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Abstract

The complementarity between Chiral Perturbation Theory and the Linear Sigma Model
in the scalar channel is exploited to study π0π0 production in ρ and ω radiative decays,
where the effects of a low mass scalar resonance σ(500) should manifest. The recently re-
ported data on ρ → π0π0γ seem to require the contribution of a low mass and moderately
narrow σ(500). The properties of this controversial state could be fixed by improving the
accuracy of these measurements. Data on ω → π0π0γ can also be accommodated in our
framework, but are much less sensitive to the σ(500) properties.
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1 Introduction

Radiative decays of vector mesons have gained renewed interest as a useful tool to im-

prove our insight into the complicated dynamics governing meson physics in the 1 GeV

energy region. Particularly interesting are those decays proceeding by the exchange of

scalar resonances because of the enigmatic nature of these states and the poor knowledge

on their properties. In the case of the σ meson —a broad and controversial scalar state

with a mass peaked somewhere in the 500 MeV region— the situation is even more dra-

matic: the issue under discussion along the years has been the existence or not of such a

state.

The SND Collaboration has reported very recently the first measurement of the

ρ → π0π0γ decay. For the branching ratio, they obtain [1]

B(ρ → π0π0γ) = (4.8+3.4
−1.8 ± 0.2) × 10−5 (1)

and therefore Γ(ρ → π0π0γ) = (7.2+5.1
−2.7) keV. For the analogous ω radiative decay, the

GAMS Collaboration reported some years ago the branching ratio [2]

B(ω → π0π0γ) = (7.2 ± 2.5) × 10−5 , (2)

which implies Γ(ω → π0π0γ) = (608±211) eV. The result in Eq. (2) has been confirmed

by the more recent but less accurate measurement by the SND Collaboration B(ω →
π0π0γ) = (7.8 ± 2.7 ± 2.0) × 10−5 [1]. Since mρ � mω � 780 MeV, both processes

contain valuable information on the scalar channel of the π0π0 system in the range of

masses where the σ(500) resonance effects are expected to manifest. These and other

radiative vector meson decays will be hopefully investigated at the Frascati φ-factory

DAΦNE very soon [3].

On the theoretical side, the V → P 0P 0γ decays have been considered by a num-

ber of authors [4]–[19]. Early calculations of the vector meson dominance (VMD) am-

plitude for these processes, i.e. the contributions proceeding through the decay chain

V → P 0V ′ → P 0P 0γ, were summarized in Ref. [5]. In particular, the widths and branch-

ing ratios predicted by VMD, Γ(ρ → π0π0γ)VMD = 1.62 keV, B(ρ → π0π0γ)VMD =

1.1 × 10−5, Γ(ω → π0π0γ)VMD = 235 eV and B(ω → π0π0γ)VMD = 2.8 × 10−5, were

found to be substantially smaller than the experimental results quoted in Eqs. (1,2).

The possibility of an enhancement in the first branching ratio through the ρ →
π+π−γ → π0π0γ mechanism was pointed out in Ref. [5] and further discussed in Ref. [6]

in a Chiral Perturbation Theory (ChPT) context enlarged to include on-shell vector mesons.

This formalism gives well defined predictions for the various V → P 0P 0γ decays in

terms of P+P− → P 0P 0 rescattering amplitudes, which are easily calculated in strict
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ChPT, and a loop integral over the intermediate P+P− pair. In this approach, the ρ →
π0π0γ decay is dominated by pion loops leading to Γ(ρ → π0π0γ)χ = 1.42 keV, while

kaon loop contributions are three orders of magnitude smaller. The interference between

this pion loop contribution and the previous VMD amplitude turns out to be constructive

leading globally to Γ(ρ → π0π0γ)VMD+χ = 3.88 keV and B(ρ → π0π0γ)VMD+χ =

2.6 × 10−5 [6], which are still small compared to the experimental result in Eq. (1).

