mm at the second IP.

the lifetime.

It can be concluded that the phase jump procedure can be applied successfully for
a maximum number of forty bunches stored in each colliding beam. The collisions of
beams composed of sixty equidistant bunches is complicated by parasitic crossings
forced by the lattice nonlinearities . However one can try to improve the situation
by adjusting the machine sextupoles to compensate the cubic nonlinearity and by
increasing the dynamic aperture. Nevertheless the most effective solution for the
problem could be an increase of the horizontal separation in terms of o, as it
has been already proposed to avoid the PC problem in multibunch operation. In
particular, the horizontal S-function at the IP has to be decreased by a factor two
and by the same factor must be increased the vertical emittance. In this way the
separation at the PC would increase by a factor of v/2 in terms of o, and the

luminosity and the beam-beam tune shifts are maintained unchanged.

4.2.6 Horizontal beam size widening

During DA®NE luminosity operation a sudden widening of the horizontal beam
sizes has been observed at some particular working conditions. The horizontal size

of both interacting bunches seen at the synchrotron light monitor was blown up by
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a factor of 2 + 3 and the vertical size remained instead unchanged. Sometimes, at
the rather low and equal currents in the two bunches of 210 mA, two local density

peaks separated horizontally on the monitor image could be distinguished.

In order to understand the origin of the phenomena a strong-strong beam-
beam simulation with lattice nonlinearities would be necessary. Due to the absence
of a reliable 3D strong-strong code, it is practically impossible to understand the
above described effect. However, an hypothesis can be forwarded giving a possible
explanation based on the weak-strong simulations. While performing the weak-
strong simulations reported above situations with blown up radial dimensions and
with two local maxima have been found .

Figure 4.10 shows two examples: (a) single IP interaction at the working point (5.16;
5.20) which is quite close to the nominal working point (5.150; 5.210); (b) interac-
tion at the nominal working point (5.150; 5.210) with vertical separation of 4 mm
at the second IP. The conclusion is that even small deviations from the nominal
working conditions can excite a horizontal blow up with the appearance of the two

local maxima.

Our analysis has shown that in both cases a strong betatron resonance of the
sixth order 6QQ, = n was responsible for the above described effect. In addition, the
external non linearity can increase or decrease significantly the resonance bandwidth,
depending on its nonlinearity sign. In the most unfortunate case the bandwidth can
be very large if the beam-beam induced nonlinearity is canceled by the machine
nonlinearity.

So, it can not be excluded that the sixth order resonance was driving the effect.
On the other hand, it is difficult to imagine a coherent strong-strong effect which
could cause this phenomena since it has been observed at very low currents and

correspondingly with low beam-beam tune shifts parameters (0.002 = 0.01).

4.2.7 Interaction with two IPs

It is highly desiderable to collide beams at the two interaction points in DA®NE .
This would allow to perform two DA®NE experiments simultaneously.

However, an increase of the number of IPs usually leads to a luminosity reduction
per each IP. One may expect a strong luminosity performance degradation if the
phase advances of betatron oscillations between the IPs are different since the phase
advance differences introduce new beam-beam resonances of low order. Because

of that the choice of a suitable working point for the two IP collision scheme in
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Figure 4.11: Equilibrium density in the space of normalized betatron amplitudes for the working
point (5.150; 5.210): (a) single IP collisions without lattice nonlinearities ; (b) two IP collisions
without lattice nonlinearities ; (c) two IP collisions with cubic (sextupoles) nonlinearities where the
value of the coefficients of the cubic nonlinearity introduced by the sextupoles is: ¢;11 = —86;¢12 =
o1 = —144; cy0 = 136.

DA®NE is not a simple task. Such a working point must satisfy the following, often

contradicting, requirements:

e provide a good luminosity and a satisfactory lifetime with two IPs;

e provide a good beam-beam performance with a single IP since the luminos-
ity should be maintained at a good level at the first IP while performing the
luminosity adjustments at the second IP, like transverse beam-beam scan or

longitudinal timing;

e provide a good dynamic aperture.

It appears that there are only a few working points which can satisfy these
conditions. Their full description is presented in the next Chapter 5. The possibility
to adopt the actual working point (5.150; 5.210) for the two IP collisions is now

considered.

Figure 4.11 (b) shows the beam equilibrium density distribution for the working
point (5.150; 5.210) with the two collision points and no lattice nonlinearity. As in
the previous calculations, the horizontal phase advance difference between the two
IPs is AQy = 0.24 has been assumed as predicted by the machine lattice model.
For comparison Figure 4.11 (a) shows the density distribution for the same working
point but with a single collision point. As it is clearly seen the beam core is larger

when the beams collide at the two IPs. The calculated luminosity decreases from
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Figure 4.12: Luminosity as a function of the horizontal tune advance difference between the
two IPs.

L =22-10% cm 257! in the single IP collisions to £ = 1.7-10%" cm 257! per each

IP in the case of the beams colliding at the two IPs.

The most important point is that the tail distribution gets much wider with two
[Ps. As it is shown in Figure 4.11 (b) the beam distribution occupies almost all
the allowable horizontal dynamic aperture. This means that practically any small
lattice nonlinearity could drive the particles beyond the dynamic aperture limits.
Numerical simulations have been performed with the cubic nonlinearities estimated
analytically for the most favorable case when the sextupoles for the chromaticity
correction are adjusted to weaken the tune dependence on the betatron amplitudes.
Indeed the density distribution in the case represented in Figure 4.11 (c) has very
long relatively populated tails spreading beyond the vertical aperture boundary so
reducing dramatically the beam lifetime to &~ 25 s. This could be an explanation
why the first experimental attempt to collide the bunches with currents higher than
10 mA at both IPs without the working point change and without any lattice cor-

rection has failed.

Figure 4.12 shows the dependence of the luminosity per each IP calculated with
the LIFETRAC code as a function of the radial phase difference at &, = &, = 0.03.
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Figure 4.13: Equilibrium density in the space of normalized betatron amplitudes for the working
point (5.150; 5.210) with two IPs and tune advance difference between the two IPs of: AQ, = 0.24
(a); AQx = 0.31 (b).

I have assumed that the vertical phase advances are equal between the IPs. This
assumption is very close to reality, as the vertical phase advance difference is small, it
is AQy ~ 0.04, and it can be easily be corrected. The result presented in Figure 4.12
is rather surprising for me since the maximum luminosity was expected to be reached
when the phase (tune) advance difference is equal to zero. Instead, the maximum
luminosity of £ = 2.3 -10%° em™2s~! corresponds to AQ, = 0.31. It seems that
the phase advance differences not only create new beam-beam resonances, but can
destroy some of the old strong ones. It would be very interesting to investigate this

effect theoretically.

Fortunately, the tail growth is limited in such a way that all the bunch distribu-
tion stays well within the dynamic aperture for AQ, = 0.31.