The analysis of the ω → π0π0γ decay is more involved. Ignoring ρ-ω mixing,

pion loops are forbidden because of G-parity and kaon loops should now account for

the whole chiral loop contribution to this process. However, this contribution is also

small because of the relatively large kaon mass. As a result, the ω → π0π0γ transition

is then dominated by the VMD contribution that predicts Γ(ω → π0π0γ) = 235 eV

and B(ω → π0π0γ) = 2.8 × 10−5 [6], a value which is nearly two standard deviations

below the experimental result in Eq. (2). Recently, this process has been reanalyzed by

Guetta and Singer [15] who have explored the possibility of ρ-ω mixing effects bringing

into the game the pion loop and vector meson contributions of the previously discussed

ρ → π0π0γ process. Their final prediction is then Γ(ω → π0π0γ) = (390 ± 96) eV and

B(ω → π0π0γ) = (4.6 ± 1.1) × 10−5.

Since the theoretical predictions for the decays ρ, ω → π0π0γ are still far from

the experimental values quoted in Eqs. (1,2) additional contributions are certainly re-

quired. The most natural candidates for closing the gap between theory and experiment

are the contributions coming from the exchange of scalar resonances such as the well es-

tablished f0(980) and the more controversial σ(500) (or f0(400–1200)) mesons [20]. The

ρ, ω → π0π0γ decays are thus an excellent place to study the properties of the elusive

σ(500) meson, which is supposed to couple strongly to low mass pion pairs, while the

corresponding φ → π0π0γ decay is more suitable for fixing the properties of the heavier

f0(980) meson.

A first analysis in this direction was done in Ref. [13] where the ρ → π0π0γ

decay was considered in the framework of the Unitarized Chiral Perturbation Theory

(UχPT). By a unitary resummation of the pion loop effects, these authors obtained B(ρ →
π0π0γ)UχPT = 1.4 × 10−5 and noted in passing that this result could be interpreted as a

manifestation of the mechanism ρ → σγ → π0π0γ. A later attempt describing scalar

resonance effects in this process appeared more recently in Ref. [18]. An exceedingly

large width for the scalar dominated ρ → π0π0γ decay process, Γ(ρ → π0π0γ) =289

keV, is obtained using a σ pole model [18]. This unrealistic result is a consequence of

using a large and constant ρ → σγ amplitude [21] quite different from that predicted by

the Linear Sigma Model (LσM) where it turns out to be a momentum dependent ampli-

tude induced at the one loop level. In the LσM approach, the Goldstone boson nature of
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the pions and their derivative couplings are a consequence of the cancellations between

the pointlike four-pion vertex and the σ exchange contributions (see below). This latter

cancellations do not occur in the treatment of Ref. [18].

The purpose of this note is to study the effects of the low mass scalar states in

the ρ, ω → π0π0γ decays following the ChPT inspired context introduced in Ref. [14] to

account similarly for the a0(980) exchange contributions to φ → π0ηγ. In this context one

takes advantage of the common origin of ChPT and the LσM to improve the chiral loop

predictions for V → P 0P 0γ exploiting the complementarity of both approaches for these

specific processes. As a result, simple analytic amplitudes, A(ρ, ω → π0π0γ)LσM, will be

obtained which include the effects of the scalar meson poles and also show the appropriate

behaviour expected from ChPT at low dipion invariant masses. Unlike the φ → π0ηγ

decay studied in Ref. [14], there also exist important contributions to ρ, ω → π0π0γ

coming from the previously mentioned vector meson exchanges. These VMD amplitudes,

A(ρ, ω → π0π0γ)VMD, are well known and scarcely interesting but have to be added to

A(ρ, ω → π0π0γ)LσM, i.e. to the relevant amplitudes containing the scalar meson effects,

in order to compare with available and forthcoming data. We will conclude that data on

the ρ → π0π0γ channel with a precision around 10% would be sufficient to decisively

improve our knowledge on the scalar states and, in particular, on the controversial low

mass σ meson.

2 Chiral loop contributions to ρ → π0π0γ

The vector meson initiated V → P 0P 0γ decays cannot be treated in strict Chiral Per-

turbation Theory (ChPT). This theory has to be extended to incorporate on-shell vector

meson fields. At lowest order, this may be easily achieved by means of the O(p2) ChPT

Lagrangian

L2 =
f 2

4
〈DµU

†DµU + M(U + U †)〉 , (3)

where U = exp(i
√

2P/f) with P being the usual pseudoscalar nonet matrix, and, at this

order, f = fπ = 92.4 MeV and M = diag(m2
π, m

2
π, 2m

2
K − m2

π). The covariant deriva-

tive, now enlarged to include vector mesons, is defined as DµU = ∂µU − ieAµ[Q,U ] −
ig[Vµ, U ] with Q = diag(2/3,−1/3,−1/3) being the quark charge matrix and Vµ the ad-

ditional matrix containing the nonet of ideally mixed vector meson fields. We follow the

conventional normalization for the vector nonet matrix such that the diagonal elements

are (ρ0 + ω)/
√

2, (−ρ0 + ω)/
√

2 and φ.

We start considering the ρ → π0π0γ amplitude. There is no tree-level contribu-

tion from the Lagrangian (3) to this amplitude and at the one-loop level one needs to
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compute the set of diagrams shown in Ref. [6]. We do not take into account kaon loop

contributions here since they were shown to be negligible as compared to those from

pion loops [6]. A straightforward calculation leads to the following finite amplitude for

ρ(q∗, ε∗) → π0(p)π0(p′)γ(q, ε) (see Ref. [6] for further details):

A(ρ → π0π0γ)χ =
−eg√

2π2m2
π+

{a}L(m2
π0π0) ×A(π+π− → π0π0)χ , (4)

where {a} = (ε∗ · ε) (q∗ · q) − (ε∗ · q) (ε · q) makes the amplitude Lorentz- and gauge-

invariant, m2
π0π0 ≡ s ≡ (p+p′)2 = (q∗−q)2 is the invariant mass of the final pseudoscalar

system and L(m2
π0π0) is the loop integral function defined as

L(m2
π0π0) = 1

2(a−b)
− 2

(a−b)2

[
f
(

1
b

)
− f

(
1
a

)]

+ a
(a−b)2

[
g
(

1
b

)
− g

(
1
a

)]
.

(5)

Here

f(z) =




−
[
arcsin

(
1

2
√

z

)]2
z > 1

4

1
4

(
log η+

η−
− iπ

)2
z < 1

4

g(z) =




√
4z − 1 arcsin

(
1

2
√

z

)
z > 1

4

1
2

√
1 − 4z

(
log η+

η− − iπ
)

z < 1
4

(6)

and η± = 1
2
(1 ±√

1 − 4z), a = m2
ρ/m

2
π+ and b = m2

π0π0/m2
π+ . The coupling constant g

comes from the strong amplitude A(ρ → π+π−) = −√
2g ε∗ · (p+ − p−) with |g| = 4.27

to agree with Γ(ρ → π+π−)exp = 150.2 MeV. The latter is the part beyond standard ChPT

which we have fixed phenomenologically. The four-pseudoscalar amplitude is instead a

standard ChPT amplitude which is found to depend linearly on the variable s = m2
π0π0:

A(π+π− → π0π0)χ =
s−m2

π

f 2
π

. (7)

Notice that this ChPT amplitude factorizes in Eq. (4).

The invariant mass distribution for the ρ → π0π0γ decay is predicted to be1:

dΓ(ρ→π0π0γ)χ

dmπ0π0
= α

192π5
g2

4π

m4
ρ

m4
π+

mπ0π0

mρ

(
1 − m2

π0π0

m2
ρ

)3
√

1 − 4m2
π0

m2
π0π0

× |L(m2
π0π0)|2|A(π+π− → π0π0)χ|2 .

(8)

1In terms of the photon energy, Eγ = (m2
ρ − m2

π0π0)/(2mρ), the photonic spectrum is written as
dΓ/dEγ = (mρ/mπ0π0) × dΓ/dmπ0π0 .
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Integrating Eq. (8) over the whole physical region one obtains Γ(ρ → π0π0γ)χ =1.55 keV

and

B(ρ → π0π0γ)χ = 1.0 × 10−5 . (9)

These results confirm and update the prediction for this process given in Ref. [6]2.