Figure 4.13 compares the equilibrium density distributions for AQ, = 0.24 (a)
and AQ, = 0.31 (b). By observing the Figures 4.12 and 4.12 it can be concluded
that the slight readjustment of the machine lattice aimed at increasing the tune
advance difference between the IPs from AQ, = 0.24 to AQ, = 0.31 can greatly

improve the beam-beam machine performance with two interaction points.

The above result has also been checked simulating the quasi strong-strong beam-
beam interaction with the dedicated code TURN [28].
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Figure 4.14: Luminosity as a function of the bunch current (quasi strong-strong simulation).

Figure 4.14 shows the dependence of the machine luminosity on the bunch current.
In the simulations it has been assumed that the interacting bunches have equal
currents. It appears from this figure that according to the quasi strong-strong simu-
lations the luminosity that can be reached by increasing the tune advance difference
to AQyx = 0.31 exceeds £ = 3.0 - 1030 cm 2s~! per each IP and saturates at the
level of £ = 3.4-10% ¢cm=2s~! for currents close to the nominal DA®NE current per
bunch of 43 mA.

Weak-strong simulations with the LIFETRAC code with &, = &, = 0.04 that
corresponds to the nominal current of 43 mA have been repeated and exactly
the same luminosity as it is given by the TURN code has been found, that is
L = 3.4-10% ecm 25!, with slightly blown up beam sizes of the weak beam:
0u/0z0 = 1.24 and o,/0, = 1.29.

4.2.8 Conclusions on the search of the DA®NE working point

1. The numerical simulations have predicted that the working point (5.150; 5.210)
seems to be the best one in the given tune range that can provide a reasonable
DA®NE beam-beam performance. The experimental luminosity runs are in a
good agreement the numerical predictions. According to the simulations the
maximum luminosity that can be reached at this point is £ = 2.2-10%° cm=2s~!

without a significant size blow up.

2. Unfortunately, as the numerical tune scan have shown (see Tables 4.2 and

72



4.2 : Search for the DA®NE Working Point

4.1) the safe area around the working point is very restricted. Tune shifts of
AQ = 0.01 in either direction lead either to bunch core blow up or to drastic
lifetime reduction. This conclusion has been checked experimentally and the

experimental data are in a good agreement with the simulations results.

3. A set of numerical simulations has been carried out to estimate the influence
of the beam-beam separations at the second IP, both horizontal and vertical,
on the machine luminosity performance. It has been found that the vertical
separation at the second IP is more effective than the horizontal one. A vertical
separation of more than 4 mm at the second IP would allow to minimize

luminosity loss and lifetime reduction in the single IP collisions.

4. Tt has been shown numerically that a vertical crossing angle of the order of
100 ~ 200 prad neither limits the lifetime nor reduces significantly the lumi-
nosity . For a vertical crossing angle of 200 prad the luminosity reduction is
estimated to be of the order of ~ 0.1.

5. According to the simulations the sextupole nonlinearities can drastically re-
duce the lifetime. In order to minimize their effect one has to make a strong

effort while performing the chromaticity and the dynamic aperture correction.

6. The numerical simulations indicate that the phase jump procedure can be ap-
plied successfully for equidistant forty bunches stored in each colliding beam.
The phase jump procedure for the beams composed of sixty equidistant bunches
is complicated by the parasitic crossings forced by the lattice nonlinearities .
However, since the parasitic crossings themselves are not strong enough to limit
the machine lifetime one should try to adjust the machine sextupoles to com-
pensate or weaken the cubic nonlinearity and to increase the dynamic aperture

in order to make possible the phase jump procedure with sixty bunches.

7. The hypothesis that the bunch widening observed at rather low currents for
the given working point could be explained by strong horizontal betatron res-
onances of the sixth order 6QQ, = n has been forwarded. It should not be
excluded that the bandwidth of the resonance is largely increased due to the
compensation of the beam-beam nonlinearity by the machine nonlinearity -or

the nonlinearity due to the parasitic beam-beam interaction at the second IP.

8. The numerical simulations of the beam-beam interactions with two IPs at the
working point (5.150; 5.210) taking into account the cubic sextupole nonlin-

earity have shown a luminosity drop and fast tail growth of the bunch density
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Figure 4.15: Beam lifetime at the increase of the longitudinal distance between a parasitic cross-

ing and the IP, with and without nonlinearities .

distribution limiting the machine lifetime to about 20s. This seems to be an
explanation why the first attempt to collide beams at two IPs with a reason-
able current per bunch -higher than 10 mA- has failed. In order to fix the
problem it can be proposed to increase the horizontal tune advance difference
between the IPs from AQ, = 0.24 to AQ, = 0.31. In this case, according
to LIFETRAC simulations, the luminosity at &, = &, = 0.03 is estimated
to be £ = 2.35-10% em~2s7! per each IP with distribution tails well within
the dynamic aperture. Moreover, both the quasi strong-strong code TURN
and the weak-strong code LIFETRAC predict the possibility to increase the
luminosity farther to about £ = 3.4 - 103 cm=2s~! with moderate beam size

blow up increasing the current per bunch to 40 + 43 mA, corresponding to
&= & = 0.04.

4.3 Simulations on RF Phase Jump technique

Simulations on the RF Phase Jump[34] have been done using the LIFETRAC code.

RF Phase Jump is used mainly for multibunch operations in order to store a

multibunch beam without disturbing the already stored opposite beam. The Fast RF
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Figure 4.16: Expected beam luminosity at the parasitic crossing versus its longitudinal distance

to the IP, with and without nonlinearities .

Phase Jump technique consists in injecting the beams longitudinally separated by
two buckets and in putting them suddenly in collision by changing fast one RF phase
by 4m radians. If the phase shift is fast enough the region of the parasitic crossings

is traversed so rapidly that the beam-beam effects can not be disruptive.

On the other hand, moving slowly one beam to the other by adiabatically chang-
ing the phase of one RF, all the possible parasitic crossing points starting from one
beam’s initial position down to the IP are scanned. In this way the moving beam
certainly crosses positions where the beam-beam effect is more critical than what

expected at the IP and the beams, at least the weak one should be lost.

This hypothesis has been checked with simulations undertaken with the beam-
beam code of an injected bunch with no interaction point (IP) but with a parasitic
crossing (PC) at different longitudinal positions. The chosen working point for
these simulations has been (5.15;5.21) that corresponds to the betatron tunes of the
machine at the time of the phase jump technique adjustments. Parasitic crossings
have been simulated both with and without nonlinearities, as it is shown in the two
Figures 4.15 and 4.16.

Figure 4.15 reports the expected beam lifetime evaluated from the beam-beam code,

that is taking into account the beam-beam interaction in the PC point, as a function
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Figure 4.17: Beam tail reduction moving the working point from (a) (5.150; 5.210) to (b)
(5.152; 5.210) .

of the longitudinal distance between the position of the PC and the IP. It is pos-
sible to compare in the figure the behavior of the beam in the case where only the
beam-beam force is essential and that with cubic nonlinearities . It appears that the
behavior is different for the two cases, as the beam lifetime is strongly reduced when
nonlinearities are taken into account. In particular, a lifetime of 0.05 s is predicted

for a PC at a longitudinal position of 15 cm.