3 Scalar meson exchange in ρ → π0π0γ

We now turn to the contributions coming from scalar resonance exchange. From a ChPT

perspective their effects are encoded in the low energy constants of the higher order pieces

of the ChPT Lagrangian. But the existence of a low mass σ(500) meson should manifest

in the ρ, ω → π0π0γ decays not as a constant term but rather through a more complex res-

onant amplitude. In this section, we propose a σ(500) dominated ρ → π0π0γ amplitude

which coincides with the previous ChPT amplitude in the low part of the π0π0 invariant

mass spectrum. In this respect, our proposed amplitude obeys the ChPT dictates but it also

generates the resonant σ(500) meson effects for the higher part of the π0π0 spectrum.

The Linear Sigma Model (LσM) [22–24] will be shown to be particularly appropri-

ate for our purposes. It is a well-defined U(3) × U(3) chiral model which incorporates

ab initio both the nonet of pseudoscalar mesons together with its chiral partner, the scalar

mesons nonet. In this context, the V → P 0P 0γ decays proceed through a loop of charged

pseudoscalar mesons emitted by the initial vector. Because of the additional emission of

a photon, these charged pseudoscalar pairs with the initial J PC = 1−− quantum num-

bers can rescatter into JPC = 0++ pairs of charged or neutral pseudoscalars. For the

ρ → π0π0γ decay the contributions from charged kaon loops are again negligible com-

pared to those from pion loops and will not be considered. The σ(500) and f0(980) scalar

resonances are then expected to play the central rôle in this π+π− → π0π0 rescatter-

ing process (see Fig. 1) and the LσM seems mostly appropriate to fix the corresponding

amplitudes.

A straightforward calculation of the ρ → π0π0γ decay amplitude leads to an expres-

sion identical to that in Eq. (4) but with the four-pseudoscalar amplitude now computed

in a LσM context, i.e.

A(π+π− → π0π0)LσM = gπ+π−π0π0 − gσπ+π−gσπ0π0

Dσ(s)
− gf0π+π−gf0π0π0

Df0(s)
, (10)

where DS(s) = s − m2
S + imSΓS are the S = σ, f0 propagators. The various coupling

constants are fixed within the model and can be expressed in terms of fπ, the masses of
2With the numerical input used in Ref. [6] one obtains Γ(ρ → π 0π0γ)χ = 1.42 keV.
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Figure 1: One-loop Feynman diagrams for ρ → π0π0γ in the LσM.

the pseudoscalar and scalar mesons involved in the process, and the scalar meson mixing

angle in the flavour basis φS [25–27]. This amplitude can then be rewritten as

A(π+π− → π0π0)LσM =
s−m2

π

f 2
π

×
(
m2

π −m2
σ

Dσ(s)
c2φS +

m2
π −m2

f0

Df0(s)
s2φS

)
, (11)

with (cφS, sφS) ≡ (cosφS, sinφS) respectively.

A few remarks on the four-pseudoscalar amplitudes in Eqs. (10,11) and on their

comparison with the ChPT amplitude in Eq. (7) are of interest:

i) for mS → ∞ (S = σ, f0), the LσM amplitude (11) reduces to the ChPT amplitude

(7). The former consists of a constant four-pseudoscalar vertex plus two terms

whose s dependence is generated by the scalar propagators DS(s), as shown in

Eq. (10). Their sum (see Eq. (11)) in the mS → ∞ limit ends up with an amplitude

which is linear in s and mimics perfectly the effects of the derivative and massive

terms in the ChPT Lagrangian (3) leading respectively to the two terms in the ChPT

amplitude (7). This corresponds to the aforementioned complementarity between

ChPT and the LσM, and, we believe, is the main virtue of our approach making the

whole analysis quite reliable.

ii) the large widths of the scalar resonances break chiral symmetry if they are naively

introduced in Eq. (10), an effect already noticed in Ref. [28]. Accordingly, we in-
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troduce the σ(500) and f0(980) widths in the propagators only after chiral cancel-

lation of constant terms in the amplitude. In this way the pseudo-Goldstone nature

of pions is preserved.

iii) the π0π0 invariant mass spectra for the ρ, ω → π0π0γ decays cover the region

where the presence of a σ(500) meson should manifest. This fact makes crucial the

incorporation of the σ(500) resonance in an explicit way. The effects of the f0(980)

meson, being its mass far from the kinematically allowed region, are expected to be

negligible. Because of the presence of the σ propagator, the amplitude in Eq. (11)

—closely linked to that from ChPT and thus expected to account for the lowest part

of the π0π0 spectra— should also be able to reproduce the effects of the σ(500)

pole at higher π0π0 invariant mass values.

In the propagators of the scalar mesons we include their total widths which, in

principle, are predicted within the model as

Γσ =
3m3

σ

32πf 2
π

(
1 − m2

π

m2
σ

)2

cos2 φS

√√√√1 − 4m2
π

m2
σ

, (12)

and a similar expression for Γf0 . We could also take φS � −9◦ which reproduces the

photonic spectrum in φ → π0π0γ decays where kaon loops give the most important

contribution [29]. However, our results are quite insensitive to the precise value of φS

provided it is not too large (as confirmed by independent analyses [26,27]) thus making

that the σ(500) meson effects dominate over those from the higher mass f0(980) weakly

coupled to pion pairs. We thus fix φS = 0◦ and, in this way, the relevant parameter in

the calculation turns out to be the sigma meson mass mσ. For its total width, Γσ, one can

take the values predicted by Eq. (12) as a first approximation but it seems safer to study

the invariant mass distribution and branching ratio of ρ → π0π0γ as a function of both

parameters mσ and Γσ. Comparison with data could hopefully help to fix their values and

contribute to decide on the existence or not of the σ resonance.

Integrating the π0π0 invariant mass spectrum for the central values of mσ = 478+24
−23±

17 MeV and Γσ = 324+42
−40 ± 21 MeV, as recently measured by the E791 Collaboration

[30], leads to Γ(ρ → π0π0γ)LσM = 2.25 keV and to the branching ratio

B(ρ → π0π0γ)LσM = 1.5 × 10−5 , (13)

well above the chiral loop prediction (9). Similarly, for mσ = 478 MeV and a narrower

width Γσ = 263 MeV, as required by Eq. (12), one predicts the larger value B(ρ →
π0π0γ)LσM = 2.1 × 10−5. Conversely, for the CLEO values mσ = 555 MeV and a

8



much broader Γσ = 540 MeV [31], one obtains B(ρ → π0π0γ)LσM = 8.3 × 10−6,

below the chiral loop result (9). These various predictions show that the branching ratio

B(ρ → π0π0γ) is sensitive enough to the σ meson mass and width to be used to extract

information on these parameters.

4 Vector meson exchange in ρ → π0π0γ

In addition to the just discussed LσM contributions, which can be viewed as an improved

version of the chiral loop predictions now extended to include the scalar resonance ef-

fects in a explicit way, ρ, ω → π0π0γ can also proceed through vector meson exchange

in the t- and u-channel. Their effects were already considered in Ref. [5] in a Vector

Meson Dominance (VMD) context. In this framework ρ → π0π0γ proceeds through the

exchange of an intermediate ω meson3, ρ → ωπ0 → π0π0γ, while ω → π0π0γ proceeds

by ρ exchange.

In order to describe these vector meson contributions we use the SU(3) symmetric

Lagrangians
LVVP = G√

2
εµναβ〈∂µVν∂αVβP 〉 ,

LVγ = −4f 2egAµ〈QV µ〉 ,
(14)

where G = 3g2

4π2f
is the ωρπ coupling constant [5,32]. The VMD amplitude for ρ(q∗, ε∗) →

π0(p)π0(p′)γ(q, ε) is then found to be

A(ρ → π0π0γ)VMD =
G2e√

2g

(
P 2{a} + {b(P )}

M2
ω − P 2 − iMωΓω

+
P ′2{a} + {b(P ′)}
M2

ω − P ′2 − iMωΓω

)
, (15)

with {a} the same as in Eq. (4) and

{b(P )} = −(ε∗ · ε) (q∗ · P ) (q · P ) − (ε∗ · P ) (ε · P ) (q∗ · q)
+(ε∗ · q) (ε · P ) (q∗ · P ) + (ε · q∗) (ε∗ · P ) (q · P ) ,