Figure 4.16 reports the expected beam luminosity in the PC point as a function
of the longitudinal distance between the position of the PC and the IP. The smaller
the luminosity in the PC point, the better it is. The two cases with and without
cubic nonlinearities are reported and the result is that the behavior is quite similar

for the two cases.

To conclude, if the phase change is slow the beam will be lost.

4.4 Fine Tune Scanning around (5.150; 5.210)

During the first period after KLOE installation it has been found experimentally that
the two DA®NE beams are sensible to changes of the order of 1073 in the betatron
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tunes. In particular it has been observed a reduction of the beam tails moving
the working point from (5.150; 5.210) to (5.152; 5.21). Firstly, the experimental
results with the beam behavior predicted with simulations have been compared. As
it appears from Figure 4.17 with a shift of the radial tune of 2 - 1073 the simulated

tails are reduced.

This observation suggested to perform a fine betatron tune scanning nearby the

working point (5.150; 5.210), moving with steps of the order of 1073,

4.4.1 Lifetime Optimization

In order to improve the DA®NE beam lifetime a fine tune scanning has been per-
formed from the starting point (5.150; 5.210) with a particular attention on the tails
produced by the beam-beam force. Luminosity is in fact not so sensible to such
small tune variations, as it keeps on values around 0.9 with respect to its nominal

value for a beam-beam tune shift of &, = &, = 0.03 for all the investigated points.

It is reported in Figure 4.18 the beam distribution starting from (5.150; 5.210)
and moving with steps of 2 -107%: (a) in the radial plane from (5.150;5.210) to
(5.160;5.210) and (b) in the vertical plane from (5.150;5.210) to (5.150;5.220). It
has been considered a beam-beam tune shift of &, = ¢, = 0.03 and no cubic
nonlinearities . These simulations show a reduction of the beam tails moving both
horizontally and vertically, but the behavior is different for the two planes. As it
appears from Figure 4.18 (a) from Qy = 5.150 to Qy = 5.160 the tails shrink a little
bit but at the same time the beam core enlarges horizontally as Q. gets near to
5.160. In the vertical plane instead the tails shrink from Q, = 5.210 to Q, = 5.214
where they reach a minimum and afterwards the tails enlarge again, as it is shown
in Figure 4.18 (b).

Looking at the results of the simulations shown in Figure 4.18 it appears that in
the explored area the best working point is (5.150; 5.214) as it presents the shortest

tails.

In order to be sure that the minimum beam tails condition has been found also
the working points (5.152;5.214) and (5.152;5.212) have been analyzed. The result-
ing distributions are shown in Figure 4.19 where they are compared to (5.150;5.214)
and (5.150;5.212) respectively in Figure 4.19 (a) and (b).

In conclusion, this analysis suggests for DA®NE to work at the point (5.150; 5.214).

The simulations results agree with the experimental observations. The dedicated ex-
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Table 4.3: Lifetime results for an experimental tune scan.

Qe | Q- [L @A) L mA)]~ ()
5.153 | 5.211 15.0 5.0 2100
5.151 | 5.213 16.5 5.8 1500
5.150 | 5.212 15.8 5.6 3200
5.150 | 5.214 15.3 5.5 4000
5.150 | 5.214 13.9 5.9 4600

perimental tunes scan has been done for QQ, ranging from 5.210 to 5.214 with Q
around 5.150. The summary of the lifetime results are shown in Table 4.3. It ap-
pears that the best lifetime correspond to the point (5.150; 5.214) as predicted by

the simulations.

In the following section is shown the detailed analysis to verify this preliminary

result.

4.4.2 Injection at the (5.150; 5.214)

As the previous section has shown simulations predict a better performance at the
working point (5.150; 5.214) rather than (5.150; 5.210). Further analyses have
been carried out to investigate the injection performance at the working point
(5.150; 5.214).

As it is discussed in Section 4.2.5 the parasitic collisions may cause injection satu-
ration for the working point (5.150; 5.210), the same analysis has been performed for
the working point (5.150; 5.214). In order to compare the beam behavior at injection
for these two wprking points the situation of opposite bunches beam-beam interact-
ing with a PC at 40 cm from thelP has been considered. The DEAR IR optics has
been considered, that is without the central quadrupole in the second IP and with
a horizontal separation of 4.7 o, and a vertical S-function of 3, = 3.69 m at the
parasitic collisions point. In Figure 4.20 is reported the resulting equilibrium bunch
distribution without lattice nonlinearities . It clearly appears that at the working
point (5.150; 5.214) the beam-beam parasitic collisions do not affect the Gaussian

injected bunch.
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Figure 4.18: Fine scan starting from the working point (5.150; 5.210) the following points
are:(a) (5.152;5.210), (5.154;5.210), (5.156;5.210), (5.158;5.210), (5.160;5.210); (b) (5.150;5.212),
(5.150;5.214), (5.150;5.216), (5.150;5.218), (5.150;5.220).
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Figure 4.19: Beam distribution of the working point clockwise starting from the top left:
(a)(5.150;5.214) (5.152;5.214) , (5.152;5.212) and (b)(5.152;5.212), (5.150;5.212).
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Figure 4.20: Tail growth due to parasitic collisions of bunches separated by one RF bucket with
the DEAR IR optics and without sextupoles nonlinearities for the two working point (5.150; 5.210)
and (5.150; 5.214).
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Chapter 5

Numerical Studies of Collisions with
2-1Ps in DA®ONE

Numerical simulations have been carried out in order to find a suitable working

point for beam-beam collisions with two interaction points.

During the DAY-ONE phase of the commissioning the first tests with two IPs
has been performed, showing 40% of luminosity reduction per IP and lifetime degra-
dation. This pushed us to perform a study aimed to search a working point which
could provide a good luminosity and acceptable lifetime while working for two exper-
iments simultaneously. Now, after the KLOE detector installation, with the DEAR
experiment ready to take data, the task of finding such a working point is getting

more urgent.

Different working points have been investigated using the beam-beam code LIFE-
TRAC and varying the phase difference between the two IPs with the aim to obtain
decent machine performance in both single IP and two IPs collisions at the same

time.

5.1 Introduction

An increase of the number of IPs usually leads to a luminosity reduction. In prin-
ciple different phase advances of betatron oscillations between the two IPs produce
a luminosity reduction because of the introduction of new beam-beam low order
resonances [19]. But the phase difference between the two IPs can also be adjusted

in such a way to destroy otherwise dangerous resonances. So, a scan on the tune

83



Chapter 5 : Numerical Studies of Collisions with 2-1Ps in DA®NE

advance difference between the two IPs has been performed for each investigated
working point in order to optimize the luminosity performance by varying this free

parameter.

A good working point for the two IPs collision scheme in DA®NE must satisfy

the following requirements:

e it must provide a good dynamic aperture;

e it must provide a good luminosity and lifetime with a single IP in order to

allow the tuning of each IP separately;

e and finally it must provide a good luminosity and lifetime with two IPs.

The investigated tunes with the weak-strong code LIFETRAC are the following
ones: (5.15;5.21); (5.16;5.21), (5.11;5.21), (5.145;5.09), (5.10;5.14), (5.52; 5.59).

The first working point is that which has been used during the DAY-ONE com-

missioning phase (see the previous Chapter 4), our studies start from here.

The second and the third working points are situated near the present working
point and it is not necessary to modify substantially the machine lattice to tune the
collider at these points. Moreover, the second one has been experimentally found
to be a good point during the commissioning with the KLOE optics providing the

best lifetime.

The fourth and fifth point have been investigated after the satisfactory results
of a luminosity scan with the BBC code. These points provide good luminosities in

single IP collisions.

The last point is the one where CESR collider successfully works [35]. This
point is also suitable for DA®NE | since it is one of the few working points where
the DA®NE nominal luminosity of £ = 4.3-10% cm 257! is predicted by the code
in single IP collision with a tune shift of &, and ¢, equal to 0.04 and with the

machine nominal parameters.

For all the simulations a space charge tune shift parameter of &, = §, = 0.03
has been adopted and the DA®NE nominal beam parameters have been used. No
vertical phase advance difference between IPs has been assumed, as it is for the

machine. Only the horizontal phase advance difference is optimized.

In the following we describe in more details the luminosity performance for each

of these tunes.
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Figure 5.1: Equilibrium density in the space of normalized betatron amplitudes for DA®NE
working point (5.15; 5.21) for the following three cases: (a) 1-IP; (b) 2-IPs and a tune advance
difference between them of AQ, = 0.24; (c) 2-IPs and a tune advance difference between them of
AQx = 0.31;

5.2 Studies on the WP (5.15;5.21)

The working point (5.150; 5.210) has been adopted as the nominal one for the DAY~
ONE commissioning and it has been fully analyzed in the previous Chapter 4. Here
I report the results concerning the beam-beam interaction at the two IPs at this

point.

Figure 5.1 shows the beam equilibrium distributions for the working point (5.150; 5.210)
corresponding to the space charge tune shift parameter of ¢, = §, = 0.03.
Figure 5.1 (a) shows the beam distribution for one IP, for which a luminosity of
L =22-10% ecm~2s7! is predicted with normalized horizontal and vertical beam
sizes of 0,/0,0 = 1.08 and o0,/0,0 = 1.04, respectively. Figure 5.1 (b) and (c)
show the beam behavior for two IPs with different tune advance between them:
AQ, = 0.24 corresponds to the Day-One experimental situation, while AQ, = 0.31
corresponds to the maximum predicted luminosity by the code, as it can be seen in
Figure 5.2. In all the three cases the beam tails are within the dynamic aperture, but
it can be observed comparing Figure 5.1 (b) and (c¢) that not only the luminosity is
higher but also the tails result shorter for the case 5.1 (¢), even in comparison with
the single IP collision shown in Figure 5.1 (a). At AQy = 0.24 it was experimentally
found a 40% reduction of the luminosity per single IP. Simulations give a value near
to 30 — 35%.

Figure 5.2 shows the dependence of the luminosity (per each IP) calculated with
the LIFETRAC code as a function of the horizontal tune advance difference. It
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Figure 5.2: Luminosity (above) and normalized vertical beam size (below) as functions of the
horizontal tune advance difference for the working point (5.150; 5.210).

251 is to be expected

appears that the maximum luminosity of £ = 2.35-10% cm~
for a tune difference of AQ, = 0.31. This means that the phase differences may
create new beam-beam resonances but they may also destroy some of the old strong
ones. As expected from the luminosity values the vertical size minimum blow-up is

reached at AQ, = 0.31 (see Figure 5.2).

The radial size has not been reported since no relevant horizontal blow up has

been observed at any variations of the parameter AQ.

5.3 Studies on the WP (5.16;5.21)

During the commissioning of the machine in the KLOFE-IR configuration it has
been noted that the beam lifetime improves working with a higher radial tune with

respect to Q, = 5.15, but always near to it. The beam tails for this working point
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Figure 5.3: Beam distribution tails relative to the tunes (5.16;5.21) (a) for 1-IP and (b) for
2-IPs and a radial tune advance difference between them of AQ, = 0.30.

are shown in Figure 5.3. In Figure 5.3 (a) the beam distribution corresponds to one
IP; Figure 5.3 (b) corresponds instead to two IPs with a tune advance difference
of AQ, = 0.30 between them being the situation with the maximum predicted

luminosity , as it appears from the peak in the above plot of Figure 5.4.

Figure 5.4 shows in fact a rough scan with steps of 0.10 in the horizontal phase
difference. As just discussed there is a peak of the luminosity around AQ, = 0.30

and respectively a minimum for the beam sizes (Figure 5.4 below).

The estimated luminosity for this working point with a single IP is £ = 1.64 -
103 cm~2s7! while the maximum luminosity for the two IPs configuration of £ =
1.8 -10% cm=2s7! is predicted for a radial tune difference of AQ, = 0.30. It must
be pointed out that in both cases the core and the tails enlarge horizontally leading
to luminosity reduction in comparison to the point (5.150; 5.210) and with two IPs

the horizontal tails tend to reach the dynamic aperture.

5.4 Studies on the WP (5.11;5.21)

This working point is close to the sextupole resonance 2Q, — Q, = 5. In fact, while

tuning the ring at this point it has been observed a decrease of the dynamic aperture
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Figure 5.4: Luminosity (above) and normalized vertical and horizontal beam sizes (below) as
functions of the horizontal tune advance difference for the working point (5.16;5.21).

and an increase of coupling with the result that the beam was not stable.

Anyway, from the beam-beam point of view, this working point is a good point
and it is situated not very far from the actual tune (5.150; 5.210). LIFETRAC

1

predicts a luminosity of £ = 2.24 - 10%° cm™2s7! in single IP collision for this WP.

The corresponding beam tails are shown in Figure 5.5 (a).

For two IPs the maximum luminosity is expected in the symmetric configuration
with no tune difference between the two IPs, as it appears from Figure 5.6. In
Figure 5.5 (b) is shown the beam distribution for this symmetric case where the

maximum luminosity of £ = 2.47-10%° cm2s™! is reached.
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Figure 5.5: Beam tails relative to the tunes (5.11;5.21) (a) for 1-IP and (b) for 2-IPs no radial

tune advance difference between them.
5.5 Studies on the WP (5.145;5.09)

This point has been investigated after the indications given by the BBC code. The
horizontal tune is very close to the actual one Q, = 5.15, the vertical one is instead

lower being closer to the integer.