(16)

where P = p + q and P ′ = p′ + q are the momenta of the intermediate ω meson in

the t- and u-channel respectively. From this VMD amplitude one easily obtains Γ(ρ →
π0π0γ)VMD = 1.88 keV and

B(ρ → π0π0γ)VMD = 1.3 × 10−5 , (17)

in agreement with the results in Ref. [5] once the numerical inputs are unified.

Our final results for A(ρ → π0π0γ) are thus the sum of this VMD contribution plus

the previously discussed LσM contribution containing the scalar resonance effects. The
3φ exchange involves two OZI rule suppressed vertices and is totally negligible.
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Figure 2: dB(ρ → π0π0γ)/dmπ0π0 × 107 (MeV−1) as a function of the dipion invariant mass
mπ0π0 (MeV). The dot-dashed, dashed and dotted lines correspond to the separate contributions
from VMD, LσM and their interference, respectively. The solid line is the global result. The
reference values mσ = 478 MeV and Γσ = 324 MeV, taken from Ref. [30], have been used.

corresponding π0π0 invariant mass distribution is plotted in Fig. 2. The separate contri-

butions from VMD, LσM and their interference, as well as the total result are explicitly

shown. For mσ and Γσ we have taken mσ = 478 MeV and Γσ = 324 MeV, the central

values measured by the E791 Collaboration [30]. The interference term turns out to be

positive in the whole range and scalar meson exchange contributes decisively to increase

the previous results as required by experiment. Indeed, for the integrated decay width one

now obtains Γ(ρ → π0π0γ)LσM+VMD = 5.77 keV and for the branching ratio

B(ρ → π0π0γ)LσM+VMD = 3.8 × 10−5 . (18)

This value for B(ρ → π0π0γ) seems to be quite in agreement with the experimental

result in Eq. (1), although the current experimental error is still too big to be conclusive.

In any case, our analysis shows the importance of including scalar resonance effects in

an explicit way and could be taken as an indication on the existence of a σ meson in the

energy region around 500 MeV.

In order to show the sensitivity of our treatment on the parameters of the σ meson we

have plotted in Fig. 3 our final predictions for the π0π0 invariant mass distribution of ρ →
π0π0γ for various values of mσ and Γσ. The shapes of the various curves are quite similar

but the corresponding integrated values are considerably different. Taking now the central

value of mσ = 478 MeV [30] and Γσ = 263 MeV, as required by Eq. (12), one finds
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Figure 3: dB(ρ → π0π0γ)/dmπ0π0 × 107 (MeV−1) as a function of the dipion invariant mass
mπ0π0 (MeV). The various predictions are for the input values: mσ = 478 MeV and Γσ = 324
MeV from Ref. [30] (solid line); mσ = 478 MeV and Γσ = 263 MeV from Ref. [30] and Eq. (12)
(dot-dashed line); and mσ = 555 MeV and Γσ = 540 MeV from Ref. [31] (dashed line). The
chiral loop prediction with no scalars is also included for comparison (dotted line).

B(ρ → π0π0γ)LσM+VMD = 4.7 × 10−5. Thus, a narrower Γσ increases B(ρ → π0π0γ)

to a value which almost coincides with the central value of the SND measurement (1).

The prediction for the values mσ = 555 MeV and Γσ = 540 MeV reported by the CLEO

Collaboration [31] is also included in Fig. 3, as well as the invariant mass distribution

predicted by Eq. (8), which just includes chiral loops but no scalar exchange. In these

cases the corresponding branching ratios are found to be 2.8 × 10−5 and 2.9 × 10−5,

respectively, well below the SND data in Eq. (1). The smallness of the former value

disfavours a broad Γσ. The second value is an update of the old result in Ref. [6] and its

smallness confirms the need of the effects of a narrow σ.