As for the previous points, Figures 5.7 (a) and (b) show the beam tails for one
IP and for two IPs. In the first case a luminosity of £ = 2.20 - 103° ecm~2s7! is
predicted, in the second one of £ = 2.40 - 10%° cm~2s~!. The tails are well within

the dynamic aperture in both cases.

As it appears from Figure 5.8 the maximum luminosity is obtained when the
phase advance difference is equal to zero, just like the previously discussed case of
tunes (5.11; 5.21), but for AQ, = 0.1 the vertical beam size is smaller.

5.6 Studies on the WP (5.10;5.14)

The working point could be a good one for DA®NE . The beam tails, as Fig-
ures 5.9 (a) and (b) show, stay well within the dynamic aperture and the estimated
luminosity is as high as for all the other described points: for the 1-IP case is
L =2.34-10% cm 257!, for the 2-IPs case is equal to £ = 2.43-10%° cm 257!,
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Figure 5.6: Luminosity (above) and normalized vertical beam size (below) as functions of the
horizontal tune advance difference for the working point (5.11;5.21).

Moreover for these betatron tunes, as we can notice from Figure 5.10, the lumi-
nosity remains almost unchanged around the value of 2 - 103 cm=2s~! for different
tune advances. Anyway the highest value corresponds to the symmetric case with
equal phase advances. In Figure 5.10 we observe that the normalized vertical beam
size increases together with the decrease of the luminosity , but the luminosity re-

duction does not seem to be big even for o,/0, ~ 3.5.

In this case the simulation with the design tune shift value of &, = §, = 0.04
for the single TP has been carried out. The expected luminosity results £ = 3.50 -
10%° ¢cm~2s™! with normalized beam sizes of 0,/0,0 = 1.01 and o,/0,0 = 2.07, that
is there is a vertical blow up but the luminosity value is quite close to the nominal

one of £L=4.3-10% cm 25!,

Cubic nonlinearities have been added to the simulations for 1-IP and 2-IPs with

tune shift of & = &, = 0.03. The lifetime is not reduced even if there is an
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Figure 5.7: Beam tails relative to the tunes (5.145;5.09) (a) for 1-IP and (b) for 2-IPs and no
radial tune advance difference between them.

enlargement of the beam tails. For the 1-IP case simulations give a luminosity of
L£=2.25-10% ¢cm™?s~! and beam sizes 0,/0,0 = 0.99 and 0,/0,0 = 1.60. For the
2-TPs case the expected values are: £ =2.42-10% cm™2s7!' and 0,/0, = 0.94 and

oy/oy = 1.18.

5.7 Studies on the WP (5.52;5.59)

This working point is very close to the half integer, so it would be very desirable to
tune the machine at this point, in order to have higher allowable beam-beam tune

shifts and luminosity values.

However, since the collider nonlinear behavior has not been completely studied
yet, it is difficult to say a priori whether the working point will fall within a stop
band of the half integer resonance. Nevertheless beam-beam simulations for these
tunes may result useful in future, when the machine nonlinearities are studied and
corrected for example by sextupoles adjustments. Figure 5.11 shows the beam dis-
tribution tails in the three following cases: (a) single IP; (b) two symmetric IPs and
(c) a tune advance difference between the two IPs of AQyx = 0.30. The beam tails
do not enlarge much and the beam appears quite stable in all the three cases. For

the 1-IP case the expected luminosity is of £ = 2.5-10%° cm2s!; for the symmetric
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Figure 5.8: Luminosity (above) and normalized vertical beam size (below) as functions of the

horizontal tune advance difference for the working point (5.145;5.09).

case is of £ = 1.9-10% cm~2s~" and for a tune difference between the two IPs of
AQy = 0.30 the very similar value of £ = 1.84-10% cm~2s7! is predicted.

Figure 5.12 shows that moving the phase advance between the two IPs from
AQx = 0 to AQx = 0.3 the luminosity values do not vary much from values slightly
below 2 - 10%° cm2s7!. The case of a single IP has been simulated also with the
nominal tune shift parameter and the given luminosity is just the nominal value
L=43-10% cm=2s7!,

5.8 Conclusions

Table 5.1 summarizes the results of the study presented in this chapter. For the
considered working points the estimated luminosity for one IP and for two IPs col-

lision is given (second and third columns respectively). In the case of two IPs it
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Figure 5.9: Beam distribution tails relative to the tunes (5.10;5.14) (a) for 1-IP and (b) for
2-IPs and no radial tune advance difference between them.

is also shown the horizontal phase advance between the IPs where the maximum
luminosity is achieved. The normalized beam size blow up due to the beam-beam in-
teraction is reported in the vertical and horizontal plane for the 2-IPs case (fourth

and fifth columns respectively). To conclude:

1. The best point for the two IPs is (5.150; 5.210) since it has high luminosity and
short tails (even shorter than in the case of a single IP). Besides AQ, = 0.31
between the IPs is not far from the actual one of AQ, = 0.24. So it will not

require major lattice modifications.

2. The working point (5.16;5.21) provides lower luminosities but, even more im-
portant, long horizontal tails reaching the machine dynamic aperture in case of
two IPs can be observed. For this reason we expect short lifetime for working

point .

3. (5.11;5.21) seems to give good luminosity in both 1-IP and 2-IPs collisions.
However this point is close to the resonance 2Q, — Q, = 5 which limits the

dynamic aperture and makes more difficult the coupling correction.

4. (5.145;5.09) is the point which is worth to try: the luminosity is good and the

tails are well within the dynamic apertures. The only disadvantage is that
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Figure 5.10: Luminosity (above) and normalized vertical beam size (below) as functions of the
horizontal tune advance difference for the working point (5.10;5.14).

the maximum luminosity is reached with the phase advance difference close to

zero and some lattice modifications are necessary to fulfill this condition.
5. The same conclusion as the previous one can be applied to the point (5.10;5.14).

6. The point (5.52;5.59) is good for single IP collisions. Moreover this is one
of the few points on the tunes diagram where the design luminosity of £ =
4.3 -10%° cm™2s7! is achieved with the beam-beam code. However for the
optimal AQy in this case a 70% blow up is observed in the code output when
colliding with two IPs. It can be underlined that being close to the half integer

the point can be a challenge for the machine optics.
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Figure 5.11: Beam distribution tails relative to the tunes (5.52;5.59) (a) for 1-IP and (b)
for 2-IPs and no radial tune advance difference between them and (c) for a tune difference of
AQx = 0.30.
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Figure 5.12: Luminosity (above) and normalized vertical and horizontal beam sizes (below) as

functions of the horizontal tune advance difference for the working point (5.52;5.59).
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Table 5.1: Predicted values of luminosity with 1-IP and with 2-IPs, for the best AQy between

them, and normalized beam sizes for each working point .

WP Lorp Lirp Uy/Uyo U:c/Uxo
(10% em2s71) | (10%® em2s7!) | (2IP) | (2IP)
(5.150; 5.210) 2.24 2.20 1.05 1.12
AQy = 0.31
(5.16;5.21) 1.80 1.64 1.49 1.33
AQ, = 0.30
(5.11;5.21) 2.47 2.24 1.03 0.94
AQx =0
(5.145;5.21) 2.37 2.20 1.44 1.00
AQ, = 0.01
(5.10;5.14) 2.43 2.34 1.14 0.94
AQx = 0.01
(5.52;5.59) 1.90 2.50 1.71 1.03
AQx =0
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Chapter 6

Experimental Results

This chapter has been divided in two parts, corresponding to the two commissioning
phases: the first one called DAY-ONE is before KLOE installation and the second
one is after KLOE installation. Machine performance and most significant results
are presented for the two phases of commissioning with particular attention to the

latest measurements.

6.1 Commissioning at the DAY-ONE

In the DAY-ONE commissioning phase the goal has been to tune the machine
for collisions and optimize the single bunch luminosity before KLOE’s installation
in order that with the KLOE-IR configuration only the perturbation introduced
by the KLOE solenoidal magnet should be corrected and the machine could be
ready for operation [37]. The DA®PNE performance achieved during the first phase
of operation for single beam and colliding beams with particular attention to the

beam-beam performance is reported in the following.

During this first phase electron and positron currents larger than twice the design
value have been stored separately with no instabilities, that is 110 mA have been
reached where the design value is 44 mA. Moreover, the beams parameters (some
are for example emittance, coupling, beam sizes, optical functions, chromaticity)
have been measured and well agree with design values derived from the theoretical
models. The chosen working point is (5.15;5.21) that is far from integers and from
sextupolar resonances, the machine is not too sensible to closed orbit distortion,
the dynamic aperture is good enough and also lifetime. A coupling of the order of

k ~ .002 has been obtained, much smaller than its design value x = .01 also with

97



Chapter 6 : Experimental Results

*  MAY
1031 T IIII T T T TTT
OCTOBER

+  NOVEMBER

T T T TIT
.
111

o 10% _ *  NOVEMBER If{ .
3 : 1 P
E}/ 10 29 - ; : §I -
> F 3 et 3
B C : ]
c - Iiggiﬁgéﬁ .
= 28 | _
% 10 £ 3 [}
! E
1027 1 1l 1 1l 1 11 1111
1 10 , . ,, 100 103
1*1° (mA?)

Figure 6.1: Luminosity versus the product of the positron and electron currents.

sextupoles on. The maximum single bunch luminosity obtained is 1.6 - 103%cm2s™!

with 77 = 19 mA and I~ = 21 mA. Assuming equal tune shifts for the two
beams this corresponds to &, ~ .03, which is in a good agreement with the beam-
beam simulations with one interaction point at this working point. Using the RF

25~ has been obtained

phase jump procedure a luminosity of the order of 103'cm™
with 13 positron and 13 electron bunches. A short time has been dedicated to
multibunch luminosity measurements with two interaction points. In this case there
is a luminosity degradation of the order of ~ 40% for each IP, in agreement with

simulations.

6.2 Commissioning after KLOE installation

The KLOE experiment has been installed in winter 1999. The main issue after the
KLOE installation was to reproduce at least the same luminosity reached before,
while increasing the beam lifetime. In the first month of operation the machine
energy has been tuned to the ®-resonance. Figure 6.2 shows the ®-resonance line
shape obtained by the KLOE experiment.
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Figure 6.2: ®-resonance line shape obtained by the KLOE experiment

6.2.1 KLOE Solenoid Compensation

The high integrated field of KLOE solenoid (2.4 Tm) is a strong perturbation for
the low energy DA®NE beam. It rotates the beam by about 45° in the transverse
plane and it is the main source of beam coupling. A compensation scheme has been
adopted to cancel this coupling. This scheme requires two compensating solenoids
symmetrically placed with respect to the main one and a rotation of the low-3 triplet

quadrupoles.

The rotation angles of the quadrupoles in the triplets with respect to each other
have been set first, then the two triplets as a whole have been aligned with re-
spect to their mechanical supports. After the installation each triplet can be moved
rigidly with five degrees of freedom -horizontal and vertical angle, displacement and
rotation angle. The alignment of each triplet has been measured looking at four
reference points. In the horizontal plane the alignment is quite satisfactory, the
vertical displacement of one triplet and the rotation angle of both would need in-
stead further correction. At this stage the effects of these errors are compensated by
adjusting the field of the detector and of the compensating solenoids and also with
eight skew quadrupoles in each ring. The minimum coupling measured after the
adjustment of the fields of KLOE and of the compensating solenoids is x = 0.008
for the positron beam. For the electron ring two skew quadrupoles have also been

used and a coupling of x = 0.01 has been obtained.
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6.2.2 Beam-Beam Measurements

In September 1999 beam-beam measurements have been done in order to optimize
the luminosity and the lifetime [38]. Luminosity depends on emittance, coupling and
on the following parameters at IP: g-functions, vertical waist position, longitudinal
IP position, transverse tilt angle and horizontal crossing angle. Coupling has been
adjusted as it is described in the latter Section and in normal working conditions
is k(e™) ~ 1.5% for positrons and k(e~) ~ 1% for electrons. An estimate of the
coupling factor can be derived from the roundness R = o0,/ 0, measured at the
Synchrotron Light Monitor (SLM). Emittance is set by the chosen lattice and it is
about half of its nominal value that is e(e*) = 0.5 107° m rad for positrons and

g(e”) = 0.7-107% m rad for electrons.

In order to achieve high luminosity the longitudinal and transverse positions of
the two beams must be adjusted to provide maximum overlap at the IP. Moreover,
the waists of the vertical 3-functions should be the same for the two rings and
coincide with the IP.

Longitudinal and transverse overlap of colliding beams at the nominal IP have to
be obtained simultaneously. In the DAY-ONFE configuration a seventh BPM in each
IR was installed at the IP position. This simplified beam superposition and horizon-
tal f-function measurements at the IP, thanks to the IP quadrupole. This BPM was
removed before KLOE detector roll-in. At present the luminosity monitor is used
to measure the effective cross section of the interacting beams. The measurements
are performed by scanning the position of one beam with respect to the other and
measuring the luminosity value on the monitor. All these measurements have to be
done with weak beams (current of about 2 — 3 mA) to avoid beam-beam blow up.
With this technique it is possible to determine the vertical and horizontal beam size
at the IP and in particular the maximum luminosity is obtained by optimizing the
transverse overlap. The vertical overlap is the most effective one being the beams
flat. Figure 6.3 shows the ratio between the measured luminosity and its maximum
value as a function of the vertical position of one beam with respect to the other
one. A nice Gaussian shape centered in zero with a 3, ranging between 35 and 50
pm can be noticed. This shape is the convolution of the two beams distributions.
The vertical sigma of one beam o, can be obtained by assuming equal size beam
distribution being ¥, = V2 oy-

The longitudinal overlap of colliding bunches at the nominal IP has been syn-

chronized by monitoring the distance between the combined signals of the two beams
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Figure 6.3: Vertical luminosity scan for different RF phases.

on two sets of symmetric BPMs on either side of the IP. A good longitudinal timing
has been achieved by varying the RF phase of one of the two beams in order to min-
imize the vertical sigma o, or equivalently maximize the luminosity . Figure 6.4
shows the effective vertical sigma ¥, as a function of the RF phase. 0.1 V of the
RF phase corresponds to 1 cm shift of the IP along the longitudinal direction. The

minimum corresponds to the best longitudinal overlapping.