5 ω → π0π0γ

The ω → π0π0γ radiative decay can now be treated along the same lines. This pro-

cess receives a well known ρ meson exchange contribution via the VMD decay chain

ω → ρπ0 → π0π0γ [5]. Ignoring for the moment ρ-ω mixing, i.e. assuming that

the physical ω = ωI=0 with no I = 1 contaminations, the corresponding amplitude

is given by AI=0(ω → π0π0γ)VMD = 1
3
A(ρ → π0π0γ)VMD with the replacement

(Mρ,Γρ) → (Mω,Γω) in the propagators of Eq. (15). The proportionality factor 1/3
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follows from the SU(3) symmetric Lagrangians (14) and for an ideally mixed ω. Since

the π0γ invariant masses are far from the ρ poles, this amplitude is nearly real as before

and the invariant π0π0 mass distribution has a similar shape to that of the ρ → π0π0γ case.

Integrating over the whole physical region one obtains Γ(ω → π0π0γ)VMD = 268 eV and

B(ω → π0π0γ)VMD = 3.2 × 10−5, in agreement with the results of Ref. [5]. If instead

we use a momentum dependent width for the ρ meson [33]

Γρ(q
2) = Γρ

(
q2 − 4m2

π

m2
ρ − 4m2

π

)3/2
mρ√
q2

θ(q2 − 4m2
π) , (19)

then one obtains Γ(ω → π0π0γ)VMD = 300 eV. This value is some 12% larger than

the previous one, as already noticed in Ref. [15]. Notice that our results are still sub-

stantially lower than the central value reported in Ref. [15]. The reason is that we are

using an SU(3) symmetric formalism where all the V V P and V Pγ couplings are de-

duced from the V PP coupling g, which we take from the ρ → π+π− width (see Ref. [9]

for details), while in Ref. [15] the couplings gωρπ and gρ0π0γ are extracted from exper-

iment. In principle, this seems a better procedure but, unfortunately, the extraction of

gωρπ from Γ(ω → π+π−π0)exp is based on the assumption that this decay proceeds

entirely through ω → ρπ → π+π−π0 and gρ0π0γ follows from the experimental value

Γ(ρ0 → π0γ)exp = (102 ± 26) keV which is controversial and affected by large er-

rors. If we use this value, our predictions increase by some 19% and confirm the result

Γ(ω → π0π0γ)VMD = (344 ± 85) eV of Ref. [15].

There is also another contribution to the ω → π0π0γ amplitude coming from chiral

loops. However, as stated in the Introduction, this chiral loop contribution (given only

by kaon loops in the good isospin limit with ω = ω I=0) is very small and can be safely

neglected. Its improved version taking into account scalar resonance effects is more prob-

lematic because kaons could couple to the σ meson. Proceeding as before one can obtain

the A(K+K− → π0π0)LσM amplitude corresponding to those in Eqs. (10,11). There is

however an important difference: while the gσππ couplings are proportional to (m2
σ−m2

π),

those for gσKK̄ are proportional to (m2
σ −m2

K). For the range of masses we are consider-

ing, mσ � mK , the amplitude containing the σ pole turns out to be negligible. In this case

we still have AI=0(ω → π0π0γ) � AI=0(ω → π0π0γ)VMD as emphasized in Ref. [15].

From these various estimates, reflecting the large uncertainties in this channel, it seems

reasonable to conclude

Γ(ω → π0π0γ)VMD = (330 ± 90) eV , (20)

quite close to the value favoured in Ref. [15] and affected by a conservative error.
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Figure 4: dB(ω → π0π0γ)/dmπ0π0 × 107 (MeV−1) as a function of the dipion invariant mass
mπ0π0 (MeV). The predictions are for the σ meson values mσ = 478 MeV and Γσ = 324 MeV
(solid line) and dropping all σ meson contribution (dotted line)

In addition to the dominant VMD contribution there is an indirect contribution to

ω → π0π0γ that appears through ρ-ω mixing followed by the ρ → π0π0γ decay [15].