Measurements with two weak beams were done to check the dependence of lu-
minosity on the relative transverse tilt of the two beams. The positron tilt angle
has been changed by using a skew quadrupole near the SLM where it is monitored.
Together with the tilt angle also roundness is varied with this procedure so that the
largest effect on the luminosity is due to the roundness change. The expected and
measured luminosities are shown Figure 6.5 as a function of the positron tilt angle
measured at the SLM. The expected luminosity is calculated taking into account
only the change of the coupling as measured at the SLM. The difference between
the measured and expected value can be interpreted as due to different tilt between
bunches. Since the difference in luminosity is within 30% the relative tilt angle at
the TP must be small. On the other hand the relative tilt angle at the IP cannot be
monitored and the extrapolation from the SLM is not an easy task. Another way
to approach the problem is via the beam-beam simulations. Figure 6.6 (a) shows
the ratio between the luminosity from the simulation and the nominal value with
no tilt angle as a function of the strong beam’s current for a tilt angle between the

beams of 1 degree. It can be seen that the decrease in luminosity is about 30% at
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Figure 6.4: Effective vertical beam size vs RF phase.

low current. This confirms that in the previous experiment (see Figure 6.5) the tilt

angle at the IP cannot exceed values of about 1 degree.

Higher decrease of luminosity due to the tilt angle can be observed for larger
strong beam’s current (as shown in Figure 6.6 (a)). It is due to the vertical beam-
beam blow up shown in Figure 6.6 (b) where is plotted the weak beam vertical
size normalized to its unperturbed value as a function of the strong beam’s current.
This weak beam behavior has been confirmed experimentally. Figure 6.7 shows
the results of a dedicated weak-strong run where a weak electron beam of 4.5 mA
collides with a strong positron beam of 9 mA. The variation of the roundness R,
of the strong beam is due to the method used to vary the tilt angle at IP as said
before. The important thing to be noticed is that in correspondence of the decrease
of luminosity is the weak beam vertical blow up and viceversa. Comparing the weak
beam roundness R_ in Figure 6.7 with the simulation results in Figure 6.6 (b) for a

& ~ 0.015 the measured blow up is in good agreement with simulations.

For the best overlap condition usually obtained in run condition a vertical beam
size of 0, = (19.0 £ 0.4) pum has been measured in good agreement with the
theoretical expectation of o, = 18.6 pum calculated with an emittance of 0.5 -

107% m rad, a coupling of x = 1.5% and j; = 4.5 cm.

The measured luminosities are close to the expected values at low current. The

maximum single bunch luminosity reached is Lsp = 3.3-10%° cm s ! obtained with
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currents /_ = 18 mA and [, = 12 mA and lifetime of about 2000 s. Different sets
of current were used to increase this value, but the beam blow-up prevented any
increase of the maximum luminosity . Values between 2.5 and 3-10%° cm~2s~! with

good beam lifetimes have been obtained.

The behavior of one beam roundness and lifetime as a function of the current of
the opposite beam has been analyzed for different working points (see Figure 6.8).
The roundness is expected to increase with current above a particular threshold that
depends on the chosen working point due to the vertical beam-beam blow up. The
Figure 6.8 shows that the point (5.16;5.21) exhibits the highest current threshold
in the roundness behavior and the slowest decay of the lifetime in the scanned area
near the working point (5.150; 5.210). The current threshold that has been found
experimentally is at about 10 mA for each bunch corresponding to a luminosity of
L=15-10"cm 27

6.2.3 Multibunch Operation

Multibunch luminosity is given by

N_N,

2 2 2 2
471'\/ 0'y7+ (rer\/ (rx_+ Tt
2 2

directly derived from the single bunch luminosity expression in Equation B.6 where

ny is the number of colliding bunches. In terms of the total number of particles the

103



Chapter 6 : Experimental Results

vertical blow-up vs strong beam's current

luminosity reduction vs strong beam's current 1 degree tilt angle at the IP

1 degree tilt angle at the IP 35 e

07 L —e—oc /o

-./\ e, 1 3 — :
06 [ 3 o5 [ ]
- — ] - / :
05 | 2 [ — ]

04 | - 15 |
i ] N4
0.3 PN I APAEEE AT AR I I 1-"" Lelolod Ll Ll Lolol.l L1 111
0 0.005 0.01 0.015_0.02 0.025 0.03 0.035 0 0.005 0.01 0.015§ 0.02 0.025 0.03 0.035

() (b)

Figure 6.6: (a) Luminosity reduction vs the strong beam’s current; (b) Weak beam vertical
blow up vs the strong beam’s current in case of a tilt angle of 1 degree at the IP.

previous expression can be written as:
f N, Niy

2 2 2 2
Ty . o,_+ o, o2 _+ o2,
2 2

where N+ = n, N+ and the bunches are assumed to be all equal. From this formula

L=

(6.2)

it can be easily seen that in order to have the maximum possible luminosity the
choice on the number of bunches must be done carefully. It is desirable to have the

maximum possible current per bunch rather than increase the number of bunches.

DA®NE operates in multibunch mode for the physics runs with a number of
bunches ranging from 30 to 50. In these runs an integrated luminosity of about
3 pb~! has been collected by the KLOE experiment in about one month. Figure 6.9
shows an example of a typical run. From the top side of the figure may be seen that
the two beams are refilled during collision. This operation is called topping-up and
it helps to increase the integrated luminosity . The initial peak luminosity is about

3-10%%cm™2s~! with currents of about 250 mA.

During multibunch operation a technique has been found to stabilize the beams
in collision. This works thanks to the Landau beam-beam damping. On the top of
Figure 6.10 is shown the injected electron beam out of collision with a high vertical
instability due to the sextupoles used for injection. As the second beam is injected

and brought to collision the electron beam instability is damped.
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Figure 6.7: Luminosity vs positron rotation angle together with the electron and positron

roundness simultaneously measured.

6.3 Coherent Beam-Beam Tune Shift Measurement

The beam-beam interaction excites coherent bunch oscillations, in which each bunch
behaves like a rigid distribution of particles, while the center-of-mass of the bunches
oscillate. The center-of-mass coordinates of the two bunches move like weakly cou-
pled oscillators. This system exhibits two normal modes.

The first mode gives the eigenfrequency in the undisturbed betatron frequency
(0 — mode) and the second mode gives the perturbed one (7 — mode) [39]. In
the 0 — mode the two bunches move up and down together in phase at the interac-
tion points. The bunches do not feel the beam-beam forces and the mode frequency
is equal to the unperturbed betatron frequency. This mode is always stable.

In the m — mode the two bunches move out of phase. In the linear approximation
of the beam-beam force the tune shift experienced by the bunch center would be
exactly £&. However the beam-beam force is highly nonlinear and since the force
gets weaker with distance only the central part of the beam will oscillate coherently
while the outer part does not move (see Section 2.10). The complete calculation for
the center-of-mass motion can be found in [40]. For DA®NE the eigenvalue is about
1.33¢.

This effect can be used to measure the beam-beam tune shift & by exciting with

white noise the beam and looking at the spectrum analyzer at the resonant frequen-
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cies. Figure 6.11 shows an example of coherent beam-beam tune split measurement.
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Figure 6.11: Example of coherent tune shift measurement.
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Appendix A

Kicks on the transverse axes

It is shown here that the radial beam-beam kick:

4Nr 1 2042 2 1
Az’ = ——e/ a e =) gy Al
vy/2(0% — o) 7r Ay
where
r=0y/04; P ; and b= Y
2(0% —02) 2(02 - 02)

in y=0 can be written as:

4Nr x _ 2 x o
A = ——— ¢ |\ F(—— )V _¢ 22 . F(——nun .Y A2
o= ) =y o) 42
where Fp is the Dawson function defined by:
Fp(z) = e’xz/ e’ dt.
0
For y=0 b is equal to zero and Equation A.1 becomes:
4Nr 1 2042

Az’ = ——e/ ae® TNz, A3
T2(0% —oy) (A

The latter integral can be written as
1 2 (42 2 1 242
/ a e’ Nt =q e_a‘/ et dt.
r r

With the substitution z=at the integral becomes

a . 0 a
e~ / e dy = e [/ e dz + / ezzdz]
a a 0

T T
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Appendix A : Kicks on the transverse axes

that is

e~ [/Oa e dy — /OM eszz}

P 202 1y 2.2 [OT 5
e“/ezdz—e“(’" 1)6‘”/ e’ dz
0 0

which is equal to

just equal to
Fp(a) — e "=V Fp(ar).

Substituting a and r:

T X g,
o z(ag—a;))_e SR z(ag_a;)'a_i)
so that
ANTe 22—2
at = =) e Pl =gy ) 4

2(02 —-02) Oa

Analogously it is shown that the vertical beam-beam kick
4Nr, L))
y /2 )

in x=0 can be written as:

, 4Nr.el
3y = - o) o)) ()

where erf(x) is the error function defined by:

Ay = eapld( — 1) + 12(1 - %)]dt (A5)

erf(x \/_/

For x=0 a is equal to zero and Equation A.5 becomes
_ 4Nr. 1t b 220

7,/2 (02 —02)

Changing the integration variable t in q=1/t the latter integral becomes:

1/r
b e /1 e’b2q2dq

Changing the integration variable q in z=bq :

b/r 0 b/r
e’ / e dy = e [/ e dz +/ e_ZZdz]
b b 0

Ay = “)dt. (A7)
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that is y ,
e’ [/ e~ dz —/ e_ZZdz]
0 0
b/r
ebzﬁ[Q z——/ ’Zdz

2 L7 Jo
L lers o) = ery )]

that is also:

\

which can be written as

\%

and substituting b and r

2/ T0 Yy Yy
el 7[erf(ay o —7“2)) —erf(% 2(1—7"2))]
so that
' ANTe” /T y y
Ay = Yoy /2(1 — 1?) 2 {erf(ay 2(1 — 7“2)) 67”f(
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Appendix B

General Expression for the
Luminosity

It is derived here the generical expression of luminosity in the case of different beam
sizes of the two interacting beams. Let’s assume a Gaussian transverse density of
the positron beam:

et
2T Opq Oyt V2 Oyt

P+(-'L',y) =

and analogously for the electron beam:

N_ y

2 2
(r,y) = ——— - )+ (——)7] B.2
p-(2.y) = 5~ — Oyiexp[( 7 in) ( \/§-U$7) ] (B-2)
Let’s solve the integral
/Mﬂﬂ@ (B.3)
which is of course related to the luminosity by
ﬁ:f/MﬂM@ (B.4)

where f is the revolution frequency. The integrals to solve are of the following kind:

‘ 1 : 1
Joun o [

It follows the generical expression of luminosity in the case of different beam sizes

of the two interacting beams:

(B.6)
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Appendix B : General Expression for the Luminosity

For the well-known case of equal beam sizes it is found the well-known result defined

in Equation 2.4
N_N.
L=f i

4m o, oy

(B.7)

The relation between the beam sizes of the two interacting beams can be found

comparing Equations B.6 and B.7:

o2 + o2
UZ = y_f“ and o2 = _f (B.8)
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Conclusions

A study of the beam-beam effect has been carried out in DA®NE collider. This work
has been particularly important in order to optimize the luminosity performances
and beams stability in DA®NE .

An analysis has been performed to find a working point for beam-beam collisions
with a single interaction point during the DA®NE commissioning. The influence on
the luminosity and lifetime of the horizontal and vertical beam-beam separations at
the second interaction point has also been investigated. Being the beam-beam in-
teraction highly nonlinear detailed simulations have also been carried out in order
to study the possible effects of closed orbit distortions (vertical angle, tilt angle, dis-
persion) at the interaction point. Also machine sextupole nonlinearities have been

included in the simulations to evaluate the luminosity and lifetime degradation.

The proposed working point (5.150; 5.210) has been used successfully for the

experimental runs before and after the KLOE installation.

A detailed study has been carried out to find a working point for two interaction
points operation. In this case for a given working point the phase advance between
the two interaction points has been found to be an important parameter that can
be tuned in order to optimize luminosity and lifetime. Simulations show that the

working point (5.150; 5.210) can be used also in two interaction points operation.

A comparison of beam-beam simulations with experimental results has led to a
deeper understanding of the beam-beam interaction in the DA®NE collider. Lu-
minosity and lifetime results from the simulation scans around the working point
(5.150; 5.210) are in good agreement with experimental observations. Beam-beam
measurements have been discussed and compared to simulation results. In partic-
ular the vertical beam-beam blow up has been observed when a relative transverse
angle between the beams is introduced. The beam-beam effect has also showed up
as Landau damping of the two interacting beams in multibunch operation and it

has been used to stabilize the beams. The beam-beam tune shift has been measured
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from the coherent beam-beam effect and is now about &, ~ 0.02 and §, ~ 0.015,

in agreement with the expected values from the luminosity measurements.
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