This new contribution makes the whole ω → π0π0γ amplitude to be written as AI=0(ω →
π0π0γ) + εA(ρ → π0π0γ), with two amplitudes already discussed and where ε is the ρ-ω

mixing parameter given by

ε ≡ M2
ρω

m2
ω −m2

ρ − i(mωΓω −mρΓρ)
� −0.006 + i 0.034 , (21)

with M2
ρω(m2

ρ) = (−3800 ± 370) MeV2 [33]. An additional effect of this ρ-ω mixing is

to replace the ρ propagator in AI=0 by

1

Dρ(s)
→ 1

Dε
ρ(s)

=
1

Dρ(s)

(
1 +

gωπγ

gρπγ

M2
ρω

Dω(s)

)
, (22)

with DV (s) = s − m2
V + imV ΓV for V = ρ, ω and in our SU(3) symmetric VMD

framework gωπγ/gρπγ = 3.

Apparently, the authors of Ref. [15] have approximated the new, isospin violating

term of ω → π0π0γ by the VMD contribution εA(ρ → π0π0γ)VMD. In so doing one

increases the previous estimate to Γ(ω → π0π0γ) = (381 ± 90) eV quite close to the

result in Ref. [15]. A more complete treatment, with A(ω → π0π0γ) = AI=0(ω →
π0π0γ) + εA(ρ → π0π0γ)VMD+LσM, seems however preferable. The π0π0 invariant mass
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spectra corresponding to this amplitude have been calculated for the same input values

of mσ and Γσ that we introduced in the ρ → π0π0γ case. But the sensitivity on these

input parameters is now minimal and all the results almost coincide with the curve for

mσ = 478 MeV and Γσ = 324 MeV [30] plotted in Fig. 4.

The integrated width and branching ratio are predicted to be Γ(ω → π0π0γ)VMD+LσM =

(377 ± 90) eV and

B(ω → π0π0γ)VMD+LσM = (4.5 ± 1.1) × 10−5 . (23)

If the chiral loops are retained but scalar meson effects are neglected one then predicts

Γ(ω → π0π0γ)VMD+χ = (395 ± 90) eV and

B(ω → π0π0γ)VMD+χ = (4.7 ± 1.1) × 10−5 , (24)

only a 5% above the previous results and hardly distinguishable. The same happens to the

invariant mass distribution also plotted in Fig. 4. Because of the large errors, the agree-

ment with the experimental measurement (2) is reasonable but a moderate improvement

of the data will represent a decisive test for our approach.

6 Conclusions

In this note we have discussed scalar and vector meson exchange in ρ, ω → π0π0γ decays.

Vector meson contributions are calculated in the framework of VMD and confirm the old

results in Ref. [5]. The scalar meson contributions are much more interesting and have

been introduced by means of a ChPT inspired context first applied to φ → π0ηγ [14].

The main point in this context is the use of an amplitude which agrees with ChPT for

low values of the two-pseudoscalar invariant mass but develops the scalar meson poles at

higher values in accordance with the LσM Lagrangian.

Besides a sizeable VMD contribution to ρ → π0π0γ, there also exists a larger

contribution coming from pion loops which couple strongly to the low mass σ meson. The

predictions for the π0π0 invariant mass distribution and the integrated ρ → π0π0γ width

are sensitive enough to mσ and Γσ to allow for interesting comparisons with experiment.

The recently available data for B(ρ → π0π0γ) in Eq. (1) from the SND Collaboration

favour the presence of a low mass and moderately narrow σ meson.

The parallel analysis of the ω → π0π0γ decay is more involved because ρ-ω mixing

plays a rôle, as first analyzed by Guetta and Singer [15]. Moreover, for this decay the

main contribution comes from a less well fixed VMD amplitude and the effects of scalar

meson exchange are much more difficult to disentangle. In this case, there is little hope to

learn on the values of mσ and Γσ when comparing with experiment. The available data in

14



Eq. (2) are compatible with our predictions, although poorly conclusive because they are

affected by large errors.

In summary, higher accuracy data for these two channels and more refined theo-

retical analyses would contribute decisively to clarify one of the challenging aspects of

present hadron physics, namely, the structure of the lowest lying scalar states and partic-

ularly of the controversial σ meson.
